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Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the
feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work
proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system
optimal. To deal with the challenge of the impulsive noises and outliers caused by EMG artifacts in EEG signals, we formulate
a robust stacked autoencoder (R-SAE) as a part of the network to learn an effective feature. In R-SAE, the maximum correntropy
criterion (MCC) is proposed to reduce the effect of noise/outliers. Unlike themean square error (MSE), the output of the new kernel
MCC increases more slowly than that of MSE when the input goes away from the center. Thus, the effect of those noises/outliers
positioned far away from the center can be suppressed. The proposed method is evaluated on six patients of 33.6 hours of scalp
EEG data. Our method achieves a sensitivity of 100% and a specificity of 99%, which is promising for clinical applications.

1. Introduction

Epilepsy is a common and serious brain disorder, which
affects about 50 million people worldwide [1]. Epileptic
seizures are characterized by convulsions, loss of conscious-
ness, and muscle spasms resulting from excessive synchro-
nization of neuronal activities in the brain [2]. The abnormal
neuronal discharges lead to epileptic patterns such as closely
spaced spikes and slow waves in electroencephalogram
(EEG). In seizure diagnosis and evaluation, visual inspection
of these epileptic patterns from long-term EEG is a routine
job for the doctors, which could be highly tedious and
time-consuming [3]. Therefore, reliable seizure detection
system that identifies seizure events automatically would
facilitate seizure diagnosis and has great potential in clinical
applications.

There are two key points in automatic seizure detection.
One is how to capture the diverse patterns of seizure EEG. For
different individuals, the morphologies of seizure patterns
could vary considerably. Therefore, effective feature extrac-
tion plays a key role in seizure detection and lots of efforts

have been made. In order to characterize the changes in
amplitude and energy in epileptic EEG, Saab and Gotman [4]
proposed to use three measures, relative average amplitude,
relative scale energy, and coefficient of variation of amplitude.
Similarly, Majumdar and Vardhan [5] utilized the variance of
differentiation of time window to detect significant changes
in EEG signals. To identify the sharp waves which typically
appear in seizure signals, Yadav et al. [6] introduced a
morphology-based detector based on the slopes of the half-
waves of signals. To characterize the intrinsic time-frequency
components of seizure patterns, Ghosh-Dastidar et al. [7]
used principal component analysis and Zandi et al. [8]
applied wavelet transform to decompose the EEG signal for
feature enhancement. To encode the changes in dynamics
of epileptic signal, Jouny and Bergey [9] utilized nonlinear
measures of sample entropy and Lempel-Ziv complexity. To
describe the topology state of epilepsy, Santaniello et al. [10]
transformed the multichannel EEG data into a cross-power
matrix, and eigenvalues of the matrix are used for seizure
detection. The other key point is how to reduce the effect
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of noise. The noises caused by electromyography (EMG) or
electrode movements commonly appear in EEG signal and
are prone to trigger false alarms. These artifacts could bring
impulsive changes with large amplitudes in EEG signal and
lead to outlying values in the feature space. Some existing
methods simply assumed these noises to be Gaussian [11, 12]
and thus would be fragile given large amounts of outliers.
Other approaches applied specific false alarm avoidance
methods against these noises [4–6].

Although existing methods have shown some strengths
in specific EEG datasets, the following problems have not yet
been well explored. First, most existing features are designed
according to the observation of a few seizure patterns, which
seems too empirical to cover a wide range of seizure patterns;
thus the features are usually suboptimal. Second, existing
methods could be sensitive to the noises in EEG signals. Arti-
facts caused by EMG or electrode movements probably lead
to a EEG signal shape similar to that of seizure states. A simple
Gaussian assumption for the noises can be incorrect and
the approaches designed based on this can cause high false
alarms [11, 12]. Finally, most methods design the feature and
classifier individually. Few efforts have been made to study
the relationship between them or simultaneously optimize
both of the two parts to maximize the abilities of them.

Inspired by the great success of deep network in image
retrieval, speech recognition, and computer vision [13–21],
this paper proposes a deep model framework to deal with
the above issues. The main contributions of our work can be
summarized as follows.

(i) Instead of manually designing a feature, we propose a
network called robust stacked autoencoder (R-SAE)
to automatically learn a feature to represent seizure
patterns.The reconstruction error is first used to learn
an initial feature.

(ii) To reduce the effect of noises on EEG signals, we
formulate a maximum correntropy criterion (MCC)
to the R-SAE network. Unlike the traditional autoen-
codermodel which uses themean square error (MSE)
as the reconstruction cost, the output of the new
kernel MCC increases more slowly than that of MSE
when the input goes away from the center. Thus,
the effect of those noises/outliers positioned far away
from the center can be suppressed.

(iii) The R-SAE part and classification part are integrated
to a new deep network. The objective of the network
is the best seizure classification accuracy. Thus, both
the initial feature and the classifier could be optimized
according to the detection objective so that the whole
detection system could be as optimal as possible.
Besides, the optimal feature is completely data-driven.
Given enough training data, the optimal feature
learned by our method is able to represent various
seizure patterns.

Our method is evaluated on 33.6 hours of EEG signals
from six patients.With theMCC-based R-SAEmodel, robust
features are extracted from noisy EEG signal that the sensi-
tivity and specificity increase by 14% and 1% compared with

Table 1: Patient information and selected frequency bands.

Patient Sex Chan. # Sei. # Hours Freq. band
Pt01 Female 28 2 5.6 14–30Hz
Pt02 Female 28 2 5.6 8–13Hz
Pt03 Female 28 3 5.6 4–7Hz
Pt04 Male 28 3 5.6 14–30Hz
Pt05 Male 28 3 5.6 8–13Hz
Pt06 Male 28 3 5.6 8–13Hz

the traditional stacked autoencoder (S-SAE). By supervised
joint optimization of our deep model, the features are further
optimized with better separability in the feature space and
the sensitivity and specificity increase by 8% and 15%, respec-
tively. In comparison with other methods, the proposed R-
SAE model outperforms the competitors and achieves a high
sensitivity of 100% and a specificity of 99%.

The rest of this paper is organized as follows. Section 2
presents the detail of the R-SAE deep model.The experimen-
tal results and discussions are shown in Section 3. Finally, we
draw the conclusions in Section 4.

2. Materials and Methods

The framework of our method is shown in Figure 1. The
multichannel EEG signals are firstly divided into short-time
segments, and we calculate the cross-power matrix for each
segment to reveal the spatial patterns of the brain. Then,
compact features are extracted from the cross-power matrix
by a deep network cascaded to a softmax classifier. In our
method, the deep network is first pretrained with the R-SAE
model to extract useful features, and then the features are
further optimized jointly with the classifier to obtain optimal
seizure detection system.

2.1. EEG Data. Scalp EEG data of six patients are used in
this study. The EEG data were recorded during long-term
presurgical epilepsy monitoring using NicoletOne amplifier
at Second Affiliated Hospital of Zhejiang University, College
of Medicine. A total of 28 channels were acquired at the
sample rate of 256Hz according to 10–20 electrode placement
systems. The detail of the EEG data is given in Table 1. For
each patient, all the available seizure EEG signals are used,
and we randomly choose two 2.8-hour-long EEG segments
as the nonseizure data segmentation and data preparation.

2.2. Segmentation and Data Preparation. In the preprocess-
ing stage, the multichannel EEG data are divided into 5-sec-
ond-long segments with a sliding window. For each patient, a
total of 4000 segments of nonseizure data and 1000 segments
of seizure data are divided from the EEG signals. There is
no overlap between nonseizure segments, while, for seizure
segments, the proportion of overlap is configured considering
the total length of the seizure signal and number of segments
required.

After segmentation, all the segments are disordered and
we randomly pick 750 seizure segments and 750 nonseizure



BioMed Research International 3

Correlation 
analysisSegmentation Feature 

extraction Classification

Cross-power
Robust stacked 

autoencoder
Softmax classifier

Seizure

Nonseizure

784 units
50 units 10 units

Multichannel 
EEG signals

Video-EEG signal

Time windows

......

...
...

0

0

0

200 400 600 800 1000 1200

0

0
0

200 400 600 800 1000 1200

0
0

0

200 400 600 800 1000 1200

40

20

0

−20

−40

−20

−40

−20

−40

40

20

0

40

20

0

10

5

0

−5

−10

10

5

0

−5

−10

10

5

0

−5

−10

10

5

0

−5

−10

−15

10

5

0

−5

−10

−15

10

5

0

−5

−10

−15

5

10

15

20

25

5

10

15

20

25

5

10

15

20

25

5 10 15 20 25

W(1) , b(1) W(2) , b(2)

Ch
an

ne
lN

Ch
an

ne
l2

Ch
an

ne
l1

Figure 1: Framework of our method.

segments as the training set and the rest 3500 segments are
used as the testing set. All the experiments are carried out on
the same training and testing set.

2.3. Multichannel Analysis. Studies have shown that the cor-
relation structure of all pairs of EEGchannels could reflect the
spatiotemporal evolution of electrical ictal activities [22–24].
By characterizing the spatiotemporal patterns, it is possible to
identify seizures and analyze seizure dynamics.

In this study, we adopt cross-power matrix [10] to reflect
the spatial patterns of the brain. For each timewindowwith𝑁
channels, the cross-power matrix A is 𝑁 × 𝑁. Each element
𝑎
𝑖𝑗
in A is defined by the cross-power [10] between the two

EEG channels 𝑖 and 𝑗 in a given frequency band of [𝑙𝑏, 𝑢𝑏] as
follows:

𝑎
𝑖𝑗
= ∫

𝑢𝑏

𝑙𝑏

𝑃
𝑖𝑗 (𝜔) 𝑑𝜔,

(1)

where 𝑃
𝑖𝑗
(𝜔) is the cross-power spectral density of channels 𝑖

and 𝑗 at frequency 𝜔.

2.4. Frequency Band Selection. Considering the diversity of
epileptic patterns among patients, we choose the frequency
band patient specifically from theta (4–7Hz), alpha (8–
13Hz), and beta (14–30Hz) bands. In order to select the
frequency band that best reflects the difference between
seizure and nonseizure states, we adopt Fisher’s discriminant
ratio (FDR) [25] as the criterion as follows:

𝐶 =
(𝜇
𝑠
− 𝜇
𝑛
)
2

𝜎2
𝑠
+ 𝜎2
𝑛

, (2)

where 𝜇
𝑠
and 𝜎2

𝑠
are means and covariance, respectively, of

cross-power matrix of seizure segments and 𝜇
𝑛
and 𝜎2

𝑛
are

those of nonseizure segments. For each patient, only the
training segments are utilized for frequency band selection,
and the frequency band with the highest FDR is used for
seizure detection. The frequency band selected for each
patient is shown in Table 1.

2.5. Robust Stacked Autoencoder. After multichannel analy-
sis, each time window is represented by a cross-power matrix
of 𝑁 × 𝑁, where 𝑁 denotes the number of EEG channels.
We propose to employ robust stacked autoencoders to extract
reliable and compact features from the cross-power matrix.

In this section, first, we briefly introduce the basic autoen-
coder. Then, the robust autoencoder with MCC is presented
to improve the feature learning ability under noises. Finally,
we stack the robust autoencoders into a deep model for
compact feature extraction.

2.5.1. Basic Autoencoder. Here, we begin with the traditional
standard stacked autoencoder model (S-SAE). An autoen-
coder is a three-layer artificial network including an encoder
and a decoder. The encoder takes an input vector x and maps
it to a hidden representation x󸀠 through a nonlinear function
as follows:

x󸀠 = 𝑠 (W(1)x + b(1)) , (3)

where 𝑠(⋅) is the sigmoid function. Suppose x and x󸀠 are 𝑑-
dimensional and 𝑑󸀠-dimensional vectors, respectively; then
W(1) is a 𝑑󸀠 × 𝑑 weight matrix and b(1) is a 𝑑󸀠-dimensional
bias vector.

Then, the vector x󸀠 is mapped back to a reconstruction
vector y by the decoder as follows:

y = 𝑠 (W(2)x󸀠 + b(2)) , (4)

where the output vector is 𝑑-dimensional,W(2) is 𝑑 × 𝑑󸀠, and
b(2) is a 𝑑-dimensional bias vector.

The parameter set 𝜃 = {W(1), b(1),W(2), b(2)} is optimized
by minimizing the average reconstruction error as follows:

𝜃 = argmin
𝜃

1

𝑛

𝑛

∑

𝑖=1

𝐿 (x
𝑖
, y
𝑖
) , (5)
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Figure 2: An EEG segment with impulsive noises. (a) EMG artifacts cause short-term burst noises in some channels of EEG signal; (b)
visualization of the cross-power matrix of the segment with noises. The vertical and horizontal axes denote the channels and each point (𝑖, 𝑗)
in this figure is the cross-power value of channel 𝑖 and channel 𝑗. The cross-power matrix contains outliers with large values. Because of the
noise, the cross-power between channel 17 and channel 18 is far away from the interquartile range value (5.41 × 104 versus 395.3).

where 𝐿 is the loss function. Mostly, the mean square error
(MSE) is used as

𝐽MSE (𝜃) =
1

𝑛

𝑛

∑

𝑖=1

𝐿MSE (x𝑖, y𝑖)

=
1

𝑛

𝑛

∑

𝑖=1

(
1

2

󵄩󵄩󵄩󵄩y𝑖 − x
𝑖

󵄩󵄩󵄩󵄩

2
) .

(6)

2.5.2. Robust Autoencoder. The traditional autoencoder
model based on MSE loss is not suitable for stable feature
learning in EEG signals. In EEG, especially in scalp EEG
signals, the large amount of noises caused by EMG artifacts
or electrode movements could bring abrupt changes in
EEG signal and lead to outliers in both time and frequency
domain. A typical example is shown in Figure 2. In this time
window, the EEG signals are noised by short-term EMG
artifacts which lead to abrupt large-amplitude vibrations
in some of the channels as shown in Figure 2(a). In the
cross-power domain, such artifacts lead to outlying large
values as in the light blocks in Figure 2(b). In the example
illustrated, the cross-power between channel 17 and channel
18 is 5.41 × 104, which is far away from the interquartile
range value of 395.3. In this situation, the MSE-based cost
of the traditional autoencoder model could be dominated
by these outliers so that the feature learning ability is
weakened.

In order to learn robust features from EEG signals, we
replace the loss function of the autoencoder model with cor-
rentropy-based criterion to build robust autoencoder.

Maximum Correntropy Criterion. Correntropy is defined as
a localized similarity measure [26] and it has shown good
outlier suppression ability in studies [27, 28]. For two random
variables𝑋 and 𝑌, the correntropy is defined as

𝑉
𝜎 (𝑋, 𝑌) = 𝐸 [𝜅𝜎 (𝑋 − 𝑌)] , (7)

where 𝐸[⋅] is the mathematical expectation and 𝜅
𝜎
(⋅) is the

Gaussian kernel with kernel size of 𝜎 as follows:

𝜅
𝜎 (⋅) =

1

√2𝜋𝜎
exp(− (⋅)

2

2𝜎2
) . (8)

The correntropy induces a newmetric that, as the distance
between 𝑋 and 𝑌 gets larger, the equivalent distance evolves
from 2-norm to 1-norm and eventually to zero-norm when
𝑋 and 𝑌 are far apart [29]. Compared with second-order
statistics such asMSE, correntropy is less sensitive to outliers.
Figure 3 compares the second-order cost and correntropy
cost. As the input 𝑥 goes further from the center, the second-
order cost increases sharply, so that it is sensitive to outliers.
By contrast, the correntropy is only sensitive in a local range
and the increase of the cost is extremely slow when the input
value goes out of the central area. Therefore, the correntropy
measure is particularly effective in outlier suppression.

In practice, the joint probability density function is
unknown and usually only a finite set of samples of
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{(𝑥
𝑖
, 𝑦
𝑖
)}
𝑁

𝑖=1
is available for both 𝑋 and 𝑌; then the estimated

correntropy can be calculated by

𝑉̃
𝜎 (𝑋, 𝑌) =

1

𝑁

𝑁

∑

𝑖=1

𝜅
𝜎
(𝑥
𝑖
− 𝑦
𝑖
) . (9)

The maximum of correntropy error in (9) is called
the maximum correntropy criterion (MCC) [29]. Due to
the good outlier rejection property of correntropy, MCC is
suitable for robust algorithm design.

Robust Autoencoder Based on MCC. In order to improve the
antinoise ability of traditional autoencoders, we measure the
reconstruction loss between the input vector x and the output
vector y by MCC instead of MSE. In the MCC-based robust
autoencoder, the cost function 𝐽 is formulated as

𝐽MCC (𝜃) =
1

𝑛

𝑛

∑

𝑖=1

𝐿MCC (x𝑖, y𝑖)

=
1

𝑛

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝜅
𝜎
(𝑥
𝑗

𝑖
− 𝑦
𝑗

𝑖
) ,

(10)

where 𝑛 is the number of training samples and𝑚 is the length
of each training sample. The optimal parameter 𝜃 is obtained
when 𝐽MCC(𝜃) is maximized.

In order to encourage the deep model to capture more
implicit patterns, a sparsity-inducing term is adopted. Studies
of sparse coding have shown that the sparseness seems to play
a key role in learning useful features [30, 31]. Xie et al. [32]
combined the virtues of sparse coding and deep networks
into a sparse stacked denoising autoencoder to achieve better
feature learning and denoising performance. In our model,
we regularize the reconstruction loss by a sparsity-inducing
term defined as in [32] as follows:

𝐽sparse (𝜃) = 𝛽

𝑠
2

∑

𝑖=1

KL (𝜌 ‖ 𝜌
𝑖
) , (11)

where 𝛽 is the weight adjustment parameter, 𝑠
2
is the number

of units in the second layer, 𝜌
𝑖
is the activation value for the

𝑖th hidden layer unit, and 𝜌 is a small number. The sparsity-
inducing term constrains that the value of 𝜌

𝑖
should be near

𝜌 under Kullback-Leibler divergence.

Also, a weight decay term 𝐽weight(𝜃) is added to avoid
overfitting. It is defined as follows:

𝐽weight (𝜃) =
𝜆

2

2

∑

𝑙=1

𝑠
𝑙

∑

𝑖=1

𝑠
𝑙+1

∑

𝑗=1

(𝑤
(𝑙)

𝑗𝑖
)
2

, (12)

where𝑤(𝑙)
𝑗𝑖
represents an element in𝑊(𝑙), 𝜆 is the parameter to

adjust the weight of 𝐽weight(𝜃), and 𝑠𝑙 denotes number of units
in layer 𝑙. Therefore, the cost function of the proposed robust
autoencoder is defined as

𝐽R-SAE (𝜃) = −𝐽MCC (𝜃) + 𝐽weight (𝜃) + 𝐽sparse (𝜃) . (13)

By minimizing the cost of 𝐽R-SAE(𝜃), the parameter set 𝜃
could be optimized.

2.5.3. Stacking Robust Autoencoders into Deep Network. In
order to learnmore effective features for seizure classification,
we stack the robust autoencoders into a deepmodel. Stacking
the robust autoencoders works in the same way as stacking
the ordinary autoencoders [17] and the output from the
highest layer is cascaded to a softmax classifier for seizure
detection. Such a model aims at the best seizure classification
accuracy, and it is able to simultaneously optimize the feature
and classifier.

The training process of the deep network includes two
stages: unsupervised pretraining and supervised fine-tuning.
In the pretraining stage, the network is trained layer-wisely
by the proposed robust autoencoder model to learn useful
filters for feature extraction. A well pretrained network yields
a good starting point for fine-tuning [33]. In the fine-tuning
stage, a softmax classifier is added to the output of the
stack, and the parameters of the whole system are tuned to
minimize the classification error in a supervisedmanner.The
network is globally tuned through back-propagation and all
the parameters of both feature extraction and classification
are jointly optimized. After fine-tuning, the deep network
is well configured to obtain optimal overall classification
performance.

3. Results and Discussion

In this section, experiments are carried out to evaluate the
seizure detection performance of our model. The exper-
iments include four parts: (1) we compare the unsuper-
vised feature learning performance of the modified R-SAE
model and the standard stacked autoencoder (S-SAE); (2)
we compare the features before and after supervised fine-
tuning to demonstrate the strength of joint optimization;
(3) we compare the seizure detection performance of R-SAE
model with other methods; (4) we evaluate the influence
of parameters in the R-SAE model on the seizure detection
performance.

In our experiments, the seizure detection performance is
evaluated with the two commonly used criteria, sensitivity
and specificity. Sensitivity is defined as the percentage of true
seizure segments detected and specificity is the proportion of
nonseizure segments correctly classified.
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Figure 4: Unsupervised feature learning results by R-SAE model for patient pt03 (a) and pt04 (b). For each subfigure, the top is the original
EEG signal from one channel and the bottom is the features extracted by the R-SAE model.

3.1. Performance of Feature Learning. In this experiment,
we evaluate the unsupervised feature learning ability of the
R-SAE model with EEG signals. In our method, we train
the R-SAE model to learn compact features from the cross-
power matrix. After the layer-wised self-taught training, the
deep network is well configured to learn useful features.
The feature extraction results of the proposed R-SAE model
are illustrated in Figure 4. For both illustrations, the seizure
begins at about the 20th second. After seizure onset, the
patterns of features extracted by R-SAE model show clear
differences from nonseizure ones.

The feature learning performance of R-SAE and S-SAE is
compared using EEG signal. In order to evaluate the ability
of the features quantitatively, we utilize the classification
performance as the criterion. In this experiment, the cost
function of the S-SAE model is as follows:

𝐽S-SAE (𝜃) = 𝐽MSE (𝜃) + 𝐽weight (𝜃) + 𝐽sparse (𝜃) , (14)

where the loss function 𝐽MSE(𝜃) is formulated with MSE-
based loss function as in (6) and 𝐽weight(𝜃) and 𝐽sparse(𝜃) are
formulated the same as R-SAE.

We stack two autoencoders to constitute a three-layer
network with 784 input units, 50 hidden units, and 10 output
units. The same stacked architectures are applied for both R-
SAE and S-SAE. The networks are initialized randomly and
trained layer-wisely using back-propagation to minimize the
cost functions. The parameters are set as 𝜆 = 0.003, 𝛽 = 3,
and 𝜌 = 0.1 for both methods and 𝜎 = 0.05 for R-SAE.

The seizure detection results of both R-SAEmodel and S-
SAE model are shown in Table 2. In order to eliminate the
effects of randomness in network initialization, we present
all the results averaged over 10 trials. Results show that the
average sensitivity of R-SAE is 97%, which demonstrates 14%
improvement compared with S-SAE. With specificity, the
average result is 92% for R-SAE which is also higher than that

of S-SAE.Thus, R-SAE outperforms S-SAE in both sensitivity
and specificity.

In the analysis of the detection results, we find that S-
SAE fails mostly on EEG segments with impulsive noises
such as the segment illustrated in Figure 2. Since such abrupt
artifacts could appear frequently in EEG signals, the S-SAE
model could not be well trained because the MSE-based cost
could be dominated by the large outliers. Thus, these EEG
segments could not be well represented by the S-SAE model.
By contrast, the MCC in the R-SAE model is more robust to
large outliers. Therefore, the proposed R-SAE method could
handle noises in EEG signal well, and it provides more robust
feature extraction performance than S-SAE.

3.2. Performance of Joint Feature Optimization. In this exper-
iment, we test the effects of joint feature optimization. After
the MCC-based unsupervised learning, the deep network is
well configured to extract useful features from EEG signals.
On this basis, the deep model is fine-tuned through back-
propagation to jointly optimize both feature and classifier, so
that the optimal overall classification performance could be
achieved. In this experiment, the parameters of R-SAE are set
the same as in Section 3.1 that only the unit number of the
output layer is set to 3 for visualization convenience.

The visual comparison of features before and after fine-
tuning is illustrated in Figure 5. In Figures 5(a) and 5(b),
the red circles denote features of seizure segments while the
blue stars are nonseizure ones. It can be seen that, after
fine-tuning, the seizure and nonseizure segments are more
separable in the feature space. We quantitatively analyze the
separability of the features before and after fine-tuning with
the FDR criterion as in (2) using the first four patients.
As illustrated in Figure 5(c), the fine-tuned features achieve
about ten times higher FDR than do the original ones, which
strongly indicates that the joint optimization could help to
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Figure 5: Comparison between features before and after joint optimization. (a-b) Visualization of features for seizure and nonseizure seg-
ments. The red circles denote features of seizure segments while the blue stars are nonseizure ones. (c) The FDR value of features before and
after joint optimization.

Table 2: Comparison between R-SAE and S-SAE (before fine-tuning).

Patient R-SAE S-SAE
Sensitivity Specificity Sensitivity Specificity

Pt01 0.99 ± 8.1 × 10
−3

0.96 ± 2.0 × 10
−2

0.83 ± 2.0 × 10
−1

0.92 ± 3.2 × 10
−2

Pt02 0.96 ± 2.0 × 10
−2

0.91 ± 1.7 × 10
−2

0.90 ± 1.0 × 10
−1

0.83 ± 7.6 × 10
−2

Pt03 0.96 ± 1.5 × 10
−2

0.93 ± 2.1 × 10
−2

0.82 ± 2.8 × 10
−1

0.93 ± 3.2 × 10
−2

Pt04 0.95 ± 3.7 × 10
−2

0.91 ± 1.3 × 10
−2

0.91 ± 4.1 × 10
−2

0.92 ± 2.6 × 10
−2

Pt05 0.98 ± 1.7 × 10
−2

0.94 ± 1.5 × 10
−2

0.70 ± 1.3 × 10
−1

0.96 ± 2.4 × 10
−2

Pt06 0.97 ± 2.9 × 10
−2

0.84 ± 5.5 × 10
−2

0.82 ± 1.7 × 10
−1

0.90 ± 1.5 × 10
−2

Avg. 0.97 ± 1.3 × 10
−2

0.92 ± 3.8 × 10
−2

0.83 ± 6.9 × 10
−2

0.91 ± 4.0 × 10
−2

learn superior features with high separability, so that the
seizure detection performance could be improved.

The seizure detection performance of features before and
after fine-tuning is presented in Table 3. After joint feature
learning, the average sensitivity of six patients increases
by 8% and the specificity increases by 15%. Therefore, the
joint learning process enhances the separability of features

between the two classes and greatly facilitates seizure detec-
tion performance.

3.3. Performance of SeizureDetection. In this experiment, sei-
zure detection performance of the proposed R-SAE model is
evaluated and compared with singular value decomposition-
(SVD-) based method.The SVDmethod is the most popular
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Figure 6: Model analysis of two important parameters of R-SAE. (a) Seizure detection performance under different feature numbers; (b)
seizure detection performance with different selections of 𝜎. In this figure, SEN-FT and SPE-FT are sensitivity and specificity after fine-tuning
and SEN-NFT and SPE-NFT are those before fine-tuning.

Table 3: Comparison of seizure detection performance before and
after fine-tuning (FT).

Feature Sensitivity Specificity
Before FT 0.90 ± 1.0 × 10

−1
0.84 ± 1.4 × 10

−1

After FT 0.98 ± 3.1 × 10
−2

0.99 ± 4.7 × 10
−3

tool for correlation matrix analysis. Studies have shown that
the seizure EEG signals commonly lead to a lower-complexity
state which could be well reflected by the eigenvalues from
SVD of the correlation matrix [10, 22].

To provide a benchmark for the comparison, we also test
the seizure detection performance with the original cross-
power matrix without further feature extraction. The meth-
ods included in the comparison are configured as follows.

(i) SVM: in SVM, the cross-power matrices of time
windows are reshaped to vectors and fed into an SVM
classifier with RBF kernel.The parameters of the SVM
model are selected using 3-fold cross-validation.

(ii) SVD(p) + SVM: for each time window, the cross-
power matrix is decomposed by SVD, and the first 𝑝
eigenvalues are adopted as the features. The feature
vectors are then classified by an SVM classifier with
RBF kernel. The parameters of the SVM model are
selected using 3-fold cross-validation.

(iii) R-SAE(q): the R-SAE model is configured with 784
input units, 50 hidden units, and 𝑞 output units. The
parameters are set as 𝜆 = 0.003, 𝛽 = 3, 𝜌 = 0.1, and
𝜎 = 0.05. For thismethod, all results are averaged over
10 trials.

The seizure detection results of the three methods are
given in Table 4. For both SVD+ SVMandR-SAE, we test the
seizure detection performance under two different choices
of parameters of 𝑝 and 𝑞, respectively. Results show that,
with the original cross-power matrix classified by SVM, high
sensitivities of above 0.99 are achieved for all six patients and
the average specificity is 0.91. By the SVD + SVM method
with 𝑝 = 3, uneven performance is shown in different
patients. For pt03, high sensitivity of 0.96 is reached with

0.99 of specificity. However, low sensitivities are obtained for
pt01, pt05, and pt06. For SVD + SVM method with 𝑝 = 10
where more features are preserved, better sensitivities and
specificities are achieved. However, the uneven performance
over patients still exists, and the average sensitivity is only
0.83. Since the feature extraction process of the SVD-based
method loses much useful information, lower performance
is obtained compared with SVM benchmark. Besides, the
seizure detection performance sees a decrease when fewer
eigenvalues are used. By contrast, the proposed R-SAE
method achieves better performance than the benchmark
SVMmethod. In R-SAE with 𝑞 = 10, high sensitivities of 1.00
and specificities of 0.99 are achieved for all patients. Equally
high performance is obtained with 𝑝 = 3. The R-SAE model
keeps robust seizure detection ability even with such small
dimension of features.

3.4. Model Analysis. In this experiment, we test the influence
of the two important parameters on the seizure detection per-
formance. The first parameter is the output feature number,
that is, the number of units of the output layer of the R-SAE
model, and the second parameter is the kernel size 𝜎 inMCC.
The experiment is carried out using the first four patients.

3.4.1. Analysis of Feature Number. The feature number is
tuned by the parameter 𝑞 in Section 3.3. In order to test the
influence of 𝑞 on seizure detection, all the other parameters
are fixed as in Section 3.3 and we gradually tune 𝑞 from
20 to 3. Figure 6(a) illustrates the seizure detection results
averaged over four patients under different choices of 𝑞.
The result shows that the seizure detection performance of
R-SAE before fine-tuning sees a slight decrease with the
decrease of feature number. However, after the fine-tuning,
the seizure detection performance is greatly enhanced that
high sensitivities and specificities up to 99%are achieved even
with small feature numbers.

3.4.2. Analysis of 𝜎. In the MCC, the kernel size 𝜎 serves as
an important parameter that an appropriate choice of 𝜎 can
effectively suppress the outliers and noises. The kernel size
or bandwidth is a free parameter that its selection is still an
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Table 4: Comparison with other methods.

Method Pt01 Pt02 Pt03 Pt04 Pt05 Pt06 Avg
SEN∗ SPE∗ SEN SPE SEN SPE SEN SPE SEN SPE SEN SPE SEN SPE

SVM 1.00 0.96 1.00 0.89 1.00 0.93 0.99 0.95 1.00 0.96 1.00 0.78 1.00 0.91
SVD(3) + SVM [10] 0.45 1.00 0.72 0.99 0.96 0.99 0.84 0.95 0.46 0.98 0.64 0.97 0.68 0.98
SVD(10) + SVM [10] 0.61 1.00 0.76 0.99 0.99 1.00 0.80 0.95 0.84 0.93 0.95 0.96 0.83 0.97
R-SAE(3) 1.00 0.99 0.99 0.99 0.98 0.99 1.00 0.99 1.00 0.99 0.92 0.98 0.98 0.99
R-SAE(10) (ours) 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.97 1.00 0.99
∗SEN indicates sensitivity and SPE is specificity.

open issue in ITL [26, 29, 34]. In practice, the parameter 𝜎
can be selected with Silverman’s rule [35]. In the experiments
of Sections 3.1–3.3, we simply set 𝜎 = 0.05.

Here, we test the influence of parameter 𝜎 on overall
seizure detection performance. Also, all the other parameters
are fixed as in Section 3.3. Figure 6(b) illustrates the seizure
detection results under different selections of 𝜎 averaged
over four patients. Results show that high seizure detection
performance could be achieved under a wide choice of 𝜎.
Better results are obtainedwith small 𝜎, andwhen 𝜎 increases
from 0.1 to 0.2, the seizure detection performance becomes
worse. In practice, the choice of 𝜎 should be small to keep
good local property of the MCC.

4. Conclusions

In this paper, we have presented a novel deep model which is
capable of extracting robust features under large amounts of
outliers. Experimental results show that the proposed R-SAE
model could learn effective features in EEG signals for high
performance seizure detection, and it is promising for clinical
applications.
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