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ABSTRACT

Human γ -herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated
herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human
malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately
remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they
mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge
at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV
disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses.
Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even
so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better
understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to
target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.

Keywords: Epstein Barr virus; Kaposi sarcoma-associated herpesvirus; primary effusion lymphoma; Kaposi sarcoma;
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INTRODUCTION

There are several human tumor viruses. These include Epstein
Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV),
human papillomavirus, Merkel cell polyomavirus, hepatitis B
virus, hepatitis C virus and human T-cell lymphotropic virus
type 1 (Hopcraft and Damania 2017). Two of the seven human
tumor viruses belong to the γ -herpesviruses, namely EBV or hu-
man herpesvirus 4, and KSHV or human herpesvirus 8 (Parkin

2006; Bouvard et al. 2009). Each of them contributes 1–2% to the
20% of infectious disease-associated cancer burden among all
malignancies in humans. EBV is mainly associated with lym-
phomas and carcinomas of B and epithelial cell origin, respec-
tively (Cesarman 2014), including Burkitt’s lymphoma, in which
the virus was originally identified (Epstein et al. 1965; Epstein,
Achong and Barr 1964). However, epithelial cancers constitute
themajority of the newly diagnosed 200 000 EBV-associatedma-
lignancies each year (Cohen et al. 2011). In contrast, KSHV is
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mainly associated with endothelial and B cell-derived malig-
nancies (Chang et al. 1994; Cesarman 2014). The endothelial cell
cancer Kaposi sarcoma (KS) is one of the acquired immune defi-
ciency syndrome (AIDS)-defining illnesses in human immunod-
eficiency virus (HIV)-infected patients and KSHV was originally
identified in this tumor (Chang et al. 1994). Both EBV and KSHV
have co-evolved with humans and are part of the primate as-
sociated γ1- and γ2-herpesviruses, respectively (McGeoch 2001;
Ehlers et al. 2010). Through this co-evolution they have both
achieved a remarkable penetration of the human population,
with EBV establishing persistence in more than 95% of the adult
human population across the globe, while KSHV prevalence is
more variable with over 50% seropositivity in equatorial Africa
(Cesarman 2014). In light of this high prevalence, associatedma-
lignancies are still pretty rare and are likely to emerge from com-
binations of the viruses’ growth-transforming capacities and the
failure of the immune system to control the virus. In this re-
gard, studies on the gene expression programs in healthy EBV
and KSHV carriers and associated diseases that emerge in pa-
tients with immunodeficiencies can inform us as to which viral
gene expression programs continuously threaten healthy EBV
and KSHV carriers with tumorigenesis and which associated
malignancies can be prevented by an intact immune systemdur-
ing persistent infections with these γ -herpesviruses for life.

EBV is the more transforming of the two viruses and readily
immortalizes human B cells upon infection in vitro (Miller and
Lipman 1973a,b). Eight latent EBV proteins, two clusters of EBV-
encoded microRNAs (miRNAs) and two small non-translated
RNAs (EBERs) out of a total of around 90 open reading frames
are expressed in the resulting lymphoblastoid cell lines and this
latency III gene expression pattern can also be found in naı̈ve B
cells of healthy EBV carriers (Babcock, Hochberg and Thorley-
Lawson 2000; Palser et al. 2015). This latency gene expres-
sion program can also be found in EBV-associated large B cell
lymphomas that primarily occur in immune-suppressed indi-
viduals, as in the case of post-transplant lymphoproliferative
disease due to iatrogenic inhibition of the immune system to
preserve a transplant or due to compromised immune reactiv-
ity upon HIV co-infection leading to immunoblastic lymphomas
(Cesarman 2014). A much more restricted gene expression pat-
tern with only one of the six nuclear proteins of EBV (EBNAs),
the two latent membrane proteins and the non-translated RNAs
expressed, can be found in germinal center B cells of healthy
EBV carriers and in Hodgkin’s lymphoma (Babcock and Thorley-
Lawson 2000; Babcock, Hochberg and Thorley-Lawson 2000). A
similar latency II gene expression pattern is also found in many
of the EBV-associated epithelial cell cancers, like nasopharyn-
geal carcinoma (Kutok and Wang 2006). Finally, Burkitt’s lym-
phoma, the tumor that EBV was discovered in, expresses only
EBNA1 and the non-translated RNAs, but compensates for the
loss of the pro-proliferative expression of the other latent EBV
gene products with translocations of the cellular oncogene c-
myc into the immunoglobulin loci (Cesarman 2014). This latency
I gene expression pattern is also found in homeostatically prolif-
erating memory B cells of healthy EBV carriers and in the 10% of
EBV-positive gastric carcinomas (Hochberg et al. 2004; Kutok and
Wang 2006). EBV persists in quiescent memory B cell compart-
ments with only non-translated RNA expression (Babcock et al.
1998). This latency 0 in memory B cells might be reached upon
B cell differentiation of latency III via latency II in a germinal
center-dependent fashion or after early EBNA2-driven prolifer-
ation without the expression of EBNA3A or EBNA3C viral onco-
genes (Murer et al. 2018). It can reactivate from this persistence
reservoir upon B cell receptor cross-linking by cognate antigen

(Binne, Amon and Farrell 2002) and lytic EBV replication is found
in the resulting plasma cells of healthy EBV carriers (Laichalk
and Thorley-Lawson 2005). Early lytic EBV gene products of the
around 80 open reading frames of EBV replication are thought
to support tumor microenvironment changes that are beneficial
for the establishment of EBV-associated lymphomas (Hong et al.
2005; Ma et al. 2011; Antsiferova et al. 2014). Indeed, primary cen-
tral nervous system lymphoma treatment benefitted from lytic
EBV replication inhibition (Dugan et al. 2018). Therefore, prema-
lignant EBV gene expression programs are carried by B cells of
healthy EBV carriers, but it remains unclear if epithelial cell in-
fection and especially latent EBV gene expression in epithelial
cells as in nasopharyngeal and gastric carcinoma contributes to
persistent infection by this γ -herpesvirus in humans.

Similar to EBV, KSHV is thought to be transmitted by saliva
exchange (Pauk et al. 2000) and can be found in B cells of
KSHV carriers (Ambroziak et al. 1995). However, latent and
lytic KSHV gene expression are much less segregated in the
KSHV-associated malignancies KS, primary effusion lymphoma
(PEL) and multicentric Castleman’s disease (MCD) (Schulz and
Cesarman 2015). Most of the tumor cells express the classical
KSHV latency gene products [latency-associated nuclear antigen
(LANA), viral D-type cyclin (vCyclin) and viral FLICE inhibitory
protein (vFLIP), K15 and viral miRNAs] (Dittmer and Damania
2016; Abere et al. 2017). However, a small percentage of the tu-
mor cells do express lytic proteins including K1, K15, viral inter-
leukin (IL)-6 and viral G protein-coupled receptor (Dittmer and
Damania 2016). These lytic proteins are thought to contribute to
tumor growth in a paracrine fashion by increasing angiogenesis
and cell proliferation (Schulz and Cesarman 2015). Furthermore,
inhibiting lytic KSHV replicationmight prevent the development
of KS (Martin et al. 1999), possibly eliminating the inflammatory
tumor-nurturing microenvironment, similar to the contribution
of early lytic EBV replication for virus-associated lymphomage-
nesis (Dugan et al. 2018). Lytic EBV replication also seems to be
important for PEL formation, a tumor entity that in up to 90% of
cases contains both KSHV and EBV (McHugh et al. 2017). This is
also consistent with plasma cell differentiation being associated
with lytic EBV replication (Laichalk and Thorley-Lawson 2005)
and KSHV infection or the KSHV latent genes vFLIP and LANA
driving immunoglobulin M λ light chain-expressing plasma cell
accumulations (Ballon et al. 2011; Hassman, Ellison and Kedes
2011; Sin and Dittmer 2013; Sin et al. 2015), reminiscent of MCD
(Du et al. 2001). Thus, for both EBV andKSHV, B cells are proposed
as the latency reservoir, and both lytic as well as latent gene
products seem to contribute to tumorigenesis by these two hu-
man γ -herpesviruses. However, the role that epithelial and en-
dothelial cell infection play for EBV and KSHV infection, respec-
tively, remains unclear. We propose that immunodeficiencies
caused by monogenic mutations or co-infections can at least
document to what extent these non-hematopoietic infections
by the two human γ -herpesviruses occur and by which means
immune control of the different pre-malignant EBV and KSHV
reservoirs is maintained.

IMMUNODEFICIENCIES THAT PREDISPOSE
FOR EBV-ASSOCIATED DISEASES

Lymphomas and especially those associated with EBV are con-
sidered AIDS-defining diseases and constitute currently more
than 50% of cancers that are associated with HIV co-infection
(Simard and Engels 2010; Simard, Pfeiffer and Engels 2011).
While non-Hodgkin’s lymphomas, primarily latency III tumors,
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Figure 1. Primary immunodeficiencies that compromise the function of cytotoxic lymphocytes and predispose for EBV-associated diseases. Immune control of EBV-
infected B cells is compromised upon deficiencies in TCR signaling, co-stimulation, leucocyte development, lymphocyte cell death and cytotoxic effector functions.
For TCR signaling, RasGRP1, ZAP70, PI3K and ITK are required during EBV-specific immune control. CORO1A and WASP deficiencies compromise actin cytoskeleton
arrangements during EBV-specific immune control. GATA2 andMCM4 compromise the development of protective lymphocytes against EBV, and loss of XIAP, STK4 and

CTPS1 accelerate their cell death. LRBA and MAGT1 influence the expression levels of co-receptors on cytotoxic lymphocytes, of which CD16, NKG2D, SLAM receptors
like 2B4, which is compromised by SAP mutations, and CD27 are required for EBV-specific immune control. NF-κB is involved in the signaling of CD27 and NKG2D.
Perforin-mediated cytotoxicity is crucial for EBV-specific immune control. TCR, T cell receptor.

have significantly decreased in incidence due to combined
anti-retroviral therapy (cART), EBV-positive Hodgkin’s lym-
phomas have rather increased in frequency (Carbone et al. 2014;
Brugnaro et al. 2015). In addition, EBV-associated smooth mus-
cle tumors are increased during HIV co-infection (McClain et al.
1995; Ehresman et al. 2018). In contrast, EBV-positive epithe-
lial cell-derived malignancies, such as nasopharyngeal carci-
noma, are not significantly increased in HIV-infected individuals
(Melbye et al. 1996); even so, in most of these studies the preva-
lence of nasopharyngeal carcinoma was in general too low to
draw firm conclusions (Shebl, Bhatia and Engels 2010; Zhang
et al. 2011; Grulich and Vajdic 2015). However, lytic EBV replica-
tion can progress uncontrolled in tongue epithelium after AIDS
development and then causes oral hairy leukoplakia (Becker
et al. 1991). These observations during immune suppression
caused by HIV-mediated CD4+ T cell elimination seem to sug-
gest that defective immune control allows for the emergence of
EBV-associated non-Hodgkin’s lymphomas andmore rarely EBV-
positive smooth muscle tumors and oral hairy leukoplakia, but
not EBV-associated epithelial cell cancers like nasopharyngeal
carcinoma. Thus, HIV-mediated CD4+ T cell depletion does not
seem to compromise immune control of a premalignant state of
epithelial cell infection by EBV.

This picture is also mirrored by monogenic primary im-
munodeficiencies that predispose for EBV-associated patholo-
gies, and affect primarily the development and function of
cytotoxic lymphocytes (Cohen 2015; Tangye, Palendira and
Edwards 2017; Münz 2017a) (Fig. 1). The affected patients
present with a variety of EBV-associated diseases ranging from

uncontrolled viremia, as in chronic active EBV infection (CAEBV),
which often spreads from B cells to T and natural killer
(NK) cells, EBV infection driven immunopathologies, like infec-
tious mononucleosis and hemophagocytic lymphohistiocytosis
(HLH), to EBV-associated malignancies, including lymphopro-
liferative diseases, non-Hodgkin’s lymphomas, Hodgkin’s lym-
phomas, smooth muscle tumors and EBV-associated Castle-
man’s disease. Interestingly, again no increased incidence of
EBV-associated epithelial cell-derived cancers, such as nasopha-
ryngeal carcinoma, has so far been reported. Furthermore, dif-
ferent monogenic deficiencies predispose for different EBV-
associated pathologies, whichmight pinpoint the protective role
of individual immune pathways in the control of distinct virus-
induced diseases. Along these lines, deficiencies in the effec-
tor machinery of cytotoxic lymphocytes, affecting NK and non-
classical innate as well as classical T cell populations, result in
EBV-driven HLH immunopathologies (Katano et al. 2004; Rohr
et al. 2010; Cohen et al. 2015). The respective loss of cytotoxicity
compromises either perforin itself or the degranulationmachin-
ery for cytotoxic granules, like Munc13-4 and 18-2 (Table 1).

Of similar severity are GATA2 loss-of-function mutations
that affect the development of multiple leucocyte populations,
including NK and CD4+ T cells (Cohen 2017). These patients
present with CAEBV, HLH and EBV-positive smooth muscle
tumors. In contrast EBV-associated lymphoproliferations de-
velop when just one cytotoxic lymphocyte population is com-
promised. This is for example the case for loss-of-function
mutations in the minichromosome maintenance complex
component 4 (MCM4), which compromises NK cell development
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Table 1. Primary immunodeficiencies that predispose for EBV-associated diseases.

Affected protein
‘name of syndrome’

EBV-associated
diseases

Innate immune
system changes

Adaptive immune
system changes References

Cytotoxic machinery
Perforin ‘FHL2’ HLH, EBV VIR Low neutrophils,

compromised NK cell
killing

Compromised T cell
killing

Katano et al. 2004

Munc13-4 ‘FHL3’ EBV VIR Low neutrophils,
compromised NK cell
killing

Compromised T cell
killing

Rohr et al. 2010

Munc18-2 ‘FHL5’ EBV VIR, EBV NHL Low neutrophils,
compromised NK cell
killing

Compromised T cell
killing

Rohr et al. 2010; Cohen
et al. 2015

Leucocyte development
GATA2 ‘MonoMac’ IM, EBV SMT, EBV VIR,

HLH
Low NK, DC and
monocytes

CD4+ T cell
lymphopenia

Biron, Byron and
Sullivan 1989; Mace
et al. 2013

MCM4 EBV NHL Low NK – Eidenschenk et al.
2006; Gineau et al. 2012

TCR signaling
ITK EBV HL, HLH Loss of NKT CD4+ T cell

lymphopenia
Huck et al. 2009; Linka
et al. 2012

PI3K 110δ ‘PASLI, APDS’ EBV NHL, EBV VIR Compromised NK cell
killing

CD4+ T cell
lymphopenia

Angulo et al. 2013,
Kuehn et al. 2013;
Lucas et al. 2014

RasGRP1 EBV NHL Loss of NKT CD4+ T cell
lymphopenia

Salzer et al. 2016;
Winter et al. 2018

ZAP70 EBV NHL Loss of NKT CD4+ T cell
lymphopenia,
compromised CD8+ T
cell function

Hoshino et al. 2018

CORO1A EBV NHL Loss of NKT CD4+ and CD8+ T cell
lymphopenia

Moshous et al. 2013

Co-stimulation
CD27 HLH, EBV NHL Loss of NKT,

compromised NK cell
function

Compromised T cell
function

Salzer et al. 2012; van
Montfrans et al. 2012

CD70 EBV HL Loss of NKT Compromised B cell
recognition by T cells

Alkhairy et al. 2015;
Abolhassani et al.
2017; Izawa et al. 2017

CD16 EBV CD Compromised NK cell
function

– de Vries et al. 1996;
Grier et al. 2012

CTLA-4 EBV NHL Low NK Low T and B cells Schwab et al. 2018

MagT1 ‘XMEN’ EBV NHL Compromised NKG2D
expression on NK cells

CD4+ T cell
lymphopenia,
impaired B cell
recognition by T cells

Li et al. 2011;
Chaigne-Delalande
et al. 2013; Dhalla et al.
2015

SAP ‘XLP1’ EBV NHL, IM, HLH Loss of NKT,
compromised NK cell
function

Compromised T cell
function

Coffey et al. 1998;
Nichols et al. 1998;
Sayos et al. 1998;
Sumegi et al. 2000;
Booth et al. 2011;
Pachlopnik Schmid
et al. 2011

NF-κB1 EBV VIR, EBV NHL – Compromised T cell
function

Boztug et al. 2016;
Schipp et al. 2016

LRBA EBV NHL, EBV VIR – – Alangari et al. 2012

Cell death
XIAP ‘XLP2’ HLH, IM Low NKT Compromised T cell

survival after
activation

Rigaud et al. 2006;
Pachlopnik Schmid
et al. 2011; Speckmann
et al. 2013

STK4 EBV NHL Low neutrophils CD4+ T cell
lymphopenia

Abdollahpour et al.
2012; Nehme et al.
2012

Cell proliferation
CTPS1 IM, EBV NHL Loss of NKT CD4+ T cell

lymphopenia
Martin et al. 2014

IM, infectious mononucleosis; EBV VIR, EBV viremia; EBV NHL, EBV-associated non-Hodgkin’s lymphoma; EBV HL, EBV-positive Hodgkin’s lymphoma; EBV CD, EBV-
positive Castleman’s disease; EBV SMT, EBV-associated smooth muscle tumor.
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and leads to absence of CD56bright NK cells (Eidenschenk et al.
2006; Gineau et al. 2012).

Similarly, compromised as well as hyperactive T cell receptor
signaling leads primarily to EBV-associated lymphomas. The sig-
naling components, which are affected by mutations that pre-
dispose for EBV-associated diseases, are IL-2 inducible T cell ki-
nase (ITK), phosphoinositide 3-kinase (PI3K) 110δ (both loss- and
gain-of-function mutations), the guanine nucleotide exchange
factor RasGRP1, caspase recruitment domain-containing protein
11 (CARD11), phospholipase Cγ1, which is affected by deficient
Mg2+ influx due to mutations in the magnesium transporter
MAGT1, and ZAP70 (Huck et al. 2009; Li et al. 2011; Stepensky et al.
2011; Linka et al. 2012; Mansouri et al. 2012; Snow et al. 2012; An-
gulo et al. 2013; Chaigne-Delalande et al. 2013; Kuehn et al. 2013;
Ghosh et al. 2014; Lucas et al. 2014; Bienemann et al. 2015; Cipe
et al. 2015; Dhalla et al. 2015; Patiroglu et al. 2015; Salzer et al.
2016; Brigida et al. 2017; Hoshino et al. 2018; Latour and Winter
2018; Winter et al. 2018). In addition, loss of the ability for cy-
toskeletal rearrangement by actin at immune synapses for effi-
cient T cell receptor signaling due to Coronin actin binding pro-
tein 1A (CORO1A) deficiency also predisposes for EBV-associated
lymphoproliferations (Moshous et al. 2013).

NK and cytotoxic T cell function can also be compromised
by deficient NK cell receptor or T cell co-receptor expression or
signaling. Along these lines mutations in CD16, CTLA-4, CD27
and its ligand CD70, as well as in the adaptor molecules for the
co-stimulatory SLAM family (SAP), including 2B4, and compro-
mised NKG2D expression due to MAGT1 mutations have been
found to predispose for EBV-associated lymphomas (de Vries
et al. 1996; Grier et al. 2012; Salzer et al. 2012; van Montfrans
et al. 2012; Chaigne-Delalande et al. 2013; Alkhairy et al. 2015;
Abolhassani et al. 2017; Izawa et al. 2017; Schwab et al. 2018). In-
terestingly, nuclear factor (NF)-κB1 deficiency, which is required
for SAP and CD27 signaling, was also reported to be associated
with EBV-driven lymphoproliferations (Boztug et al. 2016; Schipp
et al. 2016). Moreover, lipopolysaccharide-responsive beige-like
anchor (LRBA) protein regulates co-receptor internalization and
its mutations have been found associated with EBV-induced
lymphoproliferations (Alangari et al. 2012). However, the patho-
logical manifestations of EBV infection differ between these dif-
ferent primary immunodeficiencies that affect co-stimulation.
In particular, CD16 deficiency leads to EBV-positive Castleman’s
disease and all patients with CD70 deficiency have so far pre-
sented with EBV-positive Hodgkin’s lymphoma, while CD27 loss
leads to more overt lymphoproliferations and sometimes even
HLH.

A final category of primary immunodeficiencies that pre-
dispose for symptomatic EBV infection are mutations that af-
fect survival and expansion of cytotoxic lymphocytes. These in-
clude deficiencies in serine/threonine kinase 4 (STK4), cytidine
triphosphate synthase 1 (CTPS1) and X-linked inhibitor of apop-
tosis (XIAP) (Rigaud et al. 2006; Abdollahpour et al. 2012; Nehme
et al. 2012; Speckmann et al. 2013; Martin et al. 2014). CD27 and
CD70 also play important roles in this cytotoxic lymphocyte ex-
pansion (Latour and Winter 2018). Depending on the role of
these proteins in EBV-transformed B cell expansion, their de-
ficiencies either preferentially cause immunopathologies such
as HLH (for XIAP mutations) or, when preferentially T cell ex-
pansion is affected, EBV-associated lymphoproliferative disease
(for STK4 mutations).

Of these primary immunodeficiencies some have a partic-
ularly high penetrance of EBV diseases, including deficiencies
in SAP, CD27 and CD70 (Coffey et al. 1998; Nichols et al. 1998;
Sayos et al. 1998; Sumegi et al. 2000; Booth et al. 2011; Pachlopnik

Schmid et al. 2011; Salzer et al. 2012; van Montfrans et al. 2012;
Alkhairy et al. 2015; Abolhassani et al. 2017; Izawa et al. 2017).

For immune suppression by HIV co-infection and the
primary immunodeficiencies in cytotoxic effector function, cy-
totoxic lymphocyte differentiation, T cell receptor signaling,
lymphocyte co-stimulation, expansion and survival, however,
affected patients have so far not been described to suffer from
epithelial cell cancers. This suggests that latent EBV infection ei-
ther does not occur in epithelial cells of healthy EBV carriers, or
is not cell growth transforming, even in inflammatory settings
like HIV co-infection and XIAP deficiency. Thus, the growth-
transforming latency programs observed in nasopharyngeal car-
cinoma and the 10% of EBV-associated gastric carcinoma are
most likely not a component of the EBV life cycle in healthy virus
carriers.

IMMUNODEFICIENCIES THAT PREDISPOSE
FOR KS

KS is the most common AIDS-associated cancer and in contrast
to EBV, all of the KSHV-associated malignancies are consider-
ably increased in the HIV-infected population, although these
cancers can be seen in HIV-negative individuals as well (Bou-
vard et al. 2009; Powles et al. 2009a,b; Yarchoan and Uldrick
2018). Interestingly, as for EBV latency III tumors, KS incidence
has declined and stabilized under cART (Krown et al. 2008),
while PEL and MCD development seem to be rather unaffected,
similar to EBV-associated Hodgkin’s lymphoma. KS also occurs
during iatrogenic immune suppression after transplantation,
especially under cyclosporine or tacrolimus (FK506) inhibition
of calcineurin to prevent NF-AT activation downstream of T cell
receptor signaling (Stallone et al. 2005; Riva et al. 2012; Jackson
et al. 2016), further suggesting that KSHV infection needs to be
continuously immune-controlled during persistent infection.

Despite the increased frequency of PEL and MCD during im-
mune suppression, KSHV-positive B cell malignancies have so
far not been found associated with monogenic immunodefi-
ciencies, although KSHV-positive MCD has been reported in a
child born to consanguineous parents (Leroy et al. 2012). Only
KSHV-negative EBV-positive PELs have been reported as indi-
vidual cases in combined and common variable immunodefi-
ciencies (CVIDs) (Hisamoto et al. 2003; Lam et al. 2016), suggest-
ing that EBV-associated plasmacytomas are very efficiently con-
trolled by the immune system (Chatterjee et al. 2017). In con-
trast, monogenic primary immunodeficiencies have been char-
acterized that predispose either for isolated KS development or
more generally for susceptibility to infectious diseases, includ-
ing KS (Table 2). KS has been described in the context of CVID.
CVID is a heterogeneous class of primary immune deficiencies
associated with reduced level of serum antibodies, absent or
impaired antibody production, and frequent infections. KS has
been demonstrated to occur in the context of CVID (Wheat et al.
2005; Gangemi, Allegra and Musolino 2015; Stenton et al. 2016).
Furthermore, mutations in both stromal interaction molecule 1
(STIM1) and tumor necrosis factor receptor superfamily mem-
ber 4 (TNFRSF4, OX40 or CD134) predispose selectively for KS in
children (Byun et al. 2010; Byun et al. 2013) (Fig. 2). STIM1 assists
in the Ca2+ mobilization after T cell receptor signaling, while
OX40 is a co-stimulatory receptor on non-classical innate and
classical T cells as well as NK cells, and is expressed upon their
activation (Saheki and De Camilli 2017; Buchan, Rogel and Al-
Shamkhani 2018). OX40 ligand (OX40L) is expressed on many
hematopoietic cells upon their activation, but can also be
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Table 2. Primary immunodeficiencies that predispose for KSHV-associated diseases.

Affected protein
‘name of syndrome’

KSHV-
associated
disease

Innate immune
system changes

Adaptive immune
system changes References

Th1 effector function
IFNγR1 KS – CD4+ T cell

lymphopenia
Camcioglu et al. 2004

STAT4 KS – Decreased Th1
differentiation

Aavikko et al. 2015

TCR signaling
STIM1 KS – Deficient T cell

activation due to
compromised Ca2+

influx

Byun et al. 2010

WASP ‘Wiskott Aldrich
syndrome’

KS – CD4+ T cell
lymphopenia,
deficiency in
immunological synapse
formation

Picard et al. 2006

Co-stimulation
OX40 KS – Impaired effector

memory T cell
populations

Byun et al. 2013

MagT1 ‘XMEN’ KS Decreased NK cell
maturation and
NKG2D expression

Compromised T cell
receptor signaling

Brigida et al. 2017

Figure 2. Primary immunodeficiencies that compromise the function of Th1-
polarized lymphocytes and predispose for KSHV-associated diseases. Immune
control of KSHV-infected endothelial cells is compromised upon deficiencies in
TCR signaling, co-stimulation and Th1 cytokine functions. STIM1 is required for

TCR signaling during KSHV-specific immune control. WASP deficiencies com-
promise actin cytoskeleton arrangements thereby hindering immune control of
KSHV. OX40 is required to keep KSHV in check and MAGT1 allows co-receptor
maintenance on lymphocytes. IFNγ plays an essential role in the immune

surveillance of KSHV and STAT4 is required for its Th1-polarizing signaling. TCR,
T cell receptor.

induced on endothelia and smooth muscle cells. This suggests
that the OX40 interaction with OX40L is required for immune
surveillance of KSHV-infected endothelial cells, which other-
wise can give rise to KS. It is much less clear why STIM1
deficiency selectively predisposes for KS. In addition, KS has
been found in children with mutations in interferon (IFN) γR1,
STAT4, MAGT1 and Wiscott Aldrich syndrome protein (WASP)
(Camcioglu et al. 2004; Picard et al. 2006; Aavikko et al. 2015;
Brigida et al. 2017).While deficiencies in IFNγR1 and signaling for

IFNγ production involving IL-12 are primarily known to confer
susceptibility to mycobacterial infection (Jouanguy et al. 1996;
Newport et al. 1996; Zhang et al. 2008; Boisson-Dupuis et al.
2015), IFNγR1 deficiency and diminished Th1 differentiation
ability due to STAT4 mutations that compromise IL-12 signal-
ing for IFNγ production seem to also predispose individuals to-
wards developing KS (Camcioglu et al. 2004; Aavikko et al. 2015).
This suggests an important role for IFNγ in KSHV-specific im-
mune control.WASP deficiencies compromise actin stabilization
of immunological synapse formation for T cell activation and
have also been described to compromise EBV-specific immune
control. Patients with WASP mutations have been reported to
develop EBV-associated lymphomas (Du et al. 2011). Further-
more, MAGT1 deficiencies have been proposed to compromise
both NK- and T cell-mediated immune control of EBV (Chaigne-
Delalande et al. 2013), in addition to predisposing individuals to
developing KS (Brigida et al. 2017). Finally, KS has also been re-
ported in a patient with Good’s syndrome, which is a combined
B- and T-cell immunodeficiency that occurs in association with
a thymoma (Agarwal et al. 2011). Thus, T cell-mediated immune
control seems essential formaintaining asymptomatic KSHV in-
fection. In contrast to EBV, however, both endothelial as well as
B cell infection by this virus need to be immune controlled with
cell-mediated immunity. In addition, IFNγ production by T cells
might be more important for KSHV- than for EBV-specific im-
mune control.

DIFFERENCES IN THE REQUIREMENT FOR IMMUNE
SURVEILLANCE OF INFECTED NON-HEMATOPOIETIC
COMPARTMENTS DURING PERSISTENT EBV AND KSHV
INFECTION

The studies discussed above suggest an essential role for cyto-
toxic classical and innate non-classical T as well as NK cells in
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the immune control of EBV and KSHV. For EBV this was indeed
functionally tested in preclinical in vivo models of mice with re-
constituted or adoptively transferred human immune system
compartments, and by therapeutic transfer of EBV-specific T
cell populations into patients with EBV-associatedmalignancies
(Münz 2017a,b).

During primary EBV infection in patients with infectious
mononucleosis and mice with reconstituted human immune
system components there is an expansion of NK cells (Williams
et al. 2005; Balfour et al. 2013; Chijioke et al. 2013; Azzi et al. 2014;
Dunmire et al. 2015). In these mice, NK cell depletion during
EBV infection leads to increased viral loads and tumorigenesis
(Chijioke et al. 2013; Landtwing et al. 2016). The expanding NK
cells primarily control lytic EBV infection in vivo and in vitro (Pap-
pworth, Wang and Rowe 2007; Chijioke et al. 2013; Azzi et al.
2014). In addition to NK cells, Vγ9Vδ2 innate T cells expand in
up to 50% of infectious mononucleosis patients (Djaoud et al.
2017). Expansion or adoptive transfer for these Vγ9Vδ2 T cells in
mice with reconstituted human immune system compartments
reduces tumorigenesis after EBV-transformed B cell transfer or
infection (Xiang et al. 2014; Zumwalde et al. 2017). Primarily, la-
tency I Burkitt’s lymphoma cells stimulate these Vγ9Vδ2 T cells
by producing their mevalonate metabolite ligands and express-
ing the BTN 3A1 (CD277) restriction element (Djaoud et al. 2017).
As a third innate lymphocyte subset, NKT cells with the invari-
ant Vα24-Jα18/Vβ11 T cell receptor can restrict EBV-associated
lymphomas in mice with reconstituted human immune system
components (Yuling et al. 2009). They seem to primarily recog-
nize latency II Hodgkin’s lymphoma cells (Chung et al. 2013).

Apart from these innate lymphocyte populations, CD4+ and
CD8+ αβ T cells are thought to mediate EBV-specific immune
control. Depletion of T cells or their CD4+ and CD8+ subpopula-
tions individually increases EBV viral loads and associated lym-
phomagenesis in mice with reconstituted human immune sys-
tem components (Strowig et al. 2009; Yajima et al. 2009; Chijioke
et al. 2015). Adoptive transfer of EBV-specific T cell lines was suc-
cessfully used for the treatment of several EBV-associated lym-
phomas in patients (McLaughlin et al. 2017). In addition, adop-
tive transfer of T cells against distinct EBV antigens provided
clinical benefits in EBV infected mice with reconstituted human
immune system components and patients (Icheva et al. 2013;
Antsiferova et al. 2014). These studies corroborate the findings
in immunodeficient patients that cytotoxic innate and adaptive
lymphocytes mediate immune control of EBV, but so far no sim-
ilar information on the function of cell-mediated immune con-
trol against KSHV infection in vivo is available, although immune
restriction of KSHV infection by innate immune pathways has
been demonstrated in cell culture studies (West and Damania
2008; West et al. 2011; Ma et al. 2015). This knowledge gap is
mostly due to the absence of a preclinical in vivo model of per-
sistent KSHV infection and associated pathologies, and to the
lack of clinical trials of adoptive T cell transfer into patients with
KSHV-associated malignancies.

Such an in vivo model to test these immunotherapeutic
modalities might now be at hand. While previously transient in-
fection was reported (Wang et al. 2014), only co-infection with
EBV allows for persistence of KSHV infection in mice with re-
constituted human immune system components (McHugh et al.
2017). Double-infection leads to PEL-like lymphoma formation
with characteristic plasma cell differentiation. This in turn re-
sults in elevated lytic EBV replication and co-infection with a
mutant EBV virus that cannot switch into lytic infection abol-
ishes increased lymphomagenesis uponKSHV co-infection. This
model should now allow us to dissect EBV- and KSHV-specific

cell-mediated immune control in the same mice with reconsti-
tuted human immune system components to better understand
the differences and similarities of cell-mediated immune con-
trol of these two oncogenic γ -herpesviruses, and how the genes
affected by primary immunodeficiencies compromise it.

These models allow only lymphotropic infections by KSHV
and EBV. Therefore, it is important to know if and how infec-
tion of non-hematopoietic cells contribute to the life cycle of
these γ -herpesviruses. One criterion for the importance of a cer-
tain host cell is the adaptation of the virus to use specific entry
receptors of the respective cell type. EBV and KSHV entry into
B cells uses quite different receptors. Complement receptors 1
and 2 (CD35 and CD21) are used for EBV attachment and hu-
manmajor histocompatibility complex class II molecules are re-
quired as co-receptors for EBV entry into B cells (Fingeroth et al.
1984; Li et al. 1997; Ogembo et al. 2013). In contrast, KSHV seems
to use dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin for entry into B cells (Rappocciolo et al.
2008). Curiously, both KSHV and EBV have been reported to use
ephrin A2 receptor and the integrin αvβ5 for endothelial or ep-
ithelial cell infection, respectively (Akula et al. 2002; Garrigues
et al. 2008; Chesnokova and Hutt-Fletcher 2011; Hahn et al. 2012;
Chen et al. 2018; Zhang et al. 2018). Therefore, the entry mecha-
nisms of EBV and KSHV do not seem to be specific for epithelial
or endothelial cells. Most likely, establishment of latent KSHV
infection in endothelial cells, and possibly lytic EBV replication
in epithelial cells after entry, rather than differences in entry
mechanisms seem to determine the non-hematopoietic tropism
of these two γ -herpesviruses.Moreover, EBV entry into epithelial
cells seems to prefer infection from the basolateral side (Tugizov,
Berline and Palefsky 2003), and EBV lytic reactivation was sug-
gested to occur only efficiently from epigenetically silenced viral
DNA, requiring about 2 weeks of DNA methylation (Woellmer,
Arteaga-Salas and Hammerschmidt 2012). Therefore, lytic EBV
replication might only play a role for viral shedding into saliva
and further transmission. Similarly, endothelial cell infection by
KSHVmight occur secondary to submucosal B cell infection after
salivary transmission of KSHV. Therefore, the above suggested
cell-mediated immune control of EBV and KSHV infection in B
cells should also be relevant for secondary epithelial and en-
dothelial cell infections, whichmost likely only amplify the lym-
photropic infections by the two viruses.

While increased incidence of KS in the context of immune
deficiencies argues for transforming KSHV infection of endothe-
lial cells being present also during asymptomatic KSHV infec-
tion, the lack of increased epithelial cell tumors argues against
latent epithelial cell infection being part of the EBV life cycle in
healthy virus carriers.

CONCLUSIONS AND OUTLOOK

The comparison of the influence of immunodeficiencies on per-
sistent EBV and KSHV infections reveals interesting insights
into the life cycle and immune control of these tumor viruses
in healthy virus carriers. Firstly, both are controlled by cell-
mediated immunity and cause AIDS-defining malignancies in
HIV-infected individuals (AIDS-associated EBV lymphomas, PEL,
MCD and KS). However, cytotoxicity might be primarily respon-
sible for restricting EBV, while lymphocyte-derived IFNγ pro-
duction seems to contribute to KSHV-specific immune control.
Secondly, this cell-mediated immune control seems to depend
on different T cell receptor signaling and co-stimulatory com-
ponents for T cells to control persistent EBV and KSHV in-
fection. These include ITK, PI3K 110δ, ZAP70 and RasGRP1 for
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T cell receptor signaling, or CD27, the SLAM receptor 2B4 and
NKG2D for co-stimulation during EBV-specific immune control.
For KSHV immune control, STIM1-assisted T cell receptor signal-
ing and OX40-mediated co-stimulation seem to be more impor-
tant. Thirdly, loss of these immune control components reveals
in which cells the two oncogenic γ -herpesviruses need to be re-
stricted to avoid EBV- and KSHV-associated pathologies. Surpris-
ingly, transforming KSHV infectionmay be present in both B and
endothelial cells from apparently healthy individuals, while EBV
latent oncogene expression might be restricted to B cells.

These considerations suggest that transforming latent EBV
infection that contributes to epithelial cell cancers like nasopha-
ryngeal carcinoma and a subset of gastric carcinoma, consti-
tuting the majority of EBV-associated malignancies, does not
readily occur in healthy virus carriers. Additional environmen-
tal factors and possible premalignant modifications of epithe-
lial cells could render these susceptible to latent EBV infection.
The characterization of these requirements and premalignant
transformation should be important to understand and target
EBV-associated epithelial cell cancers.
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