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Abstract

Minipigs have remarkably similar physiology to humans, therefore, they it can be a good ani-

mal model for inflammation study. Thus, the conventional (serum chemistry, histopathology)

and novel analytic tools [immune cell identification in tissue, cytokine level in peripheral

blood mononuclear cells (PBMC) and serum, NF-kB target gene analysis in tissue] were

applied to determine inflammation in Chicago Miniature Swine (CMS) minipig. Lipopolysac-

charide (LPS)-induced acute systemic inflammation caused liver and kidney damage in

serum chemistry and histopathology. Immunohistochemistry (IHC) also showed an increase

of immune cell distribution in spleen and lung during inflammation. Moreover, NF-kB-target

gene expression was upregulated in lung and kidney in acute inflammation and in heart,

liver, and intestine in chronic inflammation. Cytokine mRNA was elevated in PBMC under

acute inflammation along with elevated absolute cytokine levels in serum. Overall, LPS-

mediated systemic inflammation affects the various organs, and can be detected by IHC of

immune cells, gene analysis in PBMC, and measuring the absolute cytokine in serum along

with conventional inflammation analytic tools.

Introduction

Inflammation is a well-organized response of immune cells and biomolecules. When the body

undergoes inflammation, it initiates eicosanoids, chemokines, and cytokines released by resident

macrophages or mast cells, and then recruits neutrophils and lymphocytes. These combined

responses induce typical inflammatory symptoms and pathophysiological conditions. Inflamma-

tion is classified as either acute or chronic based on duration or cause. Acute inflammation is

rapid response initiated by infection or tissue damage which follows abnormal vascular permeabil-

ity, blood flow, and nerve fiber sensitization [1]. Chronic inflammation is long-term response

caused by repeated tissue injury and recovery [2] is closely linked with a number of diseases (ische-

mic disease, atherosclerosis, stroke, cancer, diabetes mellitus, non-alcoholic fatty liver disease) [3].

Inflammation animal models have been established to find new drugs and explore the

pathophysiological mechanism of inflammation. To mimic a local inflammation (chemical-

induced paw or ear edema animal model) [4] or systemic inflammation (LPS administration,
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Escherichia coli inoculation, or cecal ligation and puncture), various methods are utilized [5].

Among them, LPS is a potent immune stimulator through CD14/toll-like receptor 4 (TLR4)/

myeloid differentiation 2 (MD2) receptor in monocyte/macrophage. As LPS-induced cytokines

mediate loss of function and immune cell infiltration in tissues, intravenous LPS provokes sep-

sis-like systemic inflammation [6]. Local LPS administration generates respiratory [7] or neural

inflammation [8, 9]. LPS-challenged animal models show a rapid onset of inflammation and

similar symptoms to humans. In addition, LPS affects both immune cells and parenchymal

cells, including alveolar epithelial cells, myocardial cells, and kidney tubule cells [10–13], sug-

gesting that LPS directly and indirectly modulates the immune response in various organs.

Therefore, in this study, LPS was chosen to induce systemic inflammation in minipig model.

So far, rodents have been widely used as an inflammation animal model because cost effec-

tiveness and easy of handling [14]. However, for LPS, a dose 106 times greater is required to

induce similar symptoms in mice as in humans. Non-human primates (NHPs) are also used as

inflammatory animal models due to their phylogenic proximity to humans. NHPs are more

resistant to LPS than human [15, 16], but display an identical hemodynamic and cytokine

response under LPS [15]. There is evidence that strong LPS resistance in mice is related with

protein factors in rodent sera, which are absent in humans [17]. Immune system similarity

may provide a better inflammatory animal model. Immune gene analysis revealed that porcine

shows higher similarity, at DNA sequence level, to humans than mice [18]. In particular, por-

cine immune response shows 80% similarity as human than 10% similarity of mice [19]. Thus,

the minipig was chosen as a systemic inflammatory animal model. In this study, the conven-

tional diagnostic tools (serum chemistry, histopathology) are compared with direct immune

cell detection (IHC) and LPS-induced gene expression in CMS minipig systemic inflammation

model.

Materials and methods

Experimental animals

Six minipigs, (CMS, Sus Scrofa), 10 months-old, 19.60–24.65 kg body weight, were used. Two

minipigs were randomly selected, based on body weight for each group. To establish the sys-

temic inflammatory minipig model, 5 μg/kg LPS was administered seven times intramuscu-

larly for chronic inflammation, and 25 μg/kg LPS was administered once intramuscularly for

acute inflammation. Minipigs were housed under a 12 h/12 h light/dark cycle with lights on at

8 am. Water was provided ad libitum and food was provided at 2% of body weight per day. All

the animal experiments were conducted under the Institutional Animal Care and Use Com-

mittee guideline of Korea Institute of Toxicology (IACUC approval # 19-1-0194, 20-1-0064).

Serum chemistry

For serum chemistry, blood was collected, incubated for 30 min at RT, and centrifuged for 10

min, 3,000 rpm at RT. Supernatant was isolated as serum. Serum chemistry was measured

using TBA 120 FR chemistry analyzer (Toshiba Co., Japan).

Histological analysis

Histopathology. Tissues from target organs (kidney, liver) were fixed in 10% neutral buff-

ered formalin (NBF) overnight and embedded in paraffin. Tissue samples were sectioned

(5 μm), deparaffinized, and stained with hematoxylin and eosin (H&E) to determine structural

abnormalities of kidney and liver. Glomeruli (black dot line) and proximal tubules were exam-

ined in kidney. Hepatic tissues near central vein (CV, black dot line) were examined in liver.
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Immunohistochemistry. Tissues were fixed in 10% NBF overnight and embedded in par-

affin. Tissue samples were then sectioned (5 μm), deparaffinized, processed for antigen

retrieval, blocked, incubated with target primary antibody, and peroxidase-conjugated second-

ary antibody. Samples were mounted and photographed using microscopy (Leica DM2700).

For peroxidase-conjugated secondary antibody, 3,3’-Diaminobenzidine (DAB) substrate was

used, followed by hematoxylin for nuclear counterstaining.

Gene analysis

For gene expression analysis, tissues (heart, lung, kidney, liver, duodenum, PBMC) were pro-

cessed for RNA extraction (QIAGEN RNeasy Mini Kit) and reverse transcription (iScript RT

Supermix for RT-qPCR, Biorad). Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) was

used as an endogenous control for normalization. qRT-PCR was performed using intron-span-

ning primers. Fold induction was quantified using the 2−ΔΔCT method. In Fig 4A, values are dis-

played using Heatmap software (bar.utoronto.ca/). Primer sequences are listed on Table 1.

Enzyme-Linked Immunosorbent Assay (ELISA)

To measure the absolute cytokine level, serum was obtained at day 0 (pre-treatment), day

1~day7 (two hours after LPS administration], and day 8 (post-treatment). Porcine IL-1β
(R&D, PLB00B), IL-6 (R&D, P6000B), TNFα (R&D, TPA00), IL-8 (Invitrogen, P8000), and

IFNγ (R&D, DY985) were measured by the ELISA method according to the manufacturer’s

protocol. The absolute cytokine levels are shown in Table 2.

Statistical analyses

The student’s t-test was used for comparisons of two samples. P values < 0.05 were considered

significant. Error bars indicate standard deviation (SD). The number of biological replicates is

2 and experimental replicates is 3, unless otherwise mentioned in Figure Legends.

Table 1. Primers used for qRT-PCR.

Species Gene symbol Primer sequences (from 5’ to 3’) Length Gene Bank ID

CRP F: AGGGCGCTGAGGTATGAAAT 117 NM_213844.2

R: ACAAGGGGAACGTAAGGTGT

SOD1 F: AGGCCGTGTGTGTGCTGAA 117 NM_001190422.1

R: GATCACCTTCAGCCAGTCCTTTA

IL-1β F: GAGCATCAGGCAGATGGTGT 134 NM_214055.1

R: CAAGGATGATGGGCTCTTCTTC

IL-6 F: GCTGCTTCTGGTGATGGCTACTGCC 318 NM_001252429.1

R: TGAAACTCCACAAGACCGGTGGTGA

TNFα F: ATGAGCACTGAGAGCATGATCCG 163 NM_214022.1

Sus scrofa R: CCTCGAAGTGCAGTAGGCAGA

COX2 F: TTCAACCAGCAATTCCAATACCA 87 NM_214321.1

R: GAAGGCGTCAGGCAGAAG

TGFβ F: AGGGCTACCATGCCAATTTCT 101 NM_214015.2

R: CGGGTTGTGCTGGTTGTACA

IL-10 F: CGG CGC TGT CAT CAA TTT CTG 89 NM_214041.1

R: CCC CTC TCT TGG AGC TTG CTA

GAPDH F: ACAGACAGCCGTGTGTTCC 62 NM_001206359.1

R: ACCTTCACCATCGTGTCTCA

https://doi.org/10.1371/journal.pone.0252947.t001
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Results

Determination of LPS-induced systemic inflammation

To develop the systemic inflammatory minipig model, seven doses of 5 μg/kg LPS were admin-

istrated for chronic inflammation, and one dose of 25 μg/kg LPS was administrated for acute

inflammation (Fig 1A). To determine whether LPS induces organ damage, analyses of serum

chemistry and histopathology were performed. LPS increased blood urea nitrogen (BUN) and

aspartate aminotransferase (AST) in acute inflammation at day 8 (Fig 1B), indicating kidney

and liver damage. H&E staining showed lymphoid infiltration in renal cortical interstitial,

without glomeruli abnormality, and hydropic change of hepatocytes in acute inflammation

(black arrowhead) (Fig 1C). There were no changes in serum chemistry and histopathology in

chronic inflammation. These results show that LPS-induced systemic acute inflammation

injures the kidney and liver, which is diagnosed by serum chemistry and histopathology.

The spleen filters and stores blood, therefore, the population of circulating immune cells can

be measured in this organ. Thus, the IHC of immune cells following LPS induction was deter-

mined. The number of CD11b+, MPO+, CD4+, and CD8+ cells was slightly increased in

chronic inflammation, whereas it massively increased in acute inflammation (Fig 2A–2D).

These results indicate that IHC accurately detects the type and distribution of various immune

cells. LPS induction establishes successful systemic inflammatory minipig model, and the direct

detection of immune cells and serum chemistry compensate for inflammation diagnosis.

Immune cell dynamics in LPS-induced pulmonary inflammation

As the respiratory tract is directly connected with the outside of the body, alveolar macrophage

is activated to remove foreign bodies in lung [20]. The function of other immune cells during

Table 2. Absolute cytokine level after LPS induction.

IL-1β (pg/ml) IL-6 (pg/ml) TNFα (pg/ml)

Chronic Acute Chronic Acute Chronic Acute

D0 U.D. U.D. 0.80 ± 0.51 5.02 ± 1.53 27.78 ± 1.50 88.21 ± 2.51

D1 39.03 ± 4.3 5.72 ± 1.16 977.5 ± 10.27 6.58 ± 0.37 2312 ± 49.54 74.74 ± 2.77

D2 135 ± 9.13 15.37 ± 8.61 80.89 ± 2.92 7.44 ± 0.60 749.9 ± 9.77 63.43 ± 2.15

D3 112.6 ± 10.73 5.036 ± 0.20 45.47 ± 1.42 5.1 ± 0.68 442.7 ± 4.09 75.46 ± 1.08

D4 40.57 ± 1.36 14.06 ± 6.85 12.43 ± 0.75 6.65 ± 1.27 210.6 ± 4.92 74.75 ± 1.24

D5 86.69 ± 10.52 11.38 ± 4.93 11.54 ± 2.66 6.26 ± 0.11 108.8 ± 3.89 81.88 ± 1.06

D6 23.69 ± 13.95 32.23± 16.89 7.06 ± 0.48 7.92 ± 1.17 114 ± 2.57 77.19 ± 2.15

D7 63.62 ± 7.58 716.3 ± 6.21 15.99 ± 1.09 2218 ± 122.3 111.4 ± 0.95 9224 ± 1218

D8 21.37 ± 6.14 96.22 ± 5.23 2.35 ± 0.46 30.05 ± 0.64 25.72 ± 1.65 1992 ± 48.81

IL-8 (pg/ml) IFNγ (pg/ml)

Chronic Acute Chronic Acute

D0 72.08 ± 0.98 47.54 ± 2.53 U.D. U.D.

D1 855.4 ± 50.91 39.32 ± 2.08 U.D. U.D.

D2 673.7 ± 15.56 18.21 ± 1.16 U.D. U.D.

D3 196.3 ± 3.16 87.64 ± 1.61 U.D. U.D.

D4 36.74 ± 1.72 29.62 ± 1.58 U.D. U.D.

D5 35.23 ± 1.13 18.39 ± 1.47 U.D. U.D.

D6 40.64 ± 1.56 55.81 ± 1.54 U.D. U.D.

D7 20.19 ± 1.41 2361 ± 140.8 U.D. 39.79 ± 4.55

D8 23.64 ± 0.37 2.48 ± 2.60 U.D. U.D.

https://doi.org/10.1371/journal.pone.0252947.t002
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homeostasis or inflammation are less well known. Thus, macrophages, neutrophils, and lym-

phocytes in the lung were detected after LPS induction using IHC. CD11b+ and MPO+ cells

were identified, while CD4+ and CD8+ cells were not found in normal lung. All four types of

immune cell were elevated in the alveoli during acute inflammation (Fig 3A–3D). Especially,

CD4+ and CD8+ T lymphocytes significantly infiltrated alveoli after LPS induction. These

results suggest that systemic inflammation regulates immune cell dynamics and infiltration

into the damaged lung.

Inflammation-related gene expression in tissue and PBMC

TLR4 has been identified in parenchymal organs including heart [21], lung [22], liver [23],

kidney [24], and intestine [25], which suggests that LPS might directly affect these organs.

LPS-bound TLR4 upregulates transcription factor NF-kB and numerous target gene synthesis,

subsequently. Thus, to determine the effect of LPS on NF-kB target gene expression [26–29],

the expression of cytokine (IL-6), acute phase inflammation response (CRP), pro-inflamma-

tory (COX-2), and anti-oxidant (SOD1) was measured. Chronic cardiac inflammation

Fig 1. Comparison of serum chemistry and histopathology. (A) Experimental schematic: For chronic inflammation, 5 μg/kg

lipopolysaccharide (LPS) was administrated, intramuscularly (IM), seven times, daily. For acute inflammation, 25 μg/kg LPS was

administrated, IM, once at day7. Two CMS minipigs were used for each group (control, chronic, acute). Blood and tissue were sampled

for further study. (B) Serum chemistry was measured using a TBA 120 FR chemistry analyzer (Toshiba Co., Japan). Absolute values are

indicated. #P<0.05. (C) H&E staining. Glomeruli in kidney and central vein in liver are indicated with a black dot line. Abnormal

lesions are indicated with black arrow head. Scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0252947.g001
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upregulated CRP (1.1 fold change), COX-2 (1.37), and SOD1 (0.69), while acute upregulated

IL-6 (0.52). Chronic pulmonary inflammation decreased the COX-2 (-1.61) and SOD1 (-2.26)

mRNA expression, while acute increased IL-6 (3.29), CRP (12.64), COX-2 (4.00), and SOD1
(5.39) mRNA expression. Only CRP (5.62) was upregulated during chronic hepatic inflamma-

tion. The expression of COX-2 (2.11) was increased in acute inflammation of kidney. In the

intestine, LPS upregulated all four genes during chronic inflammation [IL-6 (1.64), CRP
(0.57), COX-2 (4.30), and SOD1 (1.06); Fig 4A]. These data suggest that each organ has differ-

ent sensitivity to LPS (lung and kidney: immediate response; heart, liver, duodenum: delayed

response) and each organ shows specific target gene upregulation.

To determine the synthesis of biomolecules in immune cells, PBMC was isolated and cyto-

kine mRNA expression was analyzed. In chronic inflammation, both pro-inflammatory and

anti-inflammatory genes were suppressed. In acute inflammation, pro-inflammatory genes

(IL-1β, IL-6, TNFα, COX-2) were upregulated, while anti-inflammatory genes (TGFβ, IL-10)

were downregulated (Fig 4B). PBMC which is stimulated by multiple low dose LPS downregu-

lated the cytokine synthesis, suggesting attenuation of the immune response. In addition,

Fig 2. Immune cell distribution in spleen. (A–D) Immunohistochemistry. Population and distribution of (A) CD11b+

(macrophage), (B) MPO+ (neutrophil), (C) CD4+, and (D) CD8+ (lymphocyte) cells were examined in spleen. Representative

images are shown; N�3. Quantification of the immune cell number is shown as mean ± SD; #P<0.01 relative to control,
�P<0.05 relative to control. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0252947.g002
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single high dose LPS enhanced the pro-inflammatory cytokine synthesis, suggesting activation

of the immune response.

Absolute cytokine level after LPS-induced systemic inflammation

To determine the inflammatory cytokine response after LPS induction, cytokines were

detected in serum at various time points using ELISA. In chronic inflammation, the peak con-

centration of IL-6, TNFα, and IL-8 was two hours after the first LPS administration (5 μg/kg)

and then cytokine levels gradually decreased despite daily LPS administration (Fig 5B–5D,

Table 2). Moreover, IL-1β expression showed a delay in peak concentration after the second

LPS challenge, and cytokine level was fluctuated until day 8 (Fig 5A, Table 2). IFNγ was not

Fig 3. Immune cell distribution in lung. (A–D) Immunohistochemistry. Population and distribution of (A) CD11b+

(macrophage), (B) MPO+ (neutrophil), (C) CD4+, and (D) CD8+ (lymphocyte) cells were examined in lung. Representative

images are shown; N�3. Quantification of the immune cell number is shown as mean ± SD; aP<0.01 relative to trachea control,
bP<0.05 relative to trachea control, cP<0.01 relative to alveoli control, dP<0.05 relative to alveoli control. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0252947.g003

Fig 4. Inflammation-related gene expression in tissues and PBMC. (A) qRT-PCR and Heatmap in tissues. IL-6, CRP, COX-2, SOD1 mRNA

expression were analyzed in heart, lung, liver, kidney, and duodenum under chronic and acute inflammation with two biological and three

experimental replicates. Red color indicates gene upregulation and green color indicates gene downregulation. (B) qRT-PCR in PBMC. Pro-

inflammatory (IL-1β, IL-6, TNFα, COX-2) and anti-inflammatory (TGFβ, IL-10) mRNA expression were analyzed in PBMC under chronic and

acute inflammation with two biological and three experimental replicates.

https://doi.org/10.1371/journal.pone.0252947.g004
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detected (Fig 5E, Table 2). In acute inflammation, all five cytokines reached their peak level

two hours after LPS administration (25 μg/kg) (Fig 5A–5E, Table 2). The basal level of cyto-

kines showed the variation in homeostasis (Fig 5, IL-1β: undetected, IL-6: 0.797 pg/ml, TNFα:

27.78 pg/ml, IL-8: 72.08 pg/ml, IFNγ: undetected). All five cytokines were upregulated by LPS

both chronic and acute. However, the elevated level of cytokine was much higher in acute LPS

induction compared to day 0. Interestingly, the cytokine level at day 8 returned to similar level

as day 0.

Discussion

In this study, inflammation-related gene expression in organs (heart, lung, liver, kidney, intes-

tine), cytokine mRNA in PBMC, absolute cytokine in serum, and immune cell population in

tissue were analyzed after LPS induction in CMS minipig. Rodent models are attractive inflam-

matory model due to cost effectiveness but their body size limits hemodynamic monitoring

[14, 30, 31]. LPS modulation on the immune response is well characterized in NHP because of

the close phylogenic relationship [32, 33]. In this study, the CMS minipig was used as a sys-

temic inflammatory animal model. Porcine have different pulmonary vascular physiology to

humans in systemic inflammation [31]. However, its high similarity in immune genes suggest

that porcine can be another representative inflammatory animal model. The immune response

is an effective process involving immune cells and cytokines. Acute inflammation increased

the number of immune cells and distribution of all four immune cells (CD11b+ macrophage,

MPO+ neutrophil, CD4+ lymphocyte, CD8+ lymphocyte) (Fig 2A–2D). Also, mRNA levels of

pro-inflammatory cytokines in PBMC was upregulated (Fig 4B). Furthermore, cytokine level

in serum was elevated after LPS induction (Fig 5). These results shows that LPS regulates the

immune response, including immune cell dynamics, cytokine synthesis in immune cells, and

elevation of cytokine in serum. 5 μg/kg LPS, seven times, IM administration induces mild and

prolonged immune response indicating slight increase of immune cell population and serum

cytokine level. Also, 25 μg/kg LPS, once, IM administration induces strong immune cell

response indicating massive increase of immune cell population and serum cytokine level.

Thus, in this study, a stable and affordable inflammatory minipig model and analytic tools for

inflammation has been established.

Fig 5. Serum cytokine analysis using ELISA. Blood was collected at day 0, 1, 2, 3, 4, 5, 6, 7, and 8 and then serum was

isolated. Absolute cytokine levels (pg/ml) were measured by ELISA with two biological and three experimental replicates.

(A) IL-1β, (B) IL-6, (C) TNFα, (D) IL-8, (E) IFNγ. U.D. = undetected.

https://doi.org/10.1371/journal.pone.0252947.g005
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Bacterial LPS mediates the sepsis and immune response, which leads to tissue damage and

organ failure [34]. Especially, LPS-treated liver and kidney failure have been reported, which

were diagnosed by serum chemistry [35, 36]. As AST is located in the cytosol and mitochon-

dria of hepatocytes, and alanine aminotransferase (ALT) is situated in the cytosol of hepato-

cyte, elevation of AST or ALT in serum is the most relevant marker of hepatic injury. BUN

and creatinine levels are also elevated when renal clearance fails. In this study, we have found

that LPS-induced BUN and AST elevation (Fig 1B) and COX-2 upregulation in acute renal

inflammation and CRP upregulation in chronic hepatic inflammation (Fig 4A). Previous stud-

ies support our findings. Enhanced COX-2 is considered a renal pathological condition as

COX-2 regulates tubular reabsorption and glomeruli filtration [37–39]. As CRP is synthesized

in hepatocytes, elevated CRP is related to hepatic damage [40]. These results show that LPS

mediates organ damage and organ-specific gene upregulation under inflammation. Thus,

organ-specific target genes can be analytic tools for inflammation.

Pulmonary inflammation was significantly affected by acute inflammation, as demonstrated

by immune cell infiltration and NF-kB target gene (IL-6, CRP, COX-2, SOD1) upregulation

(Figs 3 and 4A). Moreover, those genes were downregulated in chronic inflammation even

though there was a slight increase of immune cell infiltration. This could be because activated

neutrophil or macrophage regenerate the lung and attenuate the inflammation [41, 42]. Of

note, NF-kB target genes were upregulated in heart and intestine during chronic inflammation

(Fig 4A) which indicates that these organs are affected by the long-term immune response [43,

44]. These findings suggest that each organ has distinct LPS sensitivity (acute or chronic), and

LPS-induced tissue damage has various mechanisms (specific target). It is noteworthy examin-

ing a serum chemistry and a histopathology to determine the organ damage. However, it does

not completely reflect the various disease conditions, such as organ specific damage and

injury/recovery status. In this study, we have developed LPS-induced systemic acute or chronic

inflammation minipig model proven by immune cell population, cytokine mRNA expression

in PBMC, and cytokine level in serum. Also, we have found that organ specific gene activation

with various mechanism under systemic inflammation.

Conclusions

LPS-mediated systemic inflammation affects the organs and novel analytic tools such as IHC

of immune cells, cytokine mRNA analysis in PBMC, and absolute cytokine analysis in serum

support conventional inflammation detection tools.
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