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Serotonin, or 5-hydroxytryptamine (5-HT), is a well-known neurotransmitter that plays
vital roles in neural activities and social behaviors. Clinically, deficiency of serotonin is
linked with many psychiatric disorders. Interestingly, a large proportion of serotonin
is also produced outside the central nervous system (CNS). There is increasing
evidence demonstrating important roles of serotonin in the peripheral tissues. Here,
we will describe the multiple biological functions of serotonin in hematopoietic
system, such as development of hematopoietic stem and progenitor cells (HSPCs),
differentiation of hematopoietic cells, maintenance of vascular system, and relationship
with hematological diseases. The roles of serotonin in inflammatory responses mediated
by hematopoietic cells as well as in liver regeneration are also discussed. Our
recent understandings of the impact of serotonin on hematopoietic system, immune
responses, and tissue regeneration support utilization of serotonin as a potential
therapeutic target for the treatment of hematological diseases and organ repair in clinic.
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INTRODUCTION

As one of the most classical monoamine neurotransmitters and hormones in the central nervous
system (CNS) and peripheral tissues, serotonin (also called 5-hydroxytryptamine [5-HT]) has
been discovered for nearly 70 years. Serotonin was isolated from the serum for the first time in
1948 (Rapport et al., 1948). Soon after, enteramine was isolated and characterized from the gut
enterochromaffin cells (Erspamer and Boretti, 1951), and finally identified to be the same as
serotonin discovered in the serum. Although serotonin is abundant in the peripheral tissues, much
attention has been focused on its function in the CNS.

Serotonin has been extensively studied in the CNS for its essential role in embryos and adults.
In the CNS of mice, serotonergic neurons are specified and matured at embryonic day (E) 10.5 and
E12.5, respectively, and finally locate in the hindbrain of adult (Goridis and Rohrer, 2002; Pattyn
et al., 2004). According to their locations, serotonergic neurons are grouped into nine clusters,
with clusters B1–B3 and clusters B4–B9 present in the caudal and rostral part of the hindbrain,
respectively (Halliday et al., 1995). The generation of serotonergic neurons is tightly controlled by
a complex of signaling and gene regulatory network, such as sonic hedgehog (Shh) signaling and
the Nkx2-2-Lmx1b-Pet1 cascade (Ding et al., 2003). Animals including humans need serotonin
secreted from the serotonergic neurons to regulate mood, appetite and sleep. Serotonin also plays
roles in cognition, such as memory and learning (Berridge et al., 2009). The feelings of well-being
and happiness are related with serotonin (Liu et al., 2014; Li et al., 2016). Furthermore, several
social behaviors have been reported to be regulated by serotonin. For example, in adult male
mice, the level of serotonin in the brain controls sexual preference (Liu et al., 2011). Its deficiency
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certainly leads to many psychiatric disorders. Humans with
low level of serotonin are more prone to depression, suicide
and violence. An obvious example is that the rate of serotonin
synthesis in the brain of females is only about half of that
in males, which may explain why the females have a higher
probability of distressing depressive disorders (Nishizawa et al.,
1997). Similarly, decrease in serotonin synthesis and high rate of
depressive disorders can also be found in aged human beings. In
clinics, serotonin attracts extensive attention for its therapeutic
effect on treatment of depression, schizophrenia and anxiety
(Owens and Nemeroff, 1994; Hirschfeld, 2000).

Notably, only about 1%−2% of total amount of serotonin is
produced by serotonergic neurons in the brain, whereas 90% of
serotonin is detected to be secreted from the enterochromaffin
cells of gastrointestinal (GI) tract (Gershon and Tack, 2007).
There is also a considerable number of serotonin receptors
expressed in various peripheral organs. These observations
suggest that serotonin is not only an important neurotransmitter
in the CNS, but also may exert its effects through its receptors
specifically expressed in different peripheral tissues.

The goal of this minireview article is to discuss the extensive
roles of serotonin in the peripheral tissues, especially in
hematopoietic system. We will focus on its roles in promoting
hematopoietic stem and progenitor cell (HSPC) development
in cell autonomous and non-cell autonomous manners and
regulating erythropoiesis and megakaryocytopoiesis. A brief
discussion of the effects of serotonin on immune response and
tissue regeneration will also be included.

SYNTHESIS AND METABOLISM
OF SEROTONIN

In both the CNS and peripheral tissues of animals, the amino
acid L-tryptophan is the primary source of serotonin (Figure 1).

FIGURE 1 | Synthesis and metabolism process of serotonin. In animals,
serotonin is synthesized from amino acids L-tryptophan. Under the
hydroxylation of tryptophan hydroxylase (Tph), L-tryptophan is converted into
5-hydroxytryptophan (5-HTP), which is subsequently catalyzed into serotonin
by aromatic amino acid decarboxylase (AAAD). Tph1 and Tph2 are two forms
of Tph. Once the biological function of serotonin is accomplished, it is finally
metabolized into 5-hydroxyindole acetic acid (5-HIAA) to be removed from the
body.

Under the catalization of tryptophan hydroxylase (TPH), a
hydroxyl is added to L-tryptophan to form 5-hydroxytryptophan
(5-HTP). Conversion of L-tryptophan to 5-HTP is the
rate-limiting step in the synthesis of serotonin (Lovenberg
et al., 1967; Ichiyama et al., 1970). There are two forms of
TPH—broadly-expressed Tph1 and CNS-enriched Tph2 (Côté
et al., 2003). Although mainly expressed in the peripheral tissues
(e.g., gut, skin, pineal and gland), Tph1 is also reported to
be present in the CNS (Zill et al., 2009). Similarly, Tph2 is
also detected in the aorta-gonad-mesonephros (AGM)
region of zebrafish and mouse embryos by RNA-seq and
immunofluorescence assay (Zhang et al., 2015; Lv et al., 2017).
5-HTP is subsequently converted into serotonin through
the decarboxylation process mediated by aromatic amino
acid decarboxylase (AAAD; Lovenberg et al., 1967; Ichiyama
et al., 1970). Other than converting 5-HTP into serotonin,
AAAD can also participate in other decarboxylation reactions,
such as converting L-dopa into dopamine in dopaminergic,
noradrenergic and adrenergic neurons (Christie et al., 2014).

Serotonin activates the intracellular signaling cascade through
its 15 receptors, which are classified into seven families (Hannon
and Hoyer, 2008). Once the biological function of serotonin is
accomplished, the metabolism of serotonin would be carried
out by the outer mitochondrial membrane enzyme monoamine
oxidase A (MAO-A) to generate 5-hydroxyindole acetic acid
(5-HIAA). 5-HIAA is the metabolite of serotonin without any
biological activity (Shih et al., 1999; Singh et al., 1999), which is
excreted out of the body by the kidney. The metabolism process
of serotonin is mainly processed in the liver.

SEROTONIN AND HEMATOPOIETIC
SYSTEM

Serotonin and HSPCs
Increasing evidence has implicated the relationship between
serotonin andHSPCs (Figure 2). Yang et al. (2007) have reported
that addition of serotonin enhances the colony formation ability
of human umbilical cord blood CD34+ cells and increases the
reconstitution level of CD45+ cells in the bone marrow of
irradiated immunodeficient nonobese diabetic-severe combined
immunodeficient (NOD/SCID) mice. Our recent study has
shown that serotonin, which is synthesized in the endothelial
cells of AGM, promotes the survival of HSPCs in the intra-aortic
hematopoietic clusters of mouse embryos (Lv et al., 2017). These
findings support that serotonin can act as an endogenous factor
to regulate the development of HSPCs during embryogenesis.
Similarly, a study in zebrafish system has also demonstrated that
treatment of the embryos with serotonin increases the formation
of HSPCs in the AGM (Kwan et al., 2016). Mechanistically,
serotonin is identified to regulate the population of HSPCs in
zebrafish embryos through the production of cortisol controlled
by the hypothalamic-pituitary-adrenal/interregnal (HPA/I) axis.
However, whether serotonin can regulate HSPC development
through HPA/I-mediated signaling in mammals and whether
serotonin exerts its effect cell-autonomously in zebrafish still
need further investigation.
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FIGURE 2 | Role of serotonin in hematopoiesis. In zebrafish and mouse
embryos, serotonin has been demonstrated to control the development of
hematopoietic stem and progenitor cells (HSPCs), but through different
mechanisms. In zebrafish, stresses, such as hypoxia, can induce the release
of serotonin from serotonergic neurons in the central nervous system (CNS);
through the receptor(s) on hypothalamus, serotonin can activate the
hypothalamic-pituitary-adrenal/interregnal (HPA/I) axis to promote the
production of glucocorticoid in the aorta-gonad-mesonephros (AGM) and
accelerate the formation of HSPCs. In contrast, in the AGM of mouse
embryos, serotonin can be directly produced by the endothelial cells to
maintain the survival of HSPCs. This process is regulated, through serotonin
receptors expressed on HSPCs, by inhibiting the pro-apoptotic pathway
mediated by the AKT-Foxo1 signaling. In humans, serotonin can also promote
the expansion of umbilical cord blood CD34+ cells in vitro and ex vivo.

Serotonin and Differentiation
of Hematopoietic Cells
The regulation of serotonin on differentiated hematopoietic cells
has also been reported. Serotonin is an important regulator
for the survival of red blood cells (RBCs) in vivo and that
erythropoiesis is obviously impaired in mice with peripheral
serotonin deficiency (Amireault et al., 2011). Further analysis
reveals that serotonin in the microenvironment acts as an
antioxidant extrinsic effector to protect RBCs from senescence
(Amireault et al., 2013). Serotonin has also been shown to bind
onto the surface of platelets and the conjugation of serotonin
to the procoagulant proteins could stimulate platelet activation
(Dale et al., 2002). Platelet-derived serotonin influences the
differentiation of monocytes into dendritic cells (DCs) and
impairs the differentiation of DCs to T cells (Katoh et al.,
2006).

Serotonin has also been identified to play important roles in
megakaryocytopoiesis. Although most of serotonin is stored in
the platelets, a small quantity of serotonin can also be stored in
the megakaryocytes (MKs). MKs are the progenitors of platelets
and the only cells to take up serotonin in the bone marrow (Liu
and Yang, 2006). Serotonin receptors have been reported to be

expressed on the surface of most MKs. The in vitro study shows
that serotonin can enhance MK colony formation ability and the
mitogenic effect of serotonin on megakaryocytopoiesis may be
mediated through the Htr2 receptor (Yang et al., 1996). A recent
study has demonstrated that Htr2b is expressed in MKs and
that serotonin mediated by Htr2b can enhance the proliferation
and inhibit the apoptosis of MKs. This study also shows
that serotonin can activate ERK signaling and affect F-actin
reorganization to promote megakaryopoiesis and proplatelet
formation (Ye et al., 2014).

Serotonin and Vascular Maintenance
The vast majority of serotonin is secreted by the
enterochromaffin cells of GI tract to control the movement of
intestine (Gershon and Tack, 2007). Platelets themselves cannot
synthesize serotonin, due to a lack of enzymes responsible
for serotonin synthesis. Instead, circulating platelets actively
take up the serotonin released into the blood from the tissues
(Vanhoutte, 1991; Ni and Watts, 2006). The reabsorbed
serotonin in the blood can play important roles in vascular
biology, including platelet activation, hemostasis and vascular
endothelial cell and smooth muscle cell proliferation.

Under normal condition, platelets are kept balanced between
quiescence and activation. Through binding onto the surface
of platelets and conjugation to the adhesion and procoagulant
proteins, serotonin can stimulate the activation of platelets (Dale
et al., 2002). Another study also shows that platelet activation is
mediated by the covalent cross-linkage of serotonin with small G
proteins and the activation of G protein-dependent downstream
signaling pathways (Walther et al., 2003).

During hemostasis, the activation of platelets is an important
process and the ‘‘golden standard’’ assay of platelets activation
is to detect the release of serotonin (Gobbi et al., 2003). At the
injury site of blood vessels, serotonin is secreted from the platelets
bound with the receptors expressed on the damaged vessels and
acts as a vasoconstrictor to block bleeding (Kaumann and Levy,
2006). Selective serotonin reuptake inhibitors (SSRIs) treatment
can inhibit the storage of serotonin in the platelets and increase
the bleeding time. Moreover, platelet aggregation would also
be decreased in serotonin transporter knockout mice (Carneiro
et al., 2008).

In addition, the receptors of serotonin, such as Htr1b, Htr2a,
Htr2b, Htr4 and Htr7, are all found to be expressed in vascular
endothelial cells and smooth muscle cells (Kaumann and Levy,
2006; Monassier et al., 2010). These results indicate the role
of serotonin in vasculature. Serotonin is reported to possess
mitogenic effect on the vascular endothelial cells (Pakala et al.,
1994). Mediated by the receptor Htr1b, serotonin can stimulate
angiogenesis through the AKT-eNOS pathway in diabetic mice
(Iwabayashi et al., 2012). Similarly, other reports show that
serotonin acts as an angiogenic factor to induce endothelial
cell proliferation through TR3/Nur77 signaling in mice and
Src/PI3K/AKT/mTOR/p70S6K signaling in human, respectively
(Zamani and Qu, 2012; Qin et al., 2013). In the absence of Htr2b,
the differentiation, proliferation and mobilization of endothelial
progenitor cells from the bone marrow are reported to be
impaired (Ayme-Dietrich et al., 2016). Furthermore, serotonin
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can also stimulate the proliferation of vascular smooth muscle
cells (Penumatsa et al., 2014).

Serotonin and Hematological Diseases
As serotonin plays critical roles in the development and
differentiation of HSPCs, many hematological diseases
are related with its dysregulation. Study in Tph1−/− mice
demonstrates that serotonin regulates the balance of Th17 cells
and T regulatory cells and is involved in arthritis, which is an
important autoimmune disease (McAlpine et al., 2016). Elevated
level of serotonin is observed in the serum of asthmatic patients,
an inflammatory disease of lung (Cazzola and Matera, 2000).
Using the mouse model, researchers also show the inhibitory
role of Htr2 agonist in allergic asthma (Nau et al., 2015).

SEROTONIN AND INFLAMMATORY
RESPONSE

Although platelets are traditionally considered to play vital
roles in hemostasis at the site of injury, more evidence has
demonstrated that platelets can also act as an immune effector
to participate in the inflammation under physiological and
pathological conditions (Li et al., 2012; Jenne and Kubes,
2015). A large amount of serotonin is stored in the platelets
and serotonin would be released into the blood from platelets
upon injury and infection, suggesting that serotonin may play
a role in immune response. Many studies have shown the
regulatory function of serotonin on differentiated hematopoietic
cells during the inflammatory process. In infected tissues, the
aggregate of serotonin can protect natural killer (NK) cells from
mononuclear phagocytes-induced apoptosis, through scavenging
reactive oxygen species (ROS) generated by themyeloperoxidase-
H2O2 system (Betten et al., 2001, 2004). Similarly, serotonin has
been reported to efficiently induce interferon-gamma (IFN-γ)
production inNK cells (Hellstrand et al., 1993). ThemRNA levels
and protein release of cytokines, such as interleukin (IL)-1beta,
IL-6, IL-8/CXCL8, IL-12p40 and tumor necrosis factor-alpha
(TNF-α), can be modulated by serotonin in monocytes through
its receptors Htr3, Htr4 and Htr7 during inflammation (Dürk
et al., 2005). Furthermore, serotonin can also inhibit apoptosis of
monocytes through upregulation of Bcl2 and Mcl1 and therefore
maintain the survival of monocytes during chronic inflammation
(Soga et al., 2007). Through the receptor Htr7 expressed on
naïve T cells, serotonin can induce the activation of ERK and
NF-κB signalings and contribute to T cell activation during
inflammation (León-Ponte et al., 2007). Studies in mouse bone
marrow derived- and human CD34+ cell-derived mast cells both
have shown that serotonin stimulation could facilitate these cells
to adhere to fibronectin and to migrate towards and accumulate
at the site of injury through Htr1a (Kushnir-Sukhov et al., 2006).

SEROTONIN AND TISSUE REGENERATION

The liver is a unique organ, which possesses the ability
to regenerate (Michalopoulos and DeFrances, 1997). Several
signaling factors have been shown to contribute to liver
regeneration, including cytokines, growth factors, hormones and

nuclear receptors (Michalopoulos, 2013). It has been identified
that platelets are vital for the regeneration of liver (Lesurtel
et al., 2006; Murata et al., 2007, 2008; Takahashi et al., 2013).
Among these studies, Lesurtel et al indicate that platelet-derived
serotonin can stimulate liver regeneration (Lesurtel et al., 2006).
The decrease of serotonin in Tph1 knockout mice and inhibition
of Htr2a and Htr2b, the receptors of serotonin, both impair
the process of liver regeneration. The mechanism of serotonin-
mediated liver regeneration is still controversial (Lisman and
Porte, 2016). On the one hand, serotonin may promote the
mitogenic process of hepatocytes in mice after hepatectomy;
on the other hand, the decrease in serotonin influences the
platelet activation, while the delayed liver regeneration may
be a secondary effect of the impaired platelet activation. Since
serotonin is known to participate in the platelet activation, the
decrease in serotonin would lead to the impairment of platelet
response (Dale et al., 2002; Walther et al., 2003).

PERSPECTIVES

Defining the crucial roles of serotonin during hematopoiesis
is particularly useful for new design to treat hematological
diseases. More than 10 types of functional hematopoietic cells
are differentiated from hematopoietic stem cells (HSCs), which
also possess the capacity to self-renew. The demand of functional
HSCs for transplantation to cure patients with hematological
diseases and other malignancies is rapidly increasing in clinics.
Although many efforts and progresses have been made to
expand umbilical cord blood-derived HSPCs (Boitano et al.,
2010; Delaney et al., 2010; Fares et al., 2014; Rentas et al., 2016),
obtaining a large amount of functional HSPCs for clinical use is
not yet feasible. Recent studies suggest the potential of serotonin
in expanding HSPCs. It has been shown that serotonin treatment
can enhance the in vitro colony formation ability of human
umbilical cord blood CD34+ cells as well as reconstitution of
CD45+ cells in NOD/SCID mice (Yang et al., 2007). During
embryogenesis, serotonin can also increase the colony formation
ability of HSPCs in the AGM of mouse embryos directly, and the
HSPC population in zebrafish indirectly (Kwan et al., 2016; Lv
et al., 2017). Considering its crucial role in HSPC development
and expansion, serotonin might serve as a good target for
clinical use. In particular, inhibition of Htr5a, a highly-enriched
serotonin receptor in the AGM of mouse embryos, leads to the
impairment of colony formation of HSPCs through AKT-Foxo1-
mediated apoptotic pathway (Lv et al., 2017). The serotonin
receptors can produce an excitatory or inhibitory response. It
is of note that many of these receptors have been validated to
be the targets of a variety of pharmaceutical drugs, including
many well-known antidepressants (Nichols and Nichols, 2008).
Therefore, Htr5a is also a potential target to expand HSPCs both
in vitro and in vivo.

In addition, serotonin plays important roles in normal
erythropoiesis and megakaryocytopoiesis to generate functional
RBCs and platelets. Furthermore, serotonin is also a vital effector
for the survival of and cytokine release of NK cells as well
as activation of T cells, all of which are essential for immune
response. These findings indicate that serotonin is required for
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the development of functional hematopoietic cells under both
physiological and pathological conditions.

There is evidence supporting the stimulatory effects of
serotonin in liver regeneration (Lesurtel et al., 2006). However,
the underlying mechanism of platelet-derived serotonin to
mediate liver regeneration is still unclear. Similarly, the role
of platelets in liver regeneration remains partially understood
at the molecular level (Lisman et al., 2015). More detailed
studies on the roles and mechanisms of serotonin-mediated
liver regeneration are required, which would provide insights
into designing new therapeutic strategies for clinical liver
regeneration.

CONCLUSION

Serotonin plays irreplaceable roles in the CNS and its
deficiency causesmany psychiatric disorders. Interestingly, many
unexpected functions of serotonin in the peripheral tissues
during embryogenesis have been recognized recently. However,
how exactly serotonin plays its role is still not well defined. For
example, during HSPC development, both the local action and
HPA/I mediated CNS effects of serotonin on the development

of HSPCs in mouse and zebrafish embryos have been reported;
however the reason for the discrepancy between mouse and
zebrafish embryos remains to be addressed. Moreover, how
serotonin increases the colony formation ability of human
umbilical cord blood CD34+ cells and promotes reconstitution
of CD45+ cells in the bone marrow of NOD/SCID mice at
the molecular level are still obscure. A better understanding
of the underlying mechanisms of serotonin in the peripheral
tissues would facilitate its potential clinical application in the
future.
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