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Abstract 
 
Ensemble learning has been increasingly popular for boosting the predictive power of polygenic 
risk scores (PRS), with almost every recent multi-ancestry PRS approach employing ensemble 
learning as a final step. Existing ensemble approaches rely on individual-level data for model 
training, which severely limits their real-world applications, especially in non-European 
populations without sufficient genomic samples. Here, we introduce a statistical framework to 
construct regularized ensemble PRS, which allows us to combine a large number of candidate 
PRS models using only summary statistics from genome-wide association studies. We 
demonstrate its robust and substantial improvement over many existing PRS models in both 
within- and cross-ancestry applications. We believe this is truly “one score to rule them all” due to 
its capability to continuously combine newly developed PRS models with existing models to 
improve prediction performance, which makes it a universal approach that should always be 
employed in future PRS applications.  
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Introduction 
 
With the continued success of genome-wide association studies (GWAS)1,2 and increasingly 
accessible summary statistics from these studies, genetic prediction efforts have generally 
focused on creating polygenic risk scores (PRS) that combine individually negligible but 
collectively substantial effects from millions of single nucleotide polymorphisms (SNPs) in GWAS 
summary data. Over the years, PRS methodology has evolved through improved model designs3-

9, integration of functional genomic annotations8,10-12, and multi-ancestry/multi-trait joint 
modeling12-14. Due to the diverse genetic architecture of complex traits and moderate signal-to-
noise ratio at current GWAS sample sizes, not all PRS models perform equally well, and no single 
method consistently outperforms others15-17. Ensemble learning is a strategy that trains a machine 
learning model to combine multiple learning algorithms for better predictive performance. In recent 
years, researchers have applied ensemble learning to integrate multiple PRS into an aggregated 
score with improved performance compared to any single PRS model15,18-20. Earlier work used 
linear regression or penalized regression to develop ensemble PRS18,19. More recently, super 
learning has been introduced as an omnibus approach for ensemble PRS construction21-23. It 
employs an “ensemble of ensemble” modeling strategy to achieve additional prediction gains from 
various PRS model designs and ensemble techniques24,25. In particular, these approaches have 
proven effective in multi-ancestry PRS applications21-23,26,27, leveraging the many PRS models 
optimized for each ancestry respectively to improve the predictive performance in the target 
population. Due to its apparent effectiveness, almost every recent PRS method employs 
ensemble learning in some way.  
 
Unsurprisingly, ensemble learning is data-demanding – ensemble model training requires a 
holdout dataset (or multiple datasets in the case of super learning) independent from GWAS 
samples. This creates a major hurdle for ensemble PRS application. Often, in practice, a 
summary-level GWAS dataset is all there is for PRS model training, which is especially true in 
applications in non-European ancestries. Inevitably, researchers who wish to employ ensemble 
learning need to partition the valuable testing dataset, which is often small in size if it even exists, 
leading to insufficient PRS benchmarking and reduced statistical power in downstream 
applications18,19,28. This problem is further exacerbated in applications of super learning, where 
finer data partitioning is required to train a multi-level ensemble model. To avoid the need for 
individual-level holdout datasets, we recently introduced an approach (PUMAS) to fine-tune 
PRS29 and obtain a linear combination of multiple PRS models using only GWAS summary 
statistics30. Although it was an important proof of concept, the simple linear combination approach 
may yield problematic results when combining a large number of PRS models. An ensemble PRS 
approach that requires only GWAS summary statistics and can employ more advanced ensemble 
learning strategies to further improve PRS predictive utility is thus naturally desired. 
 
Here, we address these challenges by introducing two summary statistics-based ensemble 
learning techniques, which we have incorporated into the PUMAS-ensemble software suite30. Our 
elastic net (PUMAS-EN) ensemble learning approach simultaneously conducts ensemble model 
training, fine-tuning, and benchmarking based on a large number of input PRS models. We also 
introduce a super learning approach (PUMAS-SL) to combine multiple regularized ensemble PRS. 
Through extensive simulations and analysis of many datasets, we demonstrate the robust and 
superior performance of our approach in both within and cross-ancestry PRS applications. Most 
importantly, we showcase the capability of our approach to combine a large number of PRS 
models, which makes it a universal framework that can continue to evolve by always including 
the most recent PRS models in the literature.  
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Results 
 
Method overview 
 
We first provide an overview of our workflow and will delve into statistical details in the Methods 
section. If a dataset with individual-level genotype and phenotype information is available, the 
conventional strategy for fitting and evaluating ensemble PRS models is to split the full sample 
into independent subsets for ensemble model training and benchmarking (Figure 1A). If the 
ensemble model has tuning parameters, e.g., regularization parameters in penalized regressions, 
the dataset for model training needs to be further divided so that a subset can be used for fine-
tuning of hyperparameters. However, since an individual-level dataset with sufficient samples is 
often unavailable in practice, we design and employ an ensemble learning process following a 
similar modeling framework but requiring only GWAS summary statistics. In PUMAS-ensemble, 
we partition the full GWAS summary statistics dataset into three down-sampled summary 
statistics datasets for training, ensemble training, and testing, respectively (Figure 1B). With 
these down-sampled summary statistics datasets, we can train multiple PRS models by various 
methods, apply the two ensemble learning approaches based on elastic net and super learning 
to integrate the various PRS models, and finally, benchmark the performance of the constructed 
ensemble PRS. Only GWAS summary statistics and linkage disequilibrium (LD) reference data 
are required in this framework. We note that this is a general framework that allows researchers 
to choose and combine any set of PRS methods for improved polygenic prediction. For illustration, 
we considered eight commonly implemented PRS methods for most of our analyses in this study4-

9,31,32 (Supplementary Table 1). Details of method implementation are summarized in Methods. 
 

 
Figure 1. Workflow of summary-statistics-based ensemble learning. (A) Conventional ensemble learning 
approaches require individual-level genotype and phenotype data (orange boxes) to train ensemble learning models 
and evaluate predictive performance. (B) The proposed PUMAS-ensemble approach can follow the same procedure 
without the need for individual-level data. It leverages a resampling strategy to partition the full GWAS summary 
statistics into multiple sub-sampled summary datasets for different analytical aims. 
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We randomly selected 100,000 independent individuals of European descent in UK Biobank 
(UKB)33 and utilized their genotype data on 944,547 HapMap 3 SNPs in our simulation study. To 
emulate diverse genetic architectures, continuous trait values were generated based on different 
levels of heritability and different numbers of causal variants (Methods). We compared the 
performance of three ensemble strategies: linear regression, elastic net, and super learning, using 
either the conventional individual-level data-based ensemble learning and summary-level data-
based PUMAS-ensemble. For conventional ensemble learning, we partitioned the full individual-
level dataset into three subsets for single PRS training (𝑁!" =60,000), ensemble training 
(𝑁#$ =30,000), and testing (𝑁! =10,000), respectively. Similarly, for PUMAS-ensemble, we 
performed GWAS to obtain summary statistics based on the full sample, and then subsampled 
three sets of summary statistics to train single PRS models (𝑁!"=60,000), combine them to obtain 
the ensemble PRS (𝑁#$=30,000), and evaluate performance (𝑁!=10,000). A total of 110 single 
PRS models were combined by each ensemble PRS method. For both individual-level and 
summary-level analyses, we performed 4-fold Monte Carlo cross-validation (MCCV)29,30 and 
reported the average predictive 𝑅%. 
 

 
Figure 2. Performance of various ensemble PRS strategies on simulated data. (A) Performance of ensemble PRS 
trained on individual-level data. Prediction accuracy was estimated based on 4-fold MCCV. (B) Performance of 
PUMAS-ensemble PRS quantified by summary-statistics-based 4-fold MCCV. Ensemble PRS models, i.e., linear 
regression, elastic net, and super learning, are highlighted. Single PRS models are shown in gray. X-axis: simulation 
settings; Y-axis: predictive 𝑅!; h2: heritability; causal%: proportion of causal variants. Detailed simulation results are 
summarized in Supplementary Table 2. 
 
Both the elastic net-based and super learning-based ensemble PRS approaches (i.e., PUMAS-
EN and PUMAS-SL) showed superior predictive performance compared to the single PRS models 
under all simulation settings (Figure 2; Supplementary Table 2). Using the median accuracy of 
single PRS models as the baseline, PUMAS-EN and PUMAS-SL improved predictive 𝑅%  by 
11.9%-22.0% and 10.7%-23.2%, respectively, across the various simulation settings, 
demonstrating robust and nearly identical performance. Notably, the performance of the 
summary-statistics-based ensemble learning was highly consistent with the performance of the 
conventional individual-level data-based ensemble learning when utilizing elastic net or super 



learning, but not when utilizing linear regression ensemble learning without regularization which 
tend to be affected by substantial collinearity among PRS models. These results highlight the 
importance of statistical regularization in summary-statistics-based ensemble learning, especially 
when aggregating a large number of single PRS models. Because of this observation, we will 
focus on elastic net and super learning in following analyses. 
 

 
Figure 3. Ensemble PRS prediction for 16 traits in UKB. (A) Comparison of PUMAS-ensemble PRS with single PRS 
models on the holdout UKB dataset (N=38,521). Single PRS models are colored in gray while PUMAS-EN and PUMAS-
SL scores are highlighted in blue and red, respectively. Y-axis: trait names; X-axis: predictive 𝑅!. (B-C) Comparison of 
summary-statistics-based ensemble PRS with elastic net (panel B) and super learning (panel C) PRS trained on holdout 
UKB data. Y-axis: 𝑅! of conventional ensemble PRS; X-axis: 𝑅! of PUMAS-ensemble PRS. The diagonal line indicates 
equal R2 by PUMAS-ensemble PRS and conventional ensemble PRS. Details of the UKB GWAS summary statistics 
used for PRS training are summarized in Supplementary Table 3. Predictive performance of all models and traits is 
reported in Supplementary Table 4. 
 
Ensemble PRS outperforms single PRS models in UKB 
 
Next, we applied PUMAS-ensemble to 16 complex traits in UKB (Supplementary Table 3) and 
compared its prediction accuracy to the conventional ensemble learning strategy based on 
individual-level data. Specifically, we trained conventional ensemble PRS on three quarters of a 
holdout UKB dataset (N=38,521) and benchmarked all PRS models on the remaining quarter of 
samples (Methods). Similar to what we observed in simulations, both elastic net and super 
learning ensemble approaches showed consistently higher predictive R2 compared to single PRS 



models (Figure 3A; Supplementary Table 4). Elastic net and super learning respectively 
achieved 20.3% and 17.7% average increase in predictive 𝑅% across 16 traits compared to the 
median performance of the 110 single PRS models. Compared to the tuning-free PRS models 
such as LDpred2-auto6 and PRS-CS-auto5, PUMAS-EN had a 10.0% and 16.5% average 
increase in R2, respectively, across the 16 traits. Similarly, PUMAS-SL had a 7.6% and 13.8% 
average increase in R2, respectively. This suggests that the substantial performance gain of 
PUMAS-ensemble is achieved by ensemble learning of multiple PRS models rather than 
improved fine-tuning of single PRS models. In addition, the performance of PUMAS-ensemble 
PRS was almost indistinguishable from the ensemble PRS trained based on individual-level data 
(Figure 3B-C). However, in practice, individual-level holdout datasets often have smaller sample 
sizes when they do exist. When we reduced the size of individual-level ensemble training data to 
N=500, PUMAS-EN and PUMAS-SL outperformed elastic net and super learning by an average 
R2 increase of 4.8% and 7.2%, respectively (Methods; Supplementary Table 4). These findings 
suggest that GWAS summary-level data alone is sufficient for building powerful ensemble PRS 
in real-world applications, and can even outperform conventional ensemble learning when the 
individual-level holdout dataset has limited sample size. 
 

 
Figure 4. Evaluation of PUMAS-ensemble PRS in AllofUs. Predictive performance of PUMAS-EN, PUMAS-SL, and 
single PRS models are shown in blue, red, and gray, respectively. Y-axis: trait names; X-axis: predictive 𝑅!. Detailed 
results are summarized in Supplementary Table 6. 
 
PUMAS-ensemble PRS demonstrates robust out-of-sample performance in AllofUs  
 
Additionally, we investigated the out-of-sample performance of ensemble PRS. We applied 
PUMAS-ensemble to build PRS for height, body mass index, and breast cancer using well-
powered and publicly available GWAS summary-level datasets34-36 and evaluated their prediction 
accuracy in the All of Us Research Program37 (AllofUs) (Methods; Supplementary Table 5). We 
compared PUMAS-EN, PUMAS-SL, and single PRS models on independent AllofUs participants 
of European ancestry and reported prediction 𝑅% (liability scale for breast cancer). We observed 
consistent performance between PUMAS-EN and PUMAS-SL (Figure 4; Supplementary Table 
6). Elastic net ensemble PRS improved prediction accuracy 	 by 24.2%, 9.8%, and 7.7% 
respectively for height, body mass index, and breast cancer, compared to the median 𝑅% of the 
110 single PRS models. Super learning showed similar 𝑅% gains of 23.3%, 8.3%, and 6.5%, 
respectively. 
 



 
Figure 5. Cross-ancestral performance of PUMAS-ensemble PRS in AllofUs. (A) Workflow for cross-ancestry 
PUMAS-ensemble application. (B-E) We trained PUMAS-EN and PUMAS-SL PRS models for (B) height, (C) body 
mass index, (D) diastolic blood pressure, and (E) systolic blood pressure, combining single EUR PRS and EAS PRS, 
i.e., PRS models trained based on either EUR GWAS from UKB or EAS GWAS from BBJ. Model performance was 
evaluated on EAS participants in AllofUs. The R2 distribution of single PRS models trained based on EUR and EAS 
GWAS are shown in yellow and green, respectively. R2 of PUMAS-EN and PUMAS-SL are highlighted as blue and red 
dashed lines. Y-axis: number of PRS models; X-axis: predictive 𝑅!. Full results for all models and traits are reported in 
Supplementary Table 8. 
 
Cross-ancestry ensemble PRS improves polygenic prediction accuracy on East Asian 
individuals in AllofUs 
 
Next, we showcased the benefit of employing our ensemble PRS strategy in a cross-ancestral 
risk prediction setting. We extended PUMAS-ensemble to construct optimal ensemble scores for 
participants of East Asian (EAS) descent in AllofUs by aggregating PRS models trained using 
European (EUR) GWAS summary data from UKB and EAS GWAS summary data from Biobank 
Japan (BBJ)38-40 (Methods; Figure 5A). We then compared PUMAS-EN and PUMAS-SL with the 
single EUR and EAS PRS models on four traits that are well-powered in both UKB GWAS and 
BBJ GWAS: height, body mass index, diastolic blood pressure, and systolic blood pressure 
(Supplementary Table 7). The ensemble approach generates the best-performing PRS model 



for all traits analyzed, with markedly improved prediction accuracy comparing to single-ancestry 
PRS models (Figure 5B-E; Supplementary Table 8). Across the four traits, predictive 𝑅% of 
PUMAS-EN is 60.7% and 230.1% higher on average than the median 𝑅% of the various EAS and 
EUR PRS models (58.8% and 227.0% for PUMAS-SL), respectively. Between the two proposed 
ensemble strategies, PUMAS-EN and PUMAS-SL have quite consistent performance with similar 
average R2 across the four traits.  
 

 
Figure 6. Cross-ancestry performance of PUMAS-ensemble PRS on HDL cholesterol. (A-D) We trained PUMAS-
EN and PUMAS-SL PRS models for HDL cholesterol for ancestries (A) AFR, (B) EAS, (C) EUR, and (D) SAS, 
combining single PRS models trained based on ancestry-specific GWAS from GLGC. Model performance was 
evaluated on the highlighted ancestries participants in UKB. The R2 distribution of single PRS models trained based on 
AFR, EAS, EUR, and SAS ancestries are highlighted in pink, yellow, green, and blue, respectively. The R2 of PUMAS-
EN and PUMAS-SL PRS are marked by dashed lines. Y-axis: number of PRS models; X-axis: predictive 𝑅!. Full results 
for all models and traits are reported in Supplementary Table 10. 
 
Cross-ancestry ensemble PRS of blood lipid traits for multiple ancestries 
 
Finally, we further evaluated the performance of our ensemble PRS method on blood lipid traits 
across four ancestries on validation individuals from UKB. We utilized ancestry-stratified GWAS 
summary data from the Global Lipids Genetics Consortium41 (GLGC) for high-density lipoprotein 
cholesterol (HDL), low-density lipoprotein cholesterol (LDL), log-transformed triglycerides (logTG), 
and total cholesterol (TC), across four ancestries, including African (AFR), EAS, EUR, and South 
Asian (SAS). For each ancestry, we used PUMAS-ensemble to generate scores for individuals of 
a matching ancestry in UKB by aggregating models trained using subsampled GLGC summary 
data from a matching ancestry and full GLGC summary data from the other three ancestries 



(Supplementary Figure 1). The consortium also provides data for Admixed American and 
Hispanic/Latino population (AMR); however, we did not include them in our analysis because two 
traits were flagged during our GWAS QC process and there is limited sample size of AMR 
ancestry individuals in UKB (Methods, Supplementary Table 9). We compared PUMAS-EN and 
PUMAS-SL with PRS methods of single ancestry (Figure 6 and Supplementary Table 10). For 
all traits, the ensemble approach outperforms the median 𝑅% of single PRS models of the same 
ancestry by an average of 305.6% for PUMAS-EN (median of 55.7%) and 314.3% for PUMAS-
SL (median of 59.5%). Compared to the median 𝑅% of single PRS models of European ancestry, 
PUMAS-EN outperforms by an average of 128.2% (median of 101.4%) and PUMAS-SL by 129.2% 
(median of 105.7%) (Supplementary Table 11; Supplementary Figure 2). This highlights the 
ability of our summary data-based ensemble PRS approach in cross-ancestry applications to 
improve over single PRS models and to leverage the large sample size of European GWAS to 
enhance prediction accuracy in diverse non-European populations.  
 
 
Discussion 
 
Ensemble learning can effectively combine multiple PRS models and improve risk prediction 
accuracy, but it is a data-demanding task that is often impossible to implement in practice due to 
the lack of adequately large individual-level holdout datasets. In this study, we introduced two 
summary-statistics-based ensemble learning approaches based on elastic net and super learning 
under the PUMAS-ensemble framework. Our proposed approaches employ statistical 
regularization to allow adaptive integration of a large number of single PRS models that may be 
highly correlated. We demonstrate that PUMAS-ensemble PRS closely approximates the 
ensemble PRS trained based on individual-level holdout data and show its superior performance 
compared to single PRS models in both within-ancestry and cross-ancestry applications. 

 
Our work brings several key advancements to the field. First, PUMAS-ensemble is the only 
method in the literature that performs PRS ensemble learning on GWAS summary statistics, 
bypassing the stringent data requirement in existing approaches and fully exploiting the widely 
available summary-level GWAS data resources without compromising predictive performance. 
Second, our approach employs sophisticated regularization, allowing researchers to combine 
possibly hundreds of PRS models without acquiring additional holdout samples. Importantly, this 
strategy can build ensemble scores for non-European ancestries by combining a variety of 
ancestry-specific PRS models. While cross-ancestry ensemble learning has proven effective in 
improving upon single PRS models across several recent studies, existing strategies21-23,26,27 rely 
on non-European data at the individual level which can be close to impossible to obtain in practice. 
Our approach removes this critical constraint in data requirement which is a major step towards 
reducing disparity in genomic medicine42,43. Third, PRS method development is a crowded 
research field. When a new PRS method is introduced, it is common to see incremental gains in 
predictive accuracy over existing approaches. Our method shows a consistent 10-20% 𝑅% 
improvement in within-ancestry applications and an 𝑅% gain of as high as 300% in cross-ancestry 
predictions. This is a substantial improvement. Further, perhaps the most important feature of our 
approach is its ability to continuously evolve. We did not introduce just another PRS model. This 
is a powerful framework that can always incorporate everyone’s favorite PRS models, including 
future models once they become available. This highlights summary statistics-based ensemble 
learning as a crucial direction for future PRS development, and is also why we believe we may 
have found the “one score to rule them all”. Every future PRS method should consider this strategy 
to combine the cumulative wisdom from many existing models with new methodological 
innovations. Summary statistics-based ensemble learning is the core technique that makes this 
possible.  



 
There are still some important future directions. In this study, we included several PRS methods 
for illustration. Additional models researchers can consider in their analysis include methods that 
introduce new statistical designs28,44, employ non-parametric modeling45,46, leverage multi-trait 
integration12-14,20,47,48, or incorporate biological information10,11,49. We also did not consider non-
linear models for either PRS construction or ensemble learning20,21,50. Additionally, it would be 
meaningful work to extend all recent multi-ancestry PRS methods that use ensemble learning on 
holdout samples21-23,26,27 to the summary statistics-based version using PUMAS-ensemble. Finally, 
it remains an open question how LD mismatch44, population admixture51, and ancestry 
continuum52 should be modeled. 
 
In conclusion, our study presents a highly innovative and data-efficient statistical framework for 
PRS ensemble learning. We highlight its capability of combining, and thus surpassing, all existing 
(and future) PRS models. PUMAS-ensemble is a versatile tool that can bring immediate benefits 
to the many applications of PRS which will no doubt greatly facilitate future studies. 
 
 
Methods 
 
An overview of summary-statistics-based PRS ensemble learning 
 
Conventionally, PRS ensemble learning requires a summary-level GWAS dataset for single PRS 
model training and an independent individual-level dataset for ensemble model training. If the 
ensemble model contains tuning parameters, such as regularization parameters in penalized 
regressions, the individual-level dataset needs to be first partitioned for model tuning and 
evaluation, and eventually combined again for fitting the best ensemble model (e.g., training-
validation split or cross-validation). Such a procedure is straightforward when the required 
individual-level dataset exists. In practice, however, it is much more common that only GWAS 
summary statistics are available. Therefore, we extend a flexible summary-statistics-based cross-
validation approach we previously introduced30 to train and evaluate elastic net and super learning 
ensemble PRS models using only GWAS summary statistics and LD reference data as inputs. 
We first provide an overview of the PUMAS-ensemble framework. Under an additive genetic 
model, the relationship between a trait 𝑌 and genotype 𝐗 = (𝐗&, … , 𝐗') can be quantified as: 

𝑌 = 𝐗𝛃 + 𝜖, 
where 𝑝  is the number of SNPs, 𝛃 ∈ ℝ'  denote true SNP effects, and 𝜖  denotes distributed 
random error terms independent from 𝐗 with zero mean and finite and positive variance 𝜎#%. We 
then define ensemble PRS as a linear combination of many PRS models: 

𝑍#$(#)*+# = 𝐙𝐛 = 𝐗𝐰𝐛, 
where 𝐛 = [𝑏&	𝑏%… 	𝑏,]- is the vector of ensemble weights for 𝑀 PRS models,	𝐙 = [𝑍&	𝑍%…𝑍,] =
𝐗𝐰 is the PRS matrix of 𝑀 models with corresponding SNP weights 𝐰 = [𝐰&	𝐰%… 	𝐰,]. The key 
objective is to obtain the ensemble weights 𝐛 for optimal PRS performance. 
 
Assume that we have GWAS summary-level data of sample size 𝑁  and external reference 
genotype data for LD estimation, in order to train and evaluate ensemble PRS models, we need 
to partition the full GWAS summary statistics into three subsets for PRS model training, ensemble 
learning, and benchmarking, respectively. We have shown in earlier work29,30 that given the 
observed summary-level data 𝐱-𝐲 from the full GWAS dataset, the conditional distribution of 
summary statistics for a subset of GWAS samples 𝐱(()"𝐲(() with sample size 𝑁(() < 𝑁 is: 

𝐱(()"𝐲(()|𝐱-𝐲 ∼ 𝐍@
𝑁(()

𝑁
𝐱-𝐲,

A𝑁 − 𝑁(()C𝑁(()

𝑁
𝚺EF, 



𝐱-𝐲 = G𝐱&-𝐲…	𝐱'-𝐲H
𝐓 = G𝑁𝛽J&𝜎K&%… 	𝑁𝛽J'𝜎K'%H

𝐓
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where 𝚺E is the observed covariance matrix of 𝐱-𝐲, and 𝛽J1 	and 𝜎K1% are the marginal effect size 
estimate and MAF-based variance estimator, respectively, for SNP	𝑗 , 𝑗 = 1,2, … , 𝑝 . We have 
shown that 𝚺E can be obtained based on GWAS summary statistics and LD reference data, and 
an iterative subsampling scheme can be used to partition the full summary statistics into three 
independent subsets of summary statistics30: 

𝐱(!)"𝐲(!)|𝐱-𝐲 ∼ 𝐍@
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𝐱(!")"𝐲(!") = 𝐱-𝐲 − 𝐱(!)"𝐲(!) − 𝐱(#!")"𝐲(#!"), 
where 𝐱(!")"𝐲(!"), 𝐱(#!")"𝐲(#!"), and 𝐱(!)"𝐲(!) correspond to the summary statistics for PRS model 
training, ensemble learning, and benchmarking (testing), respectively. Details of PRS model fitting 
and training of ensemble models are described in later sections. 
 
Once we obtain the ensemble weights 𝐛, we can evaluate prediction accuracy of the ensemble 
model by calculating its predictive 𝑅% on the testing summary-level data as30: 

𝑅#$(#)*+#% =
Q 1𝑁(!) 𝐛

-𝐰-𝐱(!)"𝐲(!)R
%

𝑁max
1
(𝑆𝐸A𝛽J1C
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𝜎K1%) 𝐛-𝚺E𝐙𝐛
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where 𝚺E𝐙 is the estimated covariance matrix of 𝑀 PRS models, which can be approximated using 
the LD reference data. Finally, we repeat the above procedures 𝐾 times (i.e., 𝐾-fold MCCV) to 
ensure robust performance of ensemble PRS. Note that if the goal is to evaluate ensemble PRS 
without accessing external, individual-level validation datasets, PUMAS-ensemble can report the 
average prediction accuracy of ensemble PRS as 𝑅Y#$(#)*+#%  across 𝐾 folds. When the analytical 
aim is to produce ensemble PRS for maximal out-of-sample prediction accuracy, 𝐱(!)"𝐲(!) and 
𝐱(#!")"𝐲(#!") can be combined to calculate SNP weights for the ensemble model as 𝐰#$(#)*+# =
𝐰�̅�, where �̅� is the vector of average ensemble weights across 𝐾 folds. In the following two 
sections, we will introduce the summary-statistics-based ensemble model fitting based on elastic 
net and super learning. 
 
PUMAS-EN: elastic net ensemble PRS based on summary statistics 
 
Our earlier work has shown that combining multiple fine-tuned PRS models with linear regression 
can lead to better predictive performance than single PRS30. While classic linear regression 
serves as a proof-of-concept example for ensemble PRS, it is often of interest to aggregate as 
many PRS models as possible for achieving maximal gain in prediction accuracy. However, as 
demonstrated in our simulation study, summary-statistics-based linear regression becomes highly 
unstable and hinders performance of ensemble score when many highly correlated PRS models 
are included. To address multicollinearity and further improve ensemble score, we introduce 
PUMAS-EN which adaptively integrates a large number of PRS models via elastic net53 using 
GWAS summary statistics. Another advantage of this elastic net model is that it relieves PUMAS-
ensemble from conducting fine-tuning for each PRS method prior to ensemble learning and can 
directly combine all PRS across various methods and tuning parameter settings. 
 
PUMAS-EN has two tuning parameters, 𝜆 and 𝛼, where 𝜆 controls the overall shrinkage of each 
PRS’s coefficient in the ensemble model and 𝛼 allocates the relative contribution of L1 and L2 



penalty terms. To obtain elastic net coefficient estimates for 𝐛, the ensemble weights for 𝑀 single 
PRS models, PUMAS-EN minimizes the following objective function: 

𝐛𝐞$ = argmin
𝐛

1
2𝑛
‖𝐲 − 𝐱𝐰𝐛‖% + 𝛼𝜆‖𝐛‖& +

1 − 𝛼
2

𝜆‖𝐛‖%, 

where 𝑛 is sample size of elastic net training data, and 𝐱𝐰 are standardized PRS with mean of 0 
and variance of 1. Following derivations from lassosum4 and recent PRS frameworks12,22,23 that 
utilized penalized regression, we show that 𝐛𝐞$ can be estimated using only GWAS summary 
statistics and an external LD reference data. Since the objective function is not continuously 
convex, we use the coordinate descent54 algorithm to iteratively update ensemble weight for PRS 
model 𝑚,	𝑚 = 1,2, … ,𝑀: 
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where 𝐰,)  is the 𝑚-th column of 𝐰 that represents SNP weights in the 𝑚-th PRS model. By 
setting 6ℒ

6*#
 to zero, we obtain the formula for iteratively updating 𝑏):	 
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iteration 𝑏)
(!). 

 
It is clear that only the terms 𝐱-𝐲 and 𝐱-𝐱 are required for fitting elastic net ensemble model. To 
fine-tune hyperparameters 𝜆 and 𝛼, we further partition the ensemble training summary statistics 
𝐱(#!")"𝐲(#!")  into two independent subsets. We fit multiple elastic net models with different 
combinations of 𝛼  and 𝜆  on the first subset, select the “optimal” combination based on their 
performance on the second subset, and eventually train the fine-tuned elastic net model with the 
selected hyperparameter values on the entire ensemble training summary statistics 𝐱(#!")"𝐲(#!"). 
Throughout this study, we consider hyperparameter settings 𝛼 = 0, 0.25, 0.5, 0.75, 1 and 𝜆 = 109 
where ψ includes 51 numbers evenly spaced in [−5,0]. For model fitting, we initialize 𝑏)

(:) at zero 
and iteratively update 𝑏)

(!) until the algorithm converges (i.e., 𝑚𝑎𝑥 n𝑏)
(!) − 𝑏)

(!;&)n < 0.001) or when 
reaching the maximum number of iterations (default: 104). 
 
PUMAS-SL: super learning PRS based on summary statistics 
 
Super learning24 is essentially a two-level ensemble learning approach that trains an optimal 
weighted combination of multiple machine learning models such as elastic net53, ridge 
regression55, and LASSO56. It can be used to train an “ensemble of ensemble” model combining 
a large set of baseline PRS models for optimized polygenic risk prediction. All existing super 
learning strategies for PRS training require individual-level data as input. Here, we introduce 
PUMAS-SL, which trains a super learning model using only GWAS summary statistics. 
 
First, we define super learning PRS as a linear combination of level-one ensemble PRS models: 

𝑍(+ = 𝐗𝐰𝐁𝛄 
where 𝐁 = [𝐛#$	𝐛"<=># 	𝐛?@AAB] denotes the matrix of level-one ensemble weights, i.e., the weights 
of various PRS models in different ensemble models (elastic net, ridge regression, LASSO), and 



𝛄 = G𝛾#$	𝛾"<=># 	𝛾?@AABH	- denotes the level-two ensemble weights for the various ensemble models 
in the super learning PRS. Both 𝐁 and 𝛄 are parameters of interests that need to be estimated. 
Using our subsampling scheme for summary statistics, we partition the ensemble training 
summary statistics 𝐱(#!")"𝐲(#!")  into two independent subsets denoted by 𝐱((&)"𝐲((&)  and 
𝐱((%)"𝐲((%) to train 𝐁 and 𝛄, respectively. We fit the level-one ensemble models including ridge 
regression, LASSO, and elastic net on the first subset: 

𝐛"<=># = O𝐰-𝐱((&)"𝐱((&)𝐰+ 𝜆𝐈,P
;𝟏
𝐰-𝐱((&)"𝐲((&), 

where 𝐛?@AAB and 𝐛#$ can be estimated using the coordinate descent algorithm introduced earlier. 
To improve the stability of the super learning model, we further apply a 𝐾-fold summary-statistics-
based MCCV on 𝐱((&)"𝐲((&) and divide it into two independent subsets for training and fine-tuning 
level-one ensemble models, respectively. We then combine elastic net, ridge, and LASSO 
ensemble models through a level-two linear regression on 𝐱((%)"𝐲((%) from the second subset: 

𝛄 = O𝐁-𝐰-𝐱((%)"𝐱((%)𝐰𝐁P
;&
𝐁-𝐰-𝐱((%)"𝐲((%). 

Taking 𝐁 and 𝛄 together, we can obtain a super learning PRS model based only on GWAS 
summary statistics. For out-of-sample prediction, PUMAS-SL outputs SNP weights for super 
learning PRS model as 𝐰(+ = 𝐰𝐁�𝛄Y , where 𝐁�  and 𝛄Y  are estimated level-one and level-two 
ensemble weights averaged across 𝐾-fold MCCV. 
 
Details of PRS model training 
 
We trained and combined PRS based on eight methods including lassosum4, LDpred26, PRS-
CS5, MegaPRS8, SBayesR7, DBSLMM9, Vilma31, SBLUP32 throughout this study. Single PRS 
models were trained separately on each chromosome in parallel, except for the ones trained by 
MegaPRS and lassosum. We constructed LD reference data for PRS methods that do not provide 
such datasets throughout this study. For EUR (i.e., simulation, UKB, and AllofUs) and EAS PRS 
analyses (i.e., AllofUs), we used a UKB genotype dataset consisting of N=1000 randomly selected 
individuals of EUR ancestry and another UKB EAS genotype dataset (N=500) as the 
corresponding LD reference datasets, respectively. When training ancestry-specific PRS for 
blood lipid traits in UKB, we randomly picked 500 samples from the UKB testing dataset of 
matched ancestry to generate LD data for each of EUR, AFR, EAS, and SAS populations. We 
used HapMap 3 SNPs in all our analyses. For the rest of this section, we outline and briefly 
introduce each single PRS method considered in our study. 
 
Lassosum estimates LASSO coefficients by jointly modeling SNPs in LD using estimated 
marginal SNP effect sizes from GWAS summary statistics. Lassosum has two tuning parameters 
𝑠 and 𝜆, where 𝑠 regulates the sparsity of LD blocks and 𝜆 is the regularization parameter in 
LASSO that shrinks SNP effects towards zero. We trained lassosum models with 𝑠 = 0.2, 0.5, 0.9 
and 𝜆 = 0.005, 0.01 using the R package ‘lassosum’ (v0.4.5). 
 
LDpred2 is a Bayesian PRS method that adaptively shrinks SNP effects while accounting for LD. 
LDpred2 employs two versions assuming two distinct prior distributions for SNP effects: LDpred2-
inf, which is a tuning-free model based on the ‘infinitesimal model’, and LDpred2-grid, which 
assumes a spike-and-slab prior distribution with hyperparameters 𝑝  representing the true 
proportion of causal variants and total heritability ℎ%. In addition, LDpred2-auto is an empirical 
Bayes approach that avoids the need for hyperparameter tuning by estimating 𝑝 and ℎ% along 
with other parameters during model fitting6. We included LDpred2-grid and LDpred2-auto models 
in ensemble PRS in all our analyses. We trained LDpred2 models using the R package ‘bigsnpr’ 
(v1.9.11) with 𝑝 = 0.001, 0.01, 0.1 and low heritability 0.1 ⋅ ℎ%, 0.3 ⋅ ℎ%, where ℎ% is the heritability 



estimated by LD-score regression57, both sparse and non-sparse models for LDpred2-grid, and 
more stringent LD shrinkage (shrink_corr = 0.5) for LDpred2-auto. We adopted both lower 
heritability value and stronger LD shrinkage to improve LDpred2 model convergence following 
recent improvement made to LDpred258. 
 
PRS-CS places a continuous shrinkage prior on SNP effect size distribution, as opposed to the 
spike-and-slab prior in LDpred2. It includes a global shrinkage factor 𝜙 which uniformly shrinks 
SNP effects throughout the genome. Alternatively,	𝜙 can be adaptively learned from the GWAS 
data by a fully Bayesian approach (PRS-CS-auto). We fitted PRS-CS models using 1000 
Genomes Project EUR LD matrices in simulation and UKB LD matrices for real data analysis. All 
LD reference data were provided by the PRS-CS software (v1.0.0). 
 
SBayesR employs a mixture of point mass at zero and three normal distributions with different 
variance parameters as the prior distribution for SNP effects, representing SNP effect sizes of 
different magnitudes. SBayesR does not require hyperparameter tuning because all 
hyperparameter values are pre-specified. We fitted SBayesR models using the GCTB software 
(v2.04.3) and the sparse UKB LD matrices for HapMap 3 SNPs provided by GCTB. SBayesR was 
not included in EAS data analysis in AllofUs due to the lack of LD matrices for EAS. 
 
Vilma is another recently developed Bayesian approach with a more flexible normal mixture prior 
than SBayesR. It can be applied to model summary statistics from multiple traits and different 
genetic ancestries. The number of component normal distributions in its mixture prior is the only 
tuning parameter in Vilma; like SBayesR, it recommends a default value (i.e., 81) for this 
parameter. We fitted Vilma models using its software provided on GitHub. 
 
MegaPRS is a flexible Bayesian framework that can employ multiple prior specifications such as 
LASSO, ridge, Bolt (i.e., a mixture of two Gaussian distributions), and BayesR (i.e., a mixture of 
three Gaussian distributions and a point mass). We fitted MegaPRS models using the LDAK 
software (v5.2) with the recommended BayesR prior specification which include 84 pairs of tuning 
parameters that determine the relative weights of component Gaussian distributions. LDAK-thin59 
was used for per-predictor heritability estimation. To improve robustness of ensemble score, we 
only included MegaPRS models with no greater than 10 predictors that failed to converge. 
 
DBSLMM first conducts LD clumping and thresholding to partition SNPs into a large-effect group 
and a small-effect group. It then fits a linear mixed effects model (i.e., large fixed effects and small 
random effects) to obtain updated SNP weights using summary statistics while accounting for LD. 
DBSLMM is a computationally efficient approach that has one tuning parameter, the p-value 
threshold in LD clumping and thresholding. We fitted DBSLMM models using fine-tuned p-value 
cutoff determined by summary-statistics-based parameter tuning implemented in the DBSLMM 
software (v0.3). 
 
SBLUP bases its framework on a linear mixed model where SNP effects are assumed to be 
random and normally distributed, thus making it conceptually equivalently to LDpred-inf. SBLUP 
uses GWAS summary statistics as input and does not have hyperparameters. We trained SBLUP 
model using the GCTA software (v1.93.0). 
 
Simulation studies based on UKB genotype data 
 
We conducted simulations using UKB genotype data imputed to the Haplotype Reference 
Consortium panel. We kept samples of European ancestry and removed genetic variants with 
MAF below 0.01, imputation 𝑅% below 0.9, Hardy-Weinberg equilibrium test p-value below 1e-6, 



or missing genotype call rate greater than 2%. We further extracted variants in the HapMap 3 
SNP list and the LD reference data for European ancestry from Phase 3 of the 1000 Genomes 
Project. 377,509 samples and 944,547 variants remained after quality control. Then, we randomly 
selected 100,000 samples to form the simulation dataset with their genotype and randomly 
selected 1,000 samples to form the LD reference dataset. To generate phenotypic values, we 
simulated SNP effect sizes from a spike-and-slab distribution, i.e., 𝛽1~(1 − 𝑝)𝛿: + 𝑝N(0,

D$

,'
), as 

assumed in LDpred2, where 𝑝 is the proportion of causal variants, 𝛿: denotes a point mass at 0, 
ℎ% is the total heritability of the phenotype, and 𝑀 is the total number of SNPs. We considered 
four simulation settings with distinct genetic architectures and heritability by setting 𝑝 to 0.1% or 
5% and ℎ% to 0.3 or 0.7. To simulate trait values, we randomly selected causal variants across 
the genome, computed the “true PRS” by aggregating SNP allele counts weighted by true effect 
sizes, and added gaussian noises scaled according to trait heritability. We fitted marginal linear 
regressions using PLINK60 to obtain GWAS summary statistics in each simulation setting. 
 
We compared ensemble PRS constructed by PUMAS-ensemble and by 4-fold MCCV using 
individual-level data. To implement 4-fold MCCV, in each fold, we randomly selected 60% of the 
samples as the training dataset (N=60,000), 30% as the ensemble training dataset (N=30,000), 
and the remaining 10% as the testing dataset (N=10,000). We fitted GWAS and PRS models on 
the training data, calculated ensemble weights from elastic net and super learning on the 
ensemble training data, and finally, evaluated PRS model performance on the testing data. For 
elastic net, we divided ensemble training data into two halves and fitted elastic net models using 
the R package ‘glmnet’ (v4.1)54 with a prespecified set of tuning parameters on the first subset. 
Then we benchmarked the performance of each model on the second subset and re-trained the 
most predictive elastic net model on the entire ensemble training data. We used the R package 
‘SuperLearner’ (v2.0)24 to train super learning PRS on the ensemble training dataset. As a 
comparison, we applied PUMAS-ensemble to implement 4-fold summary-statistics-based MCCV. 
We partitioned the full summary-level data into three independent sets of summary statistics for 
PRS training (N=60,000), ensemble learning (N=30,000), and PRS benchmarking (N=10,000), 
respectively. For PUMAS-EN, we trained fine-tuned ensemble model by dividing the ensemble 
training summary statistics into two halves and following the PUMAS-EN model fitting strategy we 
introduced earlier. For PUMAS-SL, we partitioned the ensemble training summary-level data to 
two subsets for training level-one (2/3; N=40,000) and level-two (1/3; N=20,000) ensemble 
weights, respectively. An additional 50%-50% training-testing split on the level-one ensemble 
training subset was applied to train fine-tuned LASSO, ridge, and elastic net regression models. 
Throughout simulation, we used European LD reference data from Phase 3 of the 1000 Genomes 
Project61 to subsample summary statistics and evaluate PRS performance. The holdout UKB LD 
genotype data (N=1,000) was used as the LD reference for PRS model training, except for PRS-
CS5 and SBayesR7, where software-provided UKB LD matrices were used. Finally, for both 
approaches, we calculated and reported average 𝑅% for each PRS model across 4 folds. 
 
Evaluating ensemble PRS in UKB 
 
We compared the ensemble PRS constructed by PUMAS-ensemble with those constructed by 
training-testing split based on individual-level data for 16 quantitative phenotypes on UKB 
individuals of EUR descent. The list of UKB phenotypes and detailed sample size information are 
summarized in Supplementary Table 3. We reserved approximately 10% of the UKB samples 
with non-missing phenotypic values (N=38,521) as the holdout set for individual-level ensemble 
PRS training and PRS benchmarking. We then obtain GWAS summary statistics for each trait by 
performing linear regression analysis adjusting for sex, age polynomials to the power of two, 
interactions between sex and age polynomials, and top 20 genetic principal components via Hail  



(v0.2.57)62 on the remaining samples. A smaller subset of the holdout data (N=1,000) was used 
as LD reference for PRS model training. Prior to evaluating each PRS model, we regressed out 
covariate effects from phenotypes in the holdout dataset. Predictive 𝑅% was reported for each 
PRS model. 
 
To fit ensemble PRS based on individual-level data, we randomly partitioned the holdout dataset 
into two subsets for ensemble model training (3/4 of samples) and PRS benchmarking (1/4 of 
samples), respectively. We trained single PRS methods based on full GWAS summary statistics, 
fitted elastic net and super learning PRS on the ensemble training subset, and calculated 
predictive 𝑅% for all PRS on the benchmarking subset. We trained fine-tuned elastic net model 
and super learning model on the ensemble training subset following the same protocols described 
in our simulation study but without cross-validation. For comparison, we used PUMAS-ensemble 
to build ensemble PRS models by 4-fold MCCV. Within each fold of MCCV, we partitioned full 
GWAS summary statistics into training (70%) and ensemble training (30%) summary statistics. 
Model fitting for PUMAS-EN and PUMAS-SL follows the exact procedures described in PUMAS-
ensemble simulation. Then, we computed and evaluated PUMAS-ensemble PRS on the 
benchmarking subset. The same subset of UKB holdout data (N=1,000) was used for 
subsampling summary statistics and ensemble model training for PUMAS-ensemble. Finally, we 
sought to compare PUMAS-ensemble with conventional ensemble learning under a common 
scenario where the individual-level data for ensemble model training is limited. To mimic this real-
world setting, we randomly selected 500 samples from the ensemble model training subset to 
train elastic net and super learning ensemble PRS models and assessed their performance on 
the same PRS benchmarking subset. 
 
External validation of PUMAS-ensemble PRS in AllofUs 
 
We compared PUMAS-EN and PUMAS-SL with single PRS models for height, body mass index, 
and breast cancer on AllofUs data37. AllofUs is a nationally representative cohort in the USA with 
whole-genome-sequencing (WGS) data. We kept independent samples of European descent. 
Genetic ancestry inferred from the principal components and sample relatedness were provided 
in AllofUs. We removed samples with extreme phenotypic values and nonbinary biological sex. 
We computed BMI as weight/(height^2) after extracting standing height in meters and body weight 
in kilograms. If a participant had multiple entries for a given phenotype, only the latest 
measurement was kept. Detailed phenotypic information for these three traits is summarized in 
Supplementary Table 5. 
 
We trained ensemble PRS models using publicly available GWAS summary statistics for height 
(N=1,597,374)35, body mass index (N=795,640)36, and breast cancer (N=247,173)34. For breast 
cancer, we transformed logistic regression association statistics to linear scale before 
subsampling summary statistics29. For each trait, we partitioned the full summary statistics into 
two subsets for PRS training (70%) and ensemble model fitting (30%), respectively. SNP weights 
for elastic net and super learning PRS were obtained following the same analytical procedures 
used in our simulation study. We computed PRS for AllofUs samples using genotype data for 
HapMap 3 SNPs extracted from WGS data via PLINK1.960. To evaluate PRS, we computed 𝑅% 
on the observed scale for height and body mass index and 𝑅% on the liability scale for breast 
cancer by adjusting for its case-control ratio in AllofUs63. Covariates including biological sex, age 
polynomials to the power of two, interactions between sex and age polynomials, and top 16 
genetic principal components were regressed out from both the phenotype and PRS in advance. 
All PRS calculation and evaluation were conducted in the AllofUs cloud analysis environment 
using the v7 data release. 
 



Cross-ancestry ensemble PRS for EAS samples in AllofUs 
 
We benchmarked PUMAS-ensemble against single PRS models based on GWAS summary 
statistics of European and East Asian ancestral populations, respectively, on East Asian samples 
in AllofUs37. We considered four continuous traits including height, body mass index, diastolic 
blood pressure, and systolic blood pressure and used independent EAS samples based on 
genetic principal components and genetic relatedness for PRS evaluation. Samples with extreme 
phenotypic values and nonbinary biological sex were removed from the analysis. Body mass 
index was imputed for EAS samples in AllofUs following the same procedures described in the 
previous section. Detailed data information is summarized in Supplementary Table 7. 
 
We trained PUMAS-EN and PUMAS-SL using published EAS GWAS from BBJ38-40 and in-house 
EUR GWAS from UKB30. Sample size for each BBJ and UKB GWAS summary-level dataset is 
summarized in Supplementary Table 7. We fitted EUR PRS models using various PRS methods 
based on the full UKB GWAS summary statistics. Then, we applied PUMAS-ensemble to partition 
full BBJ summary statistics into two subsets for EAS PRS training (70%) and ensemble model 
fitting (30%), respectively. We used the same UKB EUR LD reference data (N=1,000) in UKB 
data analysis for EUR PRS training and a random subset of UKB EAS samples (N=500) for EAS 
PRS model fitting. The assignment of EAS ancestry for non-European UKB participants was 
described in our earlier work26. SNP weights for PUMAS-EN and PUMAS-SL were obtained 
based on the same procedures outlined in our simulation study. We computed and evaluated 
EAS PRS, EUR PRS, PUMAS-EN PRS, and PUMAS-SL PRS models on the testing dataset. The 
same set of covariates considered in the AllofUs data analysis in the previous section have also 
been adjusted for prior to computing PRS 𝑅%. 
 
Cross-ancestry ensemble PRS of blood lipid traits for four ancestries in UKB 
 
We compared PUMAS-ensemble against single PRS models based on GWAS summary statistics 
from GLGC of AFR, EAS, EUR, and SAS ancestral populations41 on independent samples in UKB. 
We considered four blood lipid traits HDL, LDL, logTG, and TC and used independent UKB 
samples with genetically predicted AFR, EAS, EUR, and SAS ancestries22. GLGC additionally 
provides GWAS summary statistics of AMR ancestry, which we excluded due to our standard QC 
pipeline flagging sample size issues on chromosomes 13 through 22 for both LDL and logTG 
traits. An additional reason for excluding AMR samples was their limited samples in the 
independent UKB data. 
 
For each ancestry and trait pair, we trained PUMAS-EN and PUMAS-SL using ancestry-specific 
GLGC summary statistics. Sample size for the GLGC summary statistics for each ancestry and 
trait pair is available in Supplementary Table 9. For each ancestry and trait, we applied PUMAS-
ensemble to partition full summary statistics into two subsets for PRS training (70%) and 
ensemble model fitting (30%). We fitted single PRS models for the given trait for all ancestries 
using the same PRS methods described in previous sections which we later include in the 
ensemble learning. We used UKB LD reference data from a matching ancestry for each ancestry 
PRS training and model fitting. PUMAS-EN and PUMAS-SL SNP weights were obtained with 
similar procedures as the simulation study. Covariates including biological sex, age polynomials 
to the power of two, interactions between sex and age polynomials, and the top 10 genetic 
principal components were regressed out from both the phenotype and PRS. 
 
Code availability 
 
PUMAS-ensemble software is freely available at https://github.com/qlu-lab/PUMAS.  
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