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Abstract

Bioaerosols are defined as aerosols that comprise particles of biological origin or activity

that may affect living organisms through infectivity, allergenicity, toxicity, or through pharma-

cological or other processes. Interest in bioaerosol exposure has increased over the last few

decades. Exposure to bioaerosols may cause three major problems in the food industry,

namely: (i) contamination of food (spoilage); (ii) allergic reactions in individual consumers; or

(iii) infection by means of pathogenic microorganisms present in the aerosol. The aim of this

study was to characterise the culturable fraction of bioaerosols in the production environ-

ment of a fruit juice manufacturing facility and categorise isolates as harmful, innocuous or

potentially beneficial to the industry, personnel and environment. Active sampling was used

to collect representative samples of five areas in the facility during peak and off-peak sea-

sons. Areas included the entrance, preparation and mixing area, between production lines,

bottle dispersion and filling stations. Microbes were isolated and identified using 16S, 26S or

ITS amplicon sequencing. High microbial counts and species diversity were detected in the

facility. 239 bacteria, 41 yeasts and 43 moulds were isolated from the air in the production

environment. Isolates were categorised into three main groups, namely 27 innocuous, 26

useful and 39 harmful bioaerosols. Harmful bioaerosols belonging to the genera Staphylo-

coccus, Pseudomonas, Penicillium and Candida were present. Although innocuous and

useful bioaerosols do not negatively influence human health their presence act as an indica-

tor that an ideal environment exists for possible harmful bioaerosols to emerge.

Introduction

Bioaerosols are defined as “aerosols comprising of particles of biological origin or activity

which may affect living things through infectivity, allergenicity, toxicity and pharmacological

or other processes [1–3]. Bioaerosols are emerging as important role players in atmospheric

processes, yet they are poorly understood. What is known and is universally accepted is that

bioaerosols originate from and may impact various environments. For example, bioaerosols

are emitted from terrestrial sources such as soil, forests and desert dust, and from agricultural

and composting activities. They are prevalent in urban areas, wetlands, as well as coastal and

marine environments. Moreover, they play a key role in the dispersal of reproductive units
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from plants and microbes where the atmosphere enables their dissemination over geographic

barriers and long distances. Bioaerosols are thus highly relevant in the spread of organisms

and they allow genetic exchange between habitats and geographic shifts of biomes. These com-

pounds are central elements in the development, evolution and dynamics of ecosystems [4, 5].

Although bioaerosols may have beneficial characteristics, the opposite is also possible, as the

dispersal of plant, animal and human pathogens as well as allergens has major implications for

agricultural outcomes and public health. The negative effects that bioaerosols may have on the

human respiratory system are documented [6, 7]. With research that has focused on fungal

pathogens and bacterial bioaerosols represent an urgent research priority due to their role in

disease outbreaks [8].

Modern industrial activities (e.g., waste sorting, organic waste collection, composting, agri-

cultural production, food processing, raising of livestock, and wastewater treatment systems)

emit large quantities of bioaerosols, and this results in the release of abundant biological agents

into the air. Unfortunately, it is difficult to accurately describe bioaerosols role on the environ-

ment, especially in terms of human health [5, 9], and thus the effects that bioaerosols may have

on products and food handlers in the food industry remain controversial. To exacerbate this

situation, no legislation is available regarding bioaerosols in the air of food industries in South

Africa. Allowable quantities of bioaerosols as proposed by the European Union have been dis-

seminated, but there is no set standard [10]. What makes the assembly of legislation for bioaer-

osols so difficult is the fact that, in a specific industry, two or more manufacturing facilities

might produce the same product, but the environment, other industries in close proximity, the

season, the structure of the facility, and the raw materials used can differ to such an extent that

the bioaerosol composition may vary considerably among these facilities [11].

In a generic food facility, major routes of food contamination by microorganisms are via

surface contact, via personnel or via the air. The contamination by air is noteworthy for prod-

ucts such as beverages, refrigerated dairy and culinary products [12]. Monitoring bioaerosols in

the food industry environment is one of the many tools that industrial quality control managers

can use in the assessment of indoor air quality, agricultural outcomes, and industrial health.

The monitoring process should include: (i) sampling of bioaerosols using either passive or

active sampling methods; (ii) measurement of viable (culturable and non-culturable) and non-

viable bioaerosols; and (iii) the identification of bioaerosols. Identification of microbial taxa is a

critical element in the determination of the bioaerosol load in an industrial environment. Iden-

tification of bioaerosols can be performed using a variety of available assessment strategies such

as microscopy, immuno-assays as well as various molecular-based assays [13–15]. The sensitiv-

ity and rapidity of molecular techniques have also led to their use for bioaerosol monitoring in

the determination of air quality and the detection of airborne pathogens [9, 16].

The air in food industries can be packed with various airborne microorganisms that may

include bacteria, yeast and mould [9, 17].The contribution of airborne microorganisms to

food contamination has been addressed, although aerosols in food plants have not been stud-

ied sufficiently too accurately generalise particle distribution [18]. The compilation of organ-

isms in the air depends on the industry, the facility, the capacity of the facility, as well as the

season and the external environment. Airborne microorganisms are a potential source of a

wide variety of public and industrial health hazards; however, it is difficult to compile a set

standard of acceptable limits for a specific industry as information regarding; due to difference

in samplers, collection time, airflow rate, analysis method and the types of bioaerosols and

their effects is not abundant [8, 11]. With limited information the aim of this study was to

characterise the culturable fraction of bioaerosols sampled during peak and off-peak seasons

in a fruit juice manufacturing facility and categorise isolates as harmful, innocuous or poten-

tially beneficial to the industry, the personnel and the environment.

PLOS ONE Categorisation of culturable bioaerosols in a fruit juice manufacturing facility

PLOS ONE | https://doi.org/10.1371/journal.pone.0242969 April 21, 2021 2 / 30

https://doi.org/10.1371/journal.pone.0242969


Materials and methods

Sampling

Two SAMPL’AIR LITE (AES Chemunex, United States) samplers were used to collect cultur-

able bioaerosols in a HACCP certified fruit juice manufacturing facility in Bloemfontein,

South Africa. A purposive sampling methodology was utilised [18] that was appropriate for

the selected peak and off-peak manufacturing seasons according to which the facility operated.

All sampling was performed in duplicate in the entrance to the production area (Area 1), the

preparation and mixing area of materials (Area 2), the area between the production lines (Area

3), the area for the dispersion of bottles (Area 4), and the area where the bottles were filled

with the final product (Area 5) (Fig 1).

The air samplers that were used operated at a flow rate of 100 L per minute and were disin-

fected with ethanol between the different sampling points. The samplers were switched on for

2 min prior to sampling to allow the ethanol to evaporate, thereby avoiding interference with

the quantities of microorganisms recovered. Air samples were taken at a height of 1.5 m from

the ground [19, 20], which was the same level as the working stations in the centre of each

area. Sterile petri dishes containing either non-selective or selective media were used (Table 1).

After a sampling time of 5 min, the samplers were switched off and the petri dishes were

Fig 1. Schematic layout of the fruit juice manufacturing facility. Different sampling areas: Area 1 (entrance to the

production area), Area 2 (preparation and mixing of materials), Area 3 (between the production lines), Area 4

(dispersion of bottles) and Area 5 (filling of bottles with the final product).

https://doi.org/10.1371/journal.pone.0242969.g001

Table 1. Media, incubation time and temperature.

Enumeration Conditions for Different Microorganisms

Microorganisms Media Incubation Time Temperature

Total microbial load PCA (plate count agar) 72 h 30˚C

Yeast and mould RBC (Rose Bengal Chloramphenicol agar) 72–120 h 25˚C

Coliforms and E. coli VRB (Violet Red Bile agar) with MUG (4-Methylumbelliferyl-β-D-Glucuronide) 24 h 37˚C

Salmonella spp. XLD (Xylose Lysine Deoxycholate agar) 24 h 37˚C

Staphylococcus spp. BPA (Baird-Parker agar) 48 h 37˚C

https://doi.org/10.1371/journal.pone.0242969.t001
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removed and inverted in their covers. True temperature was determined using a heat stress moni-

tor IQuestemp SA) and a rotating vane anemometer was used for the measurement of air velocity

and volume flow. At least two independent repeats were conducted in each sampling area.

Culture medium composition used for microbe cultivation, enumeration

and isolation

Active air samples collected on the petri dishes containing the non-selective and selective

media were incubated for a specific time at specific temperatures [5] (Table 1).

Selective media are predominantly used for the growth of selected microorganisms. Micro-

bial counts were performed using standard guidelines adapted from The Compendium of
Methods for the Microbiological Examination of Foods [21, 22]. After incubation, the number

of colonies on each plate was counted using the Scan1 1200 high-resolution automatic colony

counter. The colony counts were adjusted using the positive hole correction method based on

Feller’s statistical correlation equation [23, 24] and reported as CFU.m-3. Individual presump-

tive bacterial colonies were selected with a sterile inoculation loop and preserved in 2 ml

Microbanks (ProLab) at -80˚C. Yeast and mould colonies were stored in 1.8 ml Nunc1 Cryo-

Tubes1 containing 1 ml sterile 15% glycerol at -80˚C.

Identification of the culturable fraction of bacteria, yeast and mould

Pure cultures of bacteria, yeast and mould were selected from 18 to 72 h agar plates based on

colony colour, morphology and cell characteristics using a microscope [25, 26]. Selected colo-

nies were purified onto fresh agar plates and whole cells used for PCR identification. Primer

set 63F (5’-CAG GCC TAA CAC ATG CAA GTC-3’) and 1387R (5’-GGG CGG WGT
GTA CAA GGC-3’) were used to target�1 300 bp of the 16S rRNA gene for bacterial identi-

fication [27]. Primers NL1 (5’-GCA TAT CAA TAA GCG GAG GAA AAG-3’) and NL4

(5’-GGT CCG TGT TTC AAG ACG G-3’) were used for the amplification of the D1/D2

domain of the 26S rRNA gene (�600 bp) of yeasts [28, 29]. For mould identification, a PCR-

mediated reaction was performed targeting the�600 bp internal transcribed spacer region

(ITS1, ITS2) using primers ITS1 (5’-TCC GTA GAA CCT GCG g-3’) and ITS4 (5’-TCC
TCC GCT TAT TGA TAT GC-3’) (Integrated DNA Technologies, Inc.) [30–32].

Whole cells from a pure culture suspension (20 μl) were used as template DNA. The PCR

was carried out in a total volume of 50 μl, containing 1X ThermoPol1 reaction buffer (20 mM

Tris-HCI, 10 mM (NH4)2SO4, 10 mM KCI, 2 mM MgSO4, 0.1% Triton1-X-100, pH 8.8 @

25˚C), 0.2 mM dNTPs, 0.52 μM of each primer and 1 unit of Taq DNA polymerase (New

England Biolabs). PCR reaction conditions included an initial denaturation cycle of 3 min at

95˚C, followed by 30 cycles of denaturation at 95˚C, annealing at 55˚C for 30 sec and elonga-

tion at 68˚C for 60–90 sec. A final elongation cycle was performed at 68˚C for 6 min. PCR

products were separated on a 1% agarose gel, stained with 0.05% Ethidium bromide, and visu-

alised using UV light. Digital images were captured with the Molecular Imager1 Gel Doc™
XR system (BioRad Laboratories, Inc.).

After purification using the Diffinity RapidTip12 (Sigma), both forward and reverse prim-

ers were used for sequencing in separate reactions [4]. Sequencing was performed using the

ABI Prism 3130 XL genetic analyser and the Big Dye1 Terminator V3.1 Cycle Sequencing Kit

(Applied Biosystems). DNA was precipitated with EDTA and ethanol. Contigs of forward and

reverse sequence results were assembled using DNA Baser v5.15.0 sequence assembly software

and compared with sequences accessible in the GenBank database using the BLAST algorithm

(megablast) [4, 33]. Sequences with high similarity were then subjected to multiple sequence

alignments using Clustal Omega (EMBL-EBI) for identification [34]. Only similarities with a
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BLAST index of 97% and above were considered for identification [35]. Sequence data for iso-

lates considered harmful were deposited into the National Center for Biotechnology Informa-

tion (NCBI) Genbank database. Genbank accession numbers were included in Table 4.

Results and discussion

Culturable fraction identified during peak and off-peak sampling

Airborne microorganisms occur ubiquitously in ambient air [36] and are naturally part of the

air in almost any environment. These microbes can originate, not only from humans, but are

also spawned by various indoor characteristics (such as ventilation, heating and air condition-

ing systems) and outdoor environmental sources. Although airborne microorganisms encoun-

tered in indoor facilities are still deemed innocuous for healthy individuals, they can cause

adverse health effects when high counts are ingested or inhaled [37, 38]. Moreover, bioaerosols

are easily translocated from one ecosystem to another by wind and air currents, thus making

them an important vehicle for the spread of potentially pathogenic organisms [39]. When asso-

ciated with dust particles or condensation droplets, these organisms can be dispersed among

different areas in a food processing unit. International food industries are required by authori-

ties such as the Food and Drug Administration (FDA) to take measures to reduce product con-

tamination by airborne microorganisms [40, 41].

Bacteria, yeast and mould are the main groups of microorganisms categorised as potential

pathogenic airborne microorganisms. Bacteria, yeast and mould have been identified in vari-

ous food industries as bioaerosols. These industries include dairy processing facilities [42],

poultry slaughtering facilities [43], automated chicken egg production facilities [44], and bak-

eries [45]. During our study we isolated a total of 239 bacteria and 41 yeasts and 43 moulds

from the air in the production environment of the fruit juice manufacturing facility. An over-

view of these bioaerosols is presented as a distribution tree where the bacteria, yeast and

mould are classified into different phylogenetic orders (Figs 2 and 3). From the isolates

obtained, 86 different species belonging to 15 different taxonomic orders representing five bac-

teria and ten yeast and mould orders were identified.

Bacteria are the most abundant and diverse group of organisms [46] and are ubiquitous in

every habitat on Earth. They can be present in soil, water and organic matter as well as in live

bodies of plants and animals. A number of bacterial species presence in indoor environments

is mostly related to human occupancy and type of indoor environment [47]. Moreover, bacte-

ria are abundant in the atmosphere where they often represent a major portion of organic

aerosols [48]. Even though bacteria were represented by a smaller group of orders in this

study, they represented 62 different species.

It was immediately visible in Fig 3 that many bioaerosols detected in the facility probably

originated from soil and plant roots, wetlands and ponds, and human skin. Many species that

were detected had no specific significance; however, a reasonable quantity could be considered

as pathogenic, specifically in the order Bacillales that is antibiotic resistant. Mainly fungal iso-

lates and one Pseudomonas have previously been described as bioaerosols. Only four fungal

and two bacterial isolates have previously been associated with food poisoning/spoilage.

All species found in the order Actinomycetales are found in soil and plant roots. Of these

species,Micrococcus seems to be a predominant species in indoor air [47, 49]. The order Pseu-

domonadales was represented by the genera Acinetobacter spp., Psychrobacter spp. and Pseu-
domonas spp., most of which are found in soil, plant roots, wetlands and ponds. Evidence

indicates that bioaerosol agents such as Pseudomonas spp. cause occupational health threats to

immuno-compromised patients [50]. Psychrobacter faecalis is one species of this order that

was discovered in a bioaerosol originating from pigeon faeces [51].
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The order Lactobacillales represents a morphologically, metabolically and physiologically

diverse group of bacteria [52]. In the current study only one genus, Aerococcus, with two differ-

ent species was identified. Both these species are classified as pathogenic. They are prevalent in

hospital environments and can form biofilms [53]. The order Bacillales represents a wide vari-

ety of different species with a wide variety of origins and interests. Genera from the order

Bacillales are frequently found to be part of bioaerosols, because genera such as Bacillus and

Paenibacillus can form highly tolerant endospores that can travel long distances [47, 54]. Two

main genera were identified, namely Bacillus and Staphylococcus, both known to form part of

bioaerosols. They also possess pathogenic abilities and can be resistant to antibiotics [47, 50,

55, 56]. From the Enterobacteriales order, three different genera were identified, namely Enter-
obacter spp. and Pantoea spp. (both are found in soil and/or plant roots and in wounds and

blood) as well as Serratia spp. (which is mostly found in bathrooms). Pantoea agglomerans is

usually associated with plants and is seen as a bacterium of good and evil, implying it can con-

tribute to plant growth or cause opportunistic infections in humans [57].

Eukaryotic cells are considerably more complicated than those of prokaryotic origin and

are characterised by a high degree of cellular complexity (lysosomes, peroxisomes, microtu-

bules, mitochondria, cytoskeleton, etc.), which makes the classification of these microorgan-

isms quite difficult [58]. This may explain why yeast and mould could be classified in 10

different orders whereas only 23 different species were identified. Overgrowth of mould in the

petri dishes was observed during the enumeration of the culturable fraction and lower yeast

and mould counts were observed compared to total microbial load. This may also have con-

tributed to a lower number of identified species, as the overgrowth may have prevented

Fig 2. Symbol key. These symbols are used in Fig 3 to link the microorganisms to their possible origins (from ‘Dead organic matter’ to ‘Wounds and blood), interest (from

“Not sure where it comes from’ to ‘No specific meaning’), and importance (from ‘Actinobacterium’ to ‘Bioaerosols’).

https://doi.org/10.1371/journal.pone.0242969.g002
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accurate isolation of other moulds and yeasts that could have been present [59, 60]. Pseudo-
zyma, a yeast found mainly in soil and plant roots [61], was the only genus detected from the

order Ustilaginales. Of the order Dothideales (microorganisms found mostly in soil, plant

roots, wetlands and ponds), only one of the species, Aureobasidium pullulans, was previously

classified as a bioaerosol [62].

Pleosporales is the largest order in the Dothideomycetes species and it comprises a quarter

of all the detected Dothideomycetous species. Species in this order occur in various habitats,

including bioaerosols [63]. From the Pleosporales order, one genus was detected, namely an

uncultured Alternaria spp. that can originate from a large variety of environments such as soil

plant roots, wetlands and ponds. The Alternaria spp. is seen as a plant pathogen; however,

reports have stated that it is also prevalent in the food industry [64]. Three well known genera

from the order Saccharomycetales were detected: (i) Candida spp. (one specific Candida spe-

cies, Candida pseudointermedia, was previously identified as a bioaerosol), that originates

from soil and plant roots and has the ability to cause invasive fungal infection that can have a

significant impact on public health [65, 66]; (ii)Meyerozyma guilliermondii, which is known

for its ability to live on human skin and in wounds and blood and has spoilage abilities [67];

and (iii)Wickerhamomyces anomalus, which is found in food and has pathogenic abilities [68].

The order Mucorales was represented by only one genus, namely a Rhizopus spp. This genus is

mostly found in dead organic matter and has pathogenic abilities [69].

Eurotiales are widespread and abundant fungi that include the well-known genus Penicil-
lium. Penicillium is recognised as one of the most abundant mould genera in indoor air [47,

65, 70]. Similarly, in the order Sporobolales, only one species was detected, namely Sporobolo-
myces nylandii, which is normally found in soil and/or plant roots [71]. Cryptococcus spp.,

from the order Tremellales, were also identified. These species are known to have either

human or plant pathogenic abilities and have been identified as bioaerosols [65, 72]. From the

Hypocreales order three different Trichoderma spp. were detected, and all originate from soil

and/or plant roots [73–75]. From the Sporidiales order only Rhodotorula mucilaginosa was
identified. This organism is found in soil, plant roots, wetlands, ponds, and in humans and on/

in pillows. Rhodotorula mucilaginosa has been receiving increased attention because it can be

isolated from extreme ecosystems and has the capability to survive and grow in many unfa-

vourable conditions. It is also classified as a bioaerosol and a human pathogen [76].

Various microorganisms that were detected support the existing scientific literature that indoor

exposure to microorganisms poses a risk for asthma and allergies among occupants of indoor

facilities [77]. It is undeniable that microbial contamination of a facility has the potential to affect

the product and places the occupants at risk of developing airway difficulties. Surprisingly, little

research is available with regards to these microorganisms in the food industry, especially in the

fruit juice industry, and therefore it was important to clearly classify the microorganisms that were

identified. This will aid in better understanding the prevalence and ecology of specific indoor air-

borne bioaerosols. Furthermore, it will be a useful tool in the management and prevention of both

long- and short-term problems faced in the fruit juice industrial setting [47].

Classification of the bioaerosols detected

Bioaerosols are generated via multiple sources such as different instruments, external environ-

ments, and human activity. Bioaerosols have varying microbiological profiles depending on

Fig 3. Bioaerosol distribution tree. Overview of the culturable bioaerosol fraction. As this is a distribution tree, each order is shown as different leaves and the various

taxa are indicated in italics. The meaning of each symbol is outlined in Fig 2. This is not a phylogenetic tree, nor is there a specific listing order; it merely represents the

total diversity detected. Microbial orders are discussed from the bottom left starting with the Actinomycetales in a clockwise direction under the two different kingdoms.

The Bacillales, Pseudomonadales and Actinomycetales, and to a lesser extent the Eurotiales and Saccharomycetales orders, were the most prevalent.

https://doi.org/10.1371/journal.pone.0242969.g003
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their origin and reason of interest and contaminate a product produced in an industry or pose

a hazard to workers [50], depending on the kind of bioaerosol that is involved. Literature clas-

sifies bioaerosols into three groups, namely: (i) innocuous [78]; (ii) useful [4]; and (iii) harmful

[79] After the identification of the culturable fraction of bioaerosols in the current study, it was

concluded that 27 innocuous, 26 useful and 39 potentially harmful bioaerosols were detected.

Several of these bioaerosols can be classified in more than one group depending on the envi-

ronment and intended use of the facility/area.

Innocuous bioaerosols. Innocuous microorganisms were classified in 1985 by the Euro-

pean Federation of Biotechnology as “microorganisms that have never been identified as caus-

ative agents of disease in man and that offer no threat to the environment” [80]. For a

microorganism to be described as environmentally safe, it should meet the following criteria:

(i) be non-pathogenic to humans, animals and plants; (ii) must have a limited ability to com-

pete; (iii) will not indirectly affect other species (by the production of toxic metabolites or bio-

geochemical changes); (iv) is unable to irreversibly alter equilibria between nutrients,

microflora, and higher organisms; (v) is unable, in the open environment, to transfer genetic

traits that can be noxious in other species; (vi) unable to cause food spoilage; and (vii) does not

contribute to unwanted traits [4, 81].

We identified 27 different microorganisms as innocuous bioaerosols (Table 2). Two genera

were dominant, namely Bacillus and Staphylococcus. The genus Bacillus includes more than

200 species, is widespread in nature and is found in virtually every environment [82]. Although

the Bacillus species are ostensibly well-known as pathogens, the overwhelming majority are in

actual fact non-pathogenic [83]. The Staphylococcus species are reported as normal microbiota

of mammals and birds; however, certain species are important pathogens in humans and ani-

mals. It is noteworthy that little is known about the Staphylococcus species that are non-patho-

genic environmental microorganisms [84].

Only 4 innocuous yeasts and moulds were detected. Although yeast and mould are well-

known for their fermentation ability and pharmaceutical properties, it has been found that they

are microorganisms that do more harm than good in food and food-related industries [85–88].

Although these microorganisms would have been innocuous to the products, the workers

in the facility and the environment, they still formed part of the bioaerosols detected during

bioaerosol sampling. The high microbial counts that were observed during sampling immedi-

ately created the inaccurate assumption that the air was contaminated with hazardous or

unsafe bioaerosols [109]. Therefore, simply analysing bioaerosols for total heterotrophic

counts, as specified by certain countries to determine air quality, could be considered a short-

coming [110].

Useful bioaerosols. Useful microorganisms are generally: (i) environmentally beneficial;

(ii) useful in food; (iii) making positive medical contributions; and (iv) biotechnologically

advantageous. For example, the use of beneficial/useful microorganisms contributes positively

towards environmentally safe agricultural products. The modes of action of these useful micro-

organisms and their various benefits to plants range from the simple occupation of biological

empty spaces to ecological relationships such as antibiosis, competition, predation, and symbi-

osis, among others [111]. Other beneficial microorganisms represent an important biotechno-

logical approach to decrease the deleterious effects of stress in crops [112, 113]. Studies have

also indicated that the growth-promoting ability of some bacteria to synthesise extracellular

polysaccharides or exopolysaccharides has commercially significant applications [114].

The use of beneficial microorganisms can potentially revolutionise agriculture and food

industries by: (i) integrating crop health with better management practices for specific

climatic conditions to improve productivity and quality; (ii) using environmentally friendly

approaches to control pests and pathogens, thus reducing the use of chemical pesticides with
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environmental and health implications; (iii) producing better quality food with less chemical

contamination and allergens; and (iv) minimising losses by improving crop fitness in extreme

weather conditions [115].

One of the most exciting scientific advances in recent years has been the realisation that

commensal microorganisms play key roles in our physiology (including protection against

infection) and in drug metabolism, vitamin synthesis, nutrition, as well as in response to dis-

ease [116]. The beneficial influence of microorganisms is still on the border of its’ potential

and a great deal of future discoveries and technologies are anticipated. In the current study,

the useful bioaerosols that were detected during the selected sampling seasons were categorised

into three groups, namely: (i) medical contribution; (ii) promoting and protecting plant

growth; and (iii) environmental contribution (Table 3).

Natural products (plants, animals and microorganisms) are essential, reputable resources

that originate from Earth’s bio-diverse flora and fauna. These natural products are encoded to

be bioactive and have been used as medicines for ages. Today, they continue to be a reservoir

of potential resources [141]. Recently, the global threat of anti-microbial resistance has

increased the need for urgent therapeutic discoveries and the improvement of existing antimi-

crobial practices [142]. Numerous medical conditions are the focus of these efforts; however,

one of the medical areas in which microorganisms have contributed tremendously in the last

Table 2. Innocuous bioaerosols detected and classified alphabetically from order to species.

Innocuous Bioaerosols–Bacteria

Order Family Genus and Specie Reference

Actinomycetales Brevibacteriaceae Agrococcus citreus [89]

Actinomycetales Microbacteriaceae Microbacterium phylloshaerae [90]

Actinomycetales Micrococcaceae Arthrobacter koreensis [91]

Actinomycetales Micrococcaceae Micrococcus terreus [92]

Bacillales Bacillaceae Bacillus eiseniae [82]

Bacillales Bacillaceae Bacillus horneckiae [93]

Bacillales Bacillaceae Bacillus humi [94]

Bacillales Bacillaceae Bacillus kochii [95]

Bacillales Bacillaceae Bacillus oceanisediminis [92]

Bacillales Bacillaceae Bacillus subtilis subsp. spizizenii [83]

Bacillales Bacillaceae Exiguobacterium artemia [96]

Bacillales Paenibacillaceae Paenibacillus pabuli [97]

Bacillales Planococcaceae Sporosarcina luteola [98]

Bacillales Staphylococcaceae Jeotgalicoccus psychrophilus [99]

Bacillales Staphylococcaceae Staphylococcus equorum [100]

Bacillales Staphylococcaceae Staphylococcus jettensis [101]

Bacillales Staphylococcaceae Staphylococcus saprophyticus subsp. bovis [102]

Enterobacteriales Enterobacteriaceae Enterobacter xiangfangensis [103]

Enterobacteriales Erwiniaceae Pantoea vagans [104]

Pseudomonadales Moraxellaceae Psychrobacter faecalis [51]

Pseudomonadales Pseudomonadaceae Pseudomonas lurida [105]

Pseudomonadales Pseudomonadaceae Pseudomonas vancouverensis [106]

Sphingomonadales Sphingomonadaceae Sphingomonas pseudosanguinis [107]

Saccharomycetales Saccharomycetaceae Candida pseudointermedia [108]

Hypocreales Hypocreaceae Trichoderma orientale [74]

Sporiobolales Incertae sedis Sporobolomyces nylandii [71]

Ustilaginales Ustilaginaceae Pseudozyma spp. [61]

https://doi.org/10.1371/journal.pone.0242969.t002
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few years is cancer research [143]. By loading anti-cancer drugs into nanoparticles, more

favourable pharmacokinetics and adjustable biodistribution of nanoparticles can increase the

efficacy of the drug [144]. It is noteworthy that the current study detected four microorgan-

isms that have the capability of producing silver nanoparticles. Silver nanoparticles are an arch

product from the field of nanotechnology and have gained boundless interest because of their

unique properties such as chemical stability, good conductivity, catalytic properties and, most

importantly, antibacterial, anti-viral and antifungal activities [145].

In order to make the environment healthier for human beings, contaminated water bodies

and land need to be rehabilitated to make them free from toxic waste, heavy metals and trace

elements. With the escalated growth of various industries, there has been a considerable

increase in the discharge of industrial waste into the air, soil and water, and this has led to the

accumulation of heavy metals and toxic waste in these environments, especially in urban areas.

Table 3. Alphabetical classification of useful bioaerosols detected (peak and off-peak seasons) according to: medical contribution, promoting and protecting plant

growth and environmental contribution.

Genus and Specie Benefit Reference

Medical Contribution

Acinetobacter radioresistens Purification and biochemical properties [117]

Bacillus flexus Capable of synthesis of anisotropic silver nanoparticles [118]

Bacillus megaterium Capable of biosynthesis of silver nanoparticles and have antibacterial activity on multi drug resistant clinical pathogens [119]

Brevibacterium
frigoritolerans

Capable of producing silver nanoparticles [120]

Corynebacterium callunae Have the function for activity and stability of the enzyme Orthophosphate [121]

Microbacterium radiodurans UV radiation-tolerant bacterium useful in cancer research, with heavy metal bioremediation capabilities [122]

Micrococcus yunnanensis Anti-oxidative, anti-tumour-promoting, and anti-carcinogenic activities of adonirubin and adonixanthin [123]

Meyerozyma guilliermondii Antifungal activity [124]

Penicillium corylophilum Antibacterial activity [125]

Penicillium spp. Capable of biosynthesis of silver nanoparticles [126]

Promoting and Protecting Plant Growth

Bacillus aryabhattai Zinc-solubilising abilities [127]

Brevibacterium casei Capable of promoting plant growth [128]

Microbacterium imperial Capable of biodegradation of bromoxynil–to reduce its acute toxicity [129]

Paenibacillus polymyxa Capable of nitrogen fixation, plant growth promoting, soil phosphorus solubilisation and production of exopolysaccharides,

hydrolytic enzymes, antibiotics and cytokinin. Helps bioflocculation and the enhancement of soil porosity as well as capable

of producing optically active 2,3-butanediol (BDL)

[130]

Pantoea agglomerans Capable of controlling post-harvest diseases on apples [131]

Pseudomonas fluorescens Plant protection [132]

Serratia marcescens Capable of biocontrol against avocado pathogens [133]

Aureobasidium pullulans Biotechnologically important yeast [134]

Penicillium citrinum Capable of producing plant growth by promoting metabolites [135]

Trichoderma
longibrachiatum

Help optimising culture conditions for agricultural purposes [73]

Environmental Contribution

Micrococcus luteus Capable of bioremediation of polychlorinated biphenyl (PCB) contaminated environments [136]

Pseudomonas putida Capable of Xenobiotic degrading [137]

Pseudomonas stutzeri Capable of denitrification, degradation of aromatic compounds and nitrogen fixation [138]

Aureobasidium
melanogenum

Promising biomaterial and can be used for packing food and drugs [139]

Rhizopus oryzae Capable of biodiesel production [140]

Trichoderma viride Capable of enhancement of fungal delignification [75]

https://doi.org/10.1371/journal.pone.0242969.t003
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The use of microorganisms (Micrococcus luteus for example) for remediation technologies and

bioremediation to rehabilitate and re-establish the natural condition of the environment is an

emerging science [146, 147]. Other ways of environmental rehabilitation using microorgan-

isms, such as fungal delignification (Trichoderma viride) [148] and biodiesel production (Rhi-
zopus oryzae) [149] have also been investigated during the last few years.

The 26 different useful species that were identified in the selected facility could all be

extremely beneficial in various fields of technology; however, not one of these microorganisms

was likely to have a direct impact on the product or the food handlers in the facility. Therefore,

because there are still no standards or an implementation plan available [150], it is important

to create awareness of what needs to be monitored in each industrial environment. Although

innocuous and useful bioaerosols do not negatively influence human health, it is critical to

mention that the presence of innocuous and useful bioaerosols still serves as an indicator that

an ideal environment exists for possible harmful bioaerosols to emerge. In addition, any type

of bioaerosol that occurs in excess will have a negative influence on the food product and this

should also be considered [20, 109, 150–153].

Potentially harmful bioaerosols. Various bioaerosols can have infectious, allergenic or

toxic effects on living organisms and may impact human and animal health and agricultural

outcomes on a local, regional or global scale. Many plant, animal and human pathogens are

dispersed through the air [3, 154], and thus the occupational health of workers is easily

affected. Various major infectious diseases in humans such as foot-and-mouth disease, tuber-

culosis, Legionnaire’s disease, influenza and measles can be spread by airborne bacteria or

viruses [4, 77]. Moreover, the inhalation of pathogenic, viable airborne fungi such as Aspergil-
lus, Cryptococcus and Pneumocystis spp. can cause invasive lung infections associated with

mortality rates of up to 95% in infected populations [77, 155–157].

Food safety is a complex issue that has an impact on multiple segments of society. Usually a

food is considered too adulterated if it contains a poisonous or otherwise harmful substance

that is not an inherent natural constituent of the food itself; if it poses a reasonable possibility

of injury to health or is presented in a substance that is an inherent natural constituent of the

food itself; if it is not the result of environmental, agricultural, industrial, or other contamina-

tion; and if is present in a quantity that ordinarily renders the food injurious to health [65].

Harmful microorganisms can: (i) be pathogenic/infectious; (ii) multidrug resistant; (iii)

cause food poisoning; (iv) cause food spoilage; (v) cause negative occupational health effects. It

was likely that allergenic and/or toxic agents forming bioaerosols and causing occupational

diseases of the respiratory tract and skin would be present due to the layout (no airflow, pro-

duction lines in close proximity to one another) and the type of product the facility produced

[56]. Table 4 depicts the four types of harmful bioaerosols that were detected during the two

sampling seasons.

Staphylococcus spp. are indicators of the severity of air pollution and their presence may

indicate the further presence of pathogenic bacteria [184–186]. In the current study, five

Staphylococcus spp. (cohnii, epidermidis, haemolyticus, hominis subsp novobiosepticus and suc-
cinus) were detected on more than ten occasions in different areas in peak and off-peak air

samples (Fig 4). Staphylococcus cohnii, epidermidis, haemolyticus, hominis subsp novobiosepti-
cus and succinus are coagulase-negative staphylococci that may be responsible for bloodstream

infections in immuno-suppressed patients [145, 168, 171, 172, 174]. Even though these species

can only affect immuno-suppressed individuals, their multidrug resistance capacity against

available antimicrobial agents is considered a problem and is the reason why these species are

of clinical significance [187].

Although Staphylococcus spp. are opportunistic pathogens and rarely cause human infec-

tions, their ability to form biofilms on different equipment surfaces had the potential to
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negatively influence the hygiene of workers in this specific production facility. Despite the low

pH as well as the water activity and high sugar content that are characteristics of fruit juice,

various Staphylococcus spp. have been detected in fruit juice [187–189]. Therefore, according

to the standard operating procedures of this specific industry, Staphylococcus spp. should not

be present in the production environment. Even with regards to infectious diseases only, no

clear correlation was found between concentrations of culturable microorganisms in the air

and infection. One reason for this could be that infection should be correlated with the dose

rather than the concentration. Unfortunately, dose-response relationships still have not been

established for most biological agents [47].

Table 4. Harmful bioaerosols detected and classified alphabetically according to their pathogenicity and infection potential, multidrug resistance, food poisoning

and food spoilage potential.

Genus and Specie Reference Genus and Specie Reference Genus and Specie Reference

Pathogenicity/Infection Potential

Acinetobacter woffii
(MW148768)

[158] Pantoea agglomerans (MW148775) [57] Staphylococcus kloosii (MW148786) [159]

Acinetobacter schindleri
(MW148769)

[160] Pseudomonas oryzihabitans (MW148778) [161] Staphylococcus pasteuri (MW148787) [162]

Aerococcus urinaeequi
(MW148770)

[53] Pseudomonas stutzeri (MW148779) [138] Staphylococcus petrasii (MW148788) [163]

Aerococcus viridans
(MW148771)

[164] Serratia marcescens (MW148780) [165] Staphylococcus saprophyticus (MW148789) [166]

Bacillus licheniformis
(MW148772)

[167] Staphylococcus cohnii (MW148782) [168] Staphylococcus simulans (MW148790) [169]

Brevibacterium casei
(MW148773)

[170] Staphylococcus epidermidis (MW148783) [171] Staphylococcus succinus (MW148791) [172]

Enterobacter hormaechei
(MW148794)

[173] Staphylococcus haemolyticus (MW148784) [174] Staphylococcus succinus subsp. casei
(MW148792)

[172]

Paenibacillus glucanolyticus
(MW148774)

[175] Staphylococcus hominis subsp novobiosepticus
(MW148785)

[145] Staphylococcus warneri (MW148793) [176]

Alternaria spp. (MW148486) [64] Cryptococcus albidus (MW165043) [72] Rhodotorula mucilaginosa (MW165046) [76]

Aureobasidium pullulans
(MW165040)

[62] Cryptococcus uzbekistanensis (MW165044) [177] Wickerhamomyces anomalus (MW165047) [68]

Candida intermedia
(MW165041)

[178] Rhizopus oryzae (MW148489) [69, 179]

Candida parapsilosis
(MW165042)

[66]

Multidrug Resistance

Staphylococcus arlettae
(MW148781)

[180] Staphylococcus epidermidis (MW148783) [171] Staphylococcus hominis subsp novobiosepticus
(MW148785)

[145]

Staphylococcus cohnii
(MW148782)

[168] Staphylococcus haemolyticus (MW148784) [174] Staphylococcus succinus (MW148791) [172]

Food Poisoning

Bacillus licheniformis
(MW148772)

[167]

Penicillium commune
(MW148487)

[168] Penicillium crustosum (MW148488) [181]

Food Spoilage

Pseudomonas fluorescens
(MW148776)

[182] Pseudomonas fragi (MW148777) [183]

Meyerozyma guilliermondii
(MW165045)

[67] Penicillium commune (MW148487) [168] Penicillium crustosum (MW148488) [181]

Genbank accession number for each isolate indicated in brackets.

https://doi.org/10.1371/journal.pone.0242969.t004
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Fig 4. Microbial hazard identification. Number of identified harmful bioaerosols detected during the two sampling seasons in the designated areas: entrance to the

production area (Area 1), preparation and mixing of materials (Area 2), between the production lines (Area 3), dispersion of bottles (Area 4) and filling of the final

product (Area 5). The two sampling phases are indicated as peak season (PS) (onset of summer) and off-peak season (OPS) (onset of autumn).

https://doi.org/10.1371/journal.pone.0242969.g004
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Bacillus licheniformis is known as one of the most prevalent spore-forming bacterial species

which present a worldwide problem to food industries such as fruit juice and dairy manufactur-

ing facilities because of their relevance to food spoilage and quality issues This thermophilic

spore-forming bacteria are able to grow during the manufacturing of powder type of products

in different sections of manufacturing and will continuum grow throughout processing [190].

Yeast and mould have been used for centuries in the production of diverse foods and bever-

ages. They have also been shown to be involved in the spoilage of an extensive range of foods.

Yeasts, predominantly Saccharomyces and Zygosaccharomyces spp., are able to grow at low pH

values in foods with a high sugar content and at refrigeration temperature, making them

potential spoilers of refrigerated or concentrated fruit juices [31, 85, 191]. However, none of

these yeasts were isolated during the two sampling seasons. This may indicate that they were

possibly present but were not isolated; were not present in the environmental air of the facility;

or were not present in the environment of this facility at all.

Fungal spoilage encompasses the decay of foods, including the development of off-flavours,

acidification, discolouration, and disintegration. Moulds that are typically isolated from fruit

juice belong mainly to the Penicillium genus and have been identified in several earlier studies

[77, 192]. In the current study, Penicillium commune was detected on more than ten occasions

in peak and off-peak samples collected in different areas (Fig 4). Fungal spoilage can endanger

the health of humans by exposing consumers to toxic secondary metabolites such as mycotox-

ins [5]. The mycotoxin (Cyclopiazonic acid) producing ability displayed by this isolate is a

noteworthy fact as it causes poisoning in humans. It is widely known that there is an active

metabolism and dissemination of hyaline fungal hyphae inside substrates before the formation

of visible colonies on the surface of food. During this period of visible fungus colony forma-

tion, there is a potential risk of consumer exposure to mycotoxins [193].

Microorganisms with pathogenicity/infectious capacity, multidrug resistance and food poi-

soning/spoilage abilities can be found in the air and they also form part of certain environ-

ments as bioaerosols. Although the importance of bioaerosols and their impact on human

health have been recognised, it is still difficult to accurately describe their role in the initiation

or worsening of diverse symptoms and diseases. Diseases and food spoilage arise from expo-

sure to biological agents through the transmission of infectious agents by direct and/or indirect

contact, airborne transmission, and vector-borne transmission [194].

The transmission of pathogens and other bioaerosols among humans has been a topic of

research for centuries as humans harbour diverse microbes (including pathogens) in and on

their bodies. The presence and activities of humans, particularly in indoor environments, can

influence bioaerosol concentrations negatively. This is depicted in Fig 4 where, in Area 5 (fill-

ing of final product), more personnel were involved and thus higher and more diverse harmful

bioaerosols were observed. The emission of particles by breathing, sneezing, coughing, talking

and movement, as well as from resuspension of dust due to human activity, has been the focus

of numerous indoor bioaerosol studies [5, 151, 195–205]. In high-risk areas, for instance after

the last heat treatment before filling and packaging, the food product (beverages) is susceptible

to contamination [12].

Apart from the fact that Candida spp. and Staphylococcus spp. are responsible for a substan-

tial number of infections independently, there is increasing evidence that they can co-exist in

cases of biofilm associated infections. Interestingly, in Area 2 and Area 3 where Candida spp.

were detected, Staphylococcus spp. were also observed (Fig 4). The clinical outcome of these

mixed bacterial-fungal interactions is that the resultant infections can correlate with an

increased frequency or severity of diseases [206]. Staphylococci constitute the main part of the

human skin microbiome, and for this reason their role as pathogens has been underestimated

[174].
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Climatic conditions have a significant impact on the concentrations and diversity of air-

borne microorganisms [5, 153, 155]. We considered temperature and airflow to determine if

seasonal variation influenced the diversity, distribution and occurrence of harmful bioaerosols,

as they were detected in various designated areas in the facility during both seasons (Fig 5).

The average indoor air temperature ranged between 18−22˚C (±1.1˚C) and airflow between 0

to 4.4. m.s-1. A clear trend was noted between Area 3 (between the production lines) and Area

4 (dispersion of bottles) with distinguished higher diversity and representability of the same

species in both seasons. In Area 5 (filling of final product), where more personnel were

involved, higher and more diverse harmful bioaerosols were detected, but the same species

were not present during both seasons as the lowest diversity and representability of the same

species were observed in Area 1 (entrance to the facility) during both seasons.

Ventilation is one of the most important means to control bioaerosols by supplying outdoor

air and remove extra heat, humidity and contaminants from occupied spaces. Deficient venti-

lation as observed in Area 2 (preparation and mixing of materials) may contribute to massive

bioaerosols load and the presence of harmful microorganisms such as Bacillus licheniformis
and Penicillium commune [207].

During both seasons 39 different species were detected; Staphylococcus spp. [19] and Pseu-
domonas spp. [6], and to a lesser extent (with two species each) Aerococcus spp., Acinetobacter
spp., Penicillium spp., Candida spp., Cryptococcus spp. and Rhizopus spp. were the most preva-

lently harmful bioaerosols that were identified. Two of these prominent species, namely Aero-
coccus spp. and Rhizopus spp., were only detected during the peak season whereas

Acinetobacter spp., Penicillium spp., Candida spp. and Cryptococcus spp. were detected during

both the peak and off-peak seasons.

The second most prominent genera, Pseudomonas spp., with a prevalence of the species

detected during the off-peak season in Areas 2, 3 and 4, is the most frequently reported genus

of the bacteria found after sanitation of food processing surfaces across all types of food pro-

duction. Pseudomonas spp. occur ubiquitously as they are associated with a wide range of

niches in food production environments such as fruit juice facilities with respect to nutrients,

temperature, surface materials, and stress factors [208]. This genus has established itself on

stainless steel coupons placed in the processing environments of fruit juice related industries.

Staphylococcus spp. is one of the most common Gram-positive genera found in food produc-

tion environments, and was also the most prominent genera detected during this study in both

seasons and were prevalent consistently throughout the facility in all high-risk areas. The bio-

film-producing ability of staphylococci may contribute to their persistence in food processing

environments, which also occurs in clinical environments [12, 209]. Three Staphylococcus spp.

(Staphylococcus cohnii, haemolyticus and succinus) were found in all five designated areas.

Bacteria have been reported as the dominant bioaerosol associated microorganisms and

they seem to have dominated in most production environments. However, research has

shown that in production environments that are more ideal for eukaryotic microorganisms

(dry environments and low water activity), yeasts and moulds may be present in significant

numbers [209–211]. Four specific eukaryotic microorganisms were detected in this study dur-

ing both seasons, namely Cryptococcus albicans, Rhodotorula mucilaginosa,Wickerhamomyces
anomalus, and Penicillium commune.

Even though it is generally accepted that seasonal variations have an influence on the con-

centration and diversity of microorganisms, any increase in temperature and air exchange rate

will cause an increase in airborne bacteria, yeast and mould [5, 20, 152, 153]. We found that

the temperature in the studied facility did not fluctuate significantly during the two seasons,

and it is thus not unreasonable to assume that external seasonal variation in this case did not

influence the microbial concentration or diversity in the different sampling areas. The only
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variation observed was more personnel present during the off-peak season in all the areas,

which might explain the additional species observed during this season. Moreover, the air-

borne microbial levels increased significantly in the occupied areas compared to the unoccu-

pied areas. This finding supports the argument that humans are mainly the source of bacteria

and fungi in settled dust samples [151].

Fig 5. Harmful bioaerosols detected in samples from the different designated areas: Entrance to the production area (Area 1: Yellow), preparation and mixing of

materials (Area 2: Red), between the production lines (Area 3: Green), dispersion of bottles (Area 4: Blue) and filling of the final product (Area 5: Purple).

Sampling occurred during peak season (onset of summer) and off-peak season (onset of autumn) to establish if seasonal variation would impact the accumulation and

spread of the harmful bioaerosols. Bacteria are represented by the dark grey region and the yeast and mould are represented by the light grey region.

https://doi.org/10.1371/journal.pone.0242969.g005
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When comparing the densities of the harmful bioaerosols that were detected, only a small

group of the species (Table 4) had the ability to influence the products manufactured at the

facility. Kim et al. [5] argued that although food poisoning and/or spoilage microorganisms

are present in the air, it is not a certainty that they will negatively affect the product or con-

sumer. Other factors that affect their capability to cause spoilage or poisoning such as dose

relationship, microbial competition and contact with the host should also be considered. With

this in mind, it may explain the fact that even though these food poisoning and/or spoilage

microorganisms were present in the air, no incidences of product spoilage were reported dur-

ing routine monitoring at this facility. A significant number of pathogenic bioaerosols were

detected, and these all had the potential to impact the occupational health of the personnel in

the facility negatively. This confirms the argument that the measurement of bioaerosols should

be performed according to a protocol that is representative of exposure patterns and duration

that relates to the dose [5, 184]. Therefore, estimating the dose of culturable bacteria that affect

people who inhale it in a factory seems to be important for future exposure analyses.

Despite tremendous scientific progress globally, the body of knowledge about biologically

originated indoor air pollution seems to remain relatively narrow and insufficient [11]. The

reasons for this limited scope could be attributed to: (i) a lack of modern sampling instrumen-

tation (that is industry-bioaerosol specific); (ii) common use of old methods to evaluate the

microbiological quality of air; (iii) relatively high costs of instrumental analyses for bacterial

and fungal toxins and their markers; (iv) lack of common approved criteria for assessing expo-

sure to biological factors; and (v) a very low number of institutions/organisations interested in

(or obligated to perform) comprehensive environmental monitoring of bioaerosols [11].

It has been argued that, although the complexity and importance of the subject of indoor

bioaerosol dynamics have been underscored by various studies, our understanding of this phe-

nomenon is not yet mature. One might therefore anticipate fundamental paradigm shifts as

knowledge grows and the ability to ask and answer incisive questions improves. Therefore,

because the gap between what we know and what we would like to know is extensive, our cur-

rent knowledge is insubstantial, and we need to realise that we will probably never be able to

measure everything. Nevertheless, we need to accurately measure what can reasonably be

expected within scientifically determined parameters.

In light of the above arguments, the diversity and complexity of fruit juice facilities will con-

tinue to pose great challenges for studies on indoor bioaerosol dynamics. This is because mere

basic identification and simply analysing bioaerosol concentrations in the air can lead to mis-

classification errors of aerosol sources, and misidentification can also lead to misattribution.

In this context, the findings of the current study may serve as a reference for future assess-

ments and they may contribute to: (i) policy reviews for product and occupational health; (ii)

research efforts in the field to be more outcomes specific; (iii) the implementation of preventa-

tive occupational health programs; (iv) the formulation of recommendations aimed at provid-

ing healthier production and working environments; and (v) the setting of a clear standard

with scientifically established limits in order for facilities to operate within a safe range con-

cerning bioaerosols, the safety of employees, and product quality and safety.

Conclusion

Bacteria, yeast and mould are the main groups of microorganisms found in bioaerosols. The

actual identity, diversity and abundance of different types of bioaerosol particles, as well as

their temporal and spatial variability in the fruit juice industry, have not been well character-

ised. Overall, the role of bioaerosols in the atmosphere and their interaction with other ecosys-

tems are not well described and understood.
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The analyses that were conducted isolated 239 bacteria, 41 yeasts and 43 moulds from the air in

the production environment of a fruit juice manufacturing facility. The culturable fraction of the

bioaerosols identified were categorised into three main groups, namely 27 innocuous, 26 useful and

39 harmful bioaerosols. In the innocuous bioaerosol group, two genera were dominant, namely the

Bacillus and Staphylococcus, and only four innocuous yeasts and moulds were detected. Although

innocuous and useful bioaerosols do not negatively influence human health, it is critical to mention

that the presence of innocuous and useful bioaerosols serves as an indicator that an ideal environ-

ment exists for possible harmful bioaerosols to emerge. In addition, any type of bioaerosol that is in

excess could have a negative influence on the food product and should be dealt with.

This study demonstrated that all types of culturable airborne microorganisms occur ubiqui-

tously and are naturally part of the air environment in fruit juice manufacturing facility. It is

therefore important that food processing facilities ensure that measures are taken to reduce

bioaerosols that may cause product contamination or even occupational health issues. How-

ever, there is clearly a need to be more industry- and outcome-specific before monitoring the

prevalence of bioaerosols in a specific industry. Culture-dependent methods remain important

if information regarding the viability and metabolic activity of these organisms is to be

obtained. It is also important that the role that different microbes play in distinctive processes

is ascertained and that a clear bioaerosol standard with scientifically established limits be dis-

seminated so that facilities may operate within a safe range.
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