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Background: Structural magnetic resonance imaging (sMRI) reveals abnormalities in
patients with autism spectrum syndrome (ASD). Previous connectome studies of ASD
have failed to identify the individual neuroanatomical details in preschool-age individuals.
This paper aims to establish an individual morphological connectome method to
characterize the connectivity patterns and topological alterations of the individual-level
brain connectome and their diagnostic value in patients with ASD.

Methods: Brain sMRI data from 24 patients with ASD and 17 normal controls (NCs)
were collected; participants in both groups were aged 24–47 months. By using the
Jensen–Shannon Divergence Similarity Estimation (JSSE) method, all participants’s
morphological brain network were ascertained. Student’s t-tests were used to
extract the most significant features in morphological connection values, global graph
measurement, and node graph measurement.

Results: The results of global metrics’ analysis showed no statistical significance in the
difference between two groups. Brain regions with meaningful properties for consensus
connections and nodal metric features are mostly distributed in are predominantly
distributed in the basal ganglia, thalamus, and cortical regions spanning the frontal,
temporal, and parietal lobes. Consensus connectivity results showed an increase in
most of the consensus connections in the frontal, parietal, and thalamic regions of
patients with ASD, while there was a decrease in consensus connectivity in the
occipital, prefrontal lobe, temporal lobe, and pale regions. The model that combined
morphological connectivity, global metrics, and node metric features had optimal
performance in identifying patients with ASD, with an accuracy rate of 94.59%.

Conclusion: The individual brain network indicator based on the JSSE method is an
effective indicator for identifying individual-level brain network abnormalities in patients
with ASD. The proposed classification method can contribute to the early clinical
diagnosis of ASD.

Keywords: identification, global metric, nodal metric, autism spectrum disorder, individual brain morphological
connectome
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INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous
neurodevelopmental disorder that manifests in early childhood,
with core symptoms of language and social communication
disorders, decreased engagement, and repetitive stereotypes of
limited activity (Li et al., 2017; Lord et al., 2018). It has become
a major global public health problem due to its high incidence
and disability rate (Lyall et al., 2017). Usually, such disease can
be diagnosed by multidisciplinary professionals (pediatricians,
psychiatrists, or psychologists) via clinical scales, symptoms, and
signs. However, this approach is only sensitive enough to identify
most children with ASD in whom parents have already noticed
symptoms (Mandell and Mandy, 2015). Therefore, it is necessary
to explore a reliable indicator to distinguish preschool children
with ASD from normal controls (NCs).

Many neuroimaging techniques are widely used to explore
pathophysiological changes in the anatomy and function of
patients with ASD, such as structural magnetic resonance
imaging (sMRI), diffusion tensor imaging (DTI), and blood
oxygen level dependent (BOLD), sMRI has attracted attention
for its ability to provide multidimensional indicators, such as
gray matter (GM) volume, cortical thickness, and gyrification
index (Courchesne et al., 2001; Courchesne, 2002; Carper and
Courchesne, 2005; Schumann et al., 2010; Ecker et al., 2013;
Elsabbagh and Johnson, 2016). Previous sMRI studies have
shown that patients with ASD have brain network alterations
(Hazlett et al., 2017), abnormal connections (Ecker et al., 2015),
and local overconnectivity with specific areas (Lewis et al., 2014),
such as the frontal and occipital regions (Rane et al., 2015). It is
well known that brain morphological network features detected
in patients with ASD could help distinguish these individuals
from NCs, and its classification accuracy for ASD ranges from
75.4 to 90.39% (Gao et al., 2020). However, the patients in the
studies mentioned above were children over 7 years of age. How
brain networks affect specific brain regions in preschool children
is still worth exploring further.

As mentioned above, the individual brain morphological
networks detected in patients with ASD can help separate these
individuals from NCs and reveal relevant pathophysiological
mechanisms. Therefore, it is necessary to build a frame of
morphological networks for ASD early diagnosis. However,
most studies have focused on group-level network methods for
morphological network modeling, ignoring information at the

Abbreviations: AAL, automated anatomical labeling; ADHD, attention deficit
and hyperactivity disorder; Ar, assortativity; AUC, area under the curve; BG,
basal ganglia; BOLD, blood oxygen level dependent; Cp, clustering coefficient;
DC, degree centrality; DTI, diffusion tensor imaging, Eglocal, global efficiency;
Elocal, local efficiency; FLAIR, fluid attenuated inversion recovery; Hr, hierarchy;
JSSE, Jensen–Shannon Divergence Similarity Estimation; KL, Kullback–Leibler;
LOOCV, leave-one-outcross-validation; Lp, characteristic path length; MRI,
magnetic resonance imaging; NCp, nodal clustering coefficiency; NCs, normal
controls; Ne, nodal efficiency; NLe, nodal local efficiency; NLp, nodal characteristic
path length; γ, normalized clustering coefficient; Q, modularity score; PDF,
probability density function; ROC, receiver operating characteristic curve; sMRI,
structural magnetic resonance imaging; T1WI, T1 weighted imaging; T2WI,
T2 weighted imaging; TR, repetition time; TE, echo time; FOV, field of view;
ROI, region of interest; SPM, statistical parametric mapping; λ, normalized
characteristic path length; σ, small-world.

individual level (Wang et al., 2016). In this paper, the Jensen–
Shannon Divergent Similarity Estimation (JSSE) method (Zhu
et al., 2021) was used to construct individual brain networks
for preschool children with ASD. Student’s t-test was used
to select critical features of brain networks between groups.
There are two primary aims of this study: (1) To discover
altered patterns of individual brain connectome, including
morphological connectivity, node graph metrics, and global
graph metrics, in preschool children with ASD. (2) To achieve
accurate classification of preschool children with ASD and NCs.

MATERIALS AND METHODS

Participants
Only children aged between 2 and 5 years were included in
this study. A total of 24 preschool children with ASD (18 male
and 6 female, 32.29 ± 7.32 months) who were diagnosed with
ASD based on DSM-5, Gesell Developmental Scales (Gesell);
Autism Behavior Checklist (ABC); the Modified Checklist for
Autism in Toddlers (M-CHAT); Clancy Autism Behavior Scale
(CABS), scanned with sMRI, were consecutively enrolled in this
study between January 2019 and December 2020. We excluded
patients with a history of hypoxic ischemic encephalopathy,
head trauma, psychiatric disorders, and substance use disorder.
Seventeen typical developmental NC groups, including 5 males
and 12 females, aged 34.94 ± 7.86 months, matched for similar
ages, and sex distributions were randomly recruited to obtain
normative data. Detailed clinical participants’ information can be
found in Table 1. None of the NCs had a history of cognitive
impairment or neurological or psychiatric disorders. The study
was approved by the Ethics Committee of Hunan Children’s
Hospital. After signing informed consent, each subject was
examined by magnetic resonance imaging (MRI).

Data Acquisition
All participants were scanned using the German Siemens 3.0
T Skyra magnetic resonance scanner (eight-channel, head coil).
Children were instructed to sleep during image acquisition,
followed by routine MRI sequence scans to exclude intracranial
organic lesions. The specific parameters were as follows:

TABLE 1 | Local and global graph metrics of the morphological brain connectome.

Local graph metrics Global graph metrics

Degree centrality (DC) Assortativity (Ar)

Nodal efficiency (Ne) Modularity score (Q)

Betweenness centrality (BC) Hierarchy (Hr)

Nodal characteristic path length (NLp) Global efficiency (Eglocal)

Nodal clustering coefficiency (NCp) Local efficiency (Elocal)

Nodal local efficiency (NLe) Clustering coefficient (Cp)

Normalized clustering coefficient (γ )

Normalized characteristic path length (λ)

Small-world (σ )

Characteristic path length (Lp)

Synchronization (Sr)
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T2 weighted imaging (T2WI) axis images: repetition time
(TR) = 2230 ms, echo time (TE) = 108 ms, matrix = 256 × 256,
field of view (FOV) = 240 mm × 240 mm, and slice
thickness = 4 mm. T1 weighted imaging (T1WI) axis images:
TR = 800 ms, TE = 15 ms, slice thickness = 4 mm,
FOV = 240 mm × 240 mm. T2-fluid attenuated inversion
recovery (FLAIR): TR = 8000 ms, TE = 102 ms, slice
thickness = 4 mm, matrix = 256× 256, inversion time = 2369 ms,
and FOV = 240 mm × 240 mm. The three-dimensional T1-
weighted sagittal images were acquired using magnetization-
prepared rapid gradient echo: TR = 2300 ms, TE = 2.33 ms, slice
thickness = 1 mm, and FOV = 240 mm × 240 mm, scanning
time: 4 min 12 s.

Image Preprocessing
Data were preprocessed using Computational Anatomy Toolbox-
CAT12, a toolbox of Statistical Parameter Mapping 12 (SPM
12) software implemented on MATLAB 2012b. According to the
CAT12 software analysis, the total brain volume, the volume of
GM, white matter (WM), and cerebrospinal fluid (CSF) for each
individual can be obtained. Next, individual GM image volumes
should be normalized into standard Montreal Neurological
Institute (MNI) space with non-linear deformation parameters.

Individual-Level Brain Network
Construction
Distributional divergence-based methods were successfully
applied to the construction of individual morphology network
(Kong et al., 2014; Wang et al., 2016). Many researchers have
utilized the Kullback–Leibler (KL) divergence to construct the
individual network:

DKL (P||Q) =
∫
∞

−∞

p(x)log
p(x)
q(x)

dx (1)

In this equation, the KL divergence is asymmetrical. P and
Q represent a pair of ROIs’ probability density function (PDF)
of voxel intensity. In our study, we used JSSE to estimate
morphological connections between regions to characterize
morphological relationships. Compared with KL-based methods,
the JSSE method has two advantages. The benefit of this approach
is that the range of Jensen–Shannon (JS) divergence (0–1) makes
the judgment of similarity more accurate. The second advantage
is that it becomes easier to characterize the connections between
ROIs because of symmetrical JS divergence.

The detailed process is described as follows (Zhu et al.,
2021): first, after preprocessing, the structural T1 images were
segmented into GM, WM, and CSF. Next, we used GM
to construct individual morphological networks. In detail,
we represented brain nodes with the 90 ROIs (45 for each
hemisphere without cerebellum) in automated anatomical
labeling (AAL) atlas segmentation to describe individual
morphological networks. Global normalization was used in each
region of interest (ROI) to construct a regional correlation matrix
(90 × 90) for everyone. The intensity of the voxels in every
ROI was extracted. Then it was used to estimate the PDF of
the corresponding ROI with kernel density estimates. Finally, we

obtained the morphological connections that are categorized as JS
divergence (Li et al., 2021) based on the following mathematical
equations:

DJS (P||Q) =
1
2
[DKL (P||M)+ DKL (Q||M) ]

M =
1
2
(P +M)

where M and DKL(·|·) are the KL-divergence. The adjacency
matrix describes a pair of morphological connections. And the
corresponding elements in it represented the strength of the
morphological connection between regions i and j.

Graph Metrics Construction
In order to explore the alteration of connection patterns in
the brain’s morphological networks in ASD, we analyzed the
global and local measurement of morphological brain networks
using Graph Theory Network Analysis Toolbox (Wang et al.,
2015). Specifically, the global metric includes the clustering
coefficient (Cp), characteristic path length (Lp), normalized
cluster coefficient (γ), normalized characteristic path length (λ),
small world (σ), global efficiency (Eglobal), and local efficiency
(Elocal) (Newman, 2004). Local graph metrics also include
degree centrality (DC), nodal efficiency (Ne), betweenness
centrality (BC), nodal characteristic path length (NLp), nodal
local efficiency (NLe), and nodal clustering coefficient (NCp).
These indicators’ definition could be found in the research
of Wang et al. (2015). Different connection patterns can be
characterized by global and node graph metrics, as shown in
Table 1.

Feature Selection and ASD Identification
To confirm the validity of ASD identification, we performed
one of the most stringent nest-stay one cross validation
(LOOCV) strategies. It can make full use of all subjects, and
provides an more accurate classification (Li et al., 2020a). All
subjects were used to train classifiers except for one subject.
At the same time, to reduce the interference in the feature
selection process, we chose Student’s t-test (P < 0.05) to
select the node and global graph measurements (Li et al.,
2020b). For connection weights, significance level was set
at the 1% level using the Student t-test, which was carried
out using the non-parametric permutation method (10,000
permutations) (Zuo et al., 2012). Significance levels were
set at the 1% level using the Student t-test. To combine
these information toward better ASD identification, the linear-
kernel based MK-SVM is conducted following some recent
studies (Xu et al., 2020a,b). Figure 1 provides all procedures
mentioned above.

Statistical Analysis
Statistical analysis was performed using SPSS software (version
25.0, IBM Corporation, Armonk, NY, United States). Continuous
variables are expressed as mean ± SD. Student’s t-test and
Pearson’s χ2 test were used for comparisons between two
groups. To assess the information combination method and
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FIGURE 1 | Data processing and analysis.

the classification performance of the proposed JSSE, we used
the following quantitative measures: accuracy, sensitivity, and
specificity. The mathematical definitions of these three measures
are given as follows:

Accuracy

=
True Positive+ True Negative

True Positive+ False Positive+ True Negative+ False Negative

Sensitivity =
True Positive

True Positive+ False Negative

Specificity =
True Negative

True Negative+ False Positive

The area under the curve (AUC) and the receiver operating
characteristic curve (ROC) were calculated as measures for
classifying patients with ASD and NCs. Significance levels were
set at the 5% level for all, but 1% for morphological connections.

RESULTS

Demographics and Clinical Data
Table 2 shows the summary statistics for all participants. No
significant differences were found in sex or age between the ASD
and NCs (P > 0.05 for all).

Global Graph Metrics of the
Morphological Brain Connectome
The global graph metrics of participants in the ASD and
NC groups are shown in Table 3. Statistical analyses revealed
that there were no significant differences in any of the global
graph metrics between participants in the ASD and NC groups
(P > 0.05 for all).

Nodal Graph Metrics of the
Morphological Brain Connectome
The significant differences between the ASD and NCs in each ROI
are shown in Tables 4–9. From these tables, it is apparent that the

TABLE 2 | Demographic and clinical characteristics in ASD patients and NCs.

Variable ASD (n = 24) NCs (n = 17) P-value

Age (months) 32.29 7.32 34.94 7.86 0.275b

Sex (female/male) 6/18 5/12 0.753a

Gesell 39.92 23.68 NA NA

ABC 93.25 58.08 NA NA

M-CHAT 27.75 11.22 NA NA

CABS 12.67 6.26 NA NA

Gesell, Gesell Developmental Scales; ABC, Autism Behavior Checklist; M-CHAT,
Modified Checklist for Autism in Toddlers; CABS, Clancy Autism Behavior Scale.
aP-value was obtained by using the Chi-square test.
bP-value was obtained by using a two-sample t-test.

TABLE 3 | Global graph measurement of the morphological brain
connectome in NCs and ASD.

Global graph metrics NCs (mean ± SD) ASD (mean ± SD)

Ar 0.1457 0.03 0.1522 0.02

Q 17.4754 1.71 17.9321 1.57

Hr 0.0582 0.03 0.0688 0.02

Eglocal 0.2265 0.01 0.2275 0.01

Elocal 0.3661 0.01 0.3693 0.01

Cp 0.3146 0.01 0.3166 0.01

γ 1.0225 0.10 1.0645 0.13

λ 0.5602 0.02 0.5543 0.01

σ 0.7879 0.09 0.8247 0.09

Lp 1.0551 0.06 1.0341 0.05

Sr −1.0018 1.25 −1.9170 1.92

Ar , assortativity; ASD, autism spectrum disorder; Cp, clustering coefficient; Eglobal,
global efficiency; Elocal, local efficiency; Hr, hierarchy; Lp, characteristic path length;
NCs, normal controls; Q, modularity score; Sr , synchronization; γ, normalized
clustering coefficient; λ, normalized characteristic path length; σ, small-world.
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TABLE 4 | Between-group comparison in BC.

Region Nodal graph measure Mean value P-value

NCs ASD

MOG.R BC 20.34094 34.59861 0.037526

IPL.L BC 49.02761 83.13141 0.012876

PCL.R BC 8.565475 29.38573 0.015691

TABLE 5 | Between-group comparison in DC.

Region Nodal graph measure Mean value P-value

NCs ASD

ORBmid.R DC 10.444710 12.631250 0.019290

HIP.R DC 12.156180 8.671000 0.013924

LING.R DC 14.650590 11.494000 0.032529

IPL.L DC 10.236760 14.680750 0.013051

PCL.L DC 3.642941 5.898500 0.039057

PUT.L DC 8.951765 11.893500 0.014066

PUT.R DC 8.659706 11.134250 0.040263

THA.R DC 6.490000 10.792500 0.000206

TABLE 6 | Between-group comparison in NCp.

Region Nodal graph measure Mean value P-value

NCs ASD

ORBmid.L NCp 0.342462 0.320918 0.015702

ORBmid.R NCp 0.342355 0.321900 0.049634

SMA.L NCp 0.370547 0.341055 0.024054

PCG.R NCp 0.191760 0.281514 0.034550

MOG.R NCp 0.325027 0.294525 0.027890

SMG.L NCp 0.315014 0.274908 0.044608

PCL.L NCp 0.241941 0.363027 0.006307

predominant brain regions with different levels of nodal graph
measures were distributed mainly in the frontal, occipital, parietal
gyri, and basal ganglia (BG). Compared with NCs, patients with
ASD had significantly higher values of BC in the IPL.L, MOG.R,
and PCL.R (Table 4). For DC, the values of the ASD group were
lower than those of the NC group in the HIP.R, LING.R, but
higher in IPL.L, ORBmid.R, PCL.L, PUT.L, PUT.R, and THA.R
(Table 5). Nevertheless, participants in the ASD group showed
significantly lower nodal clustering coefficients in the MOG.R,
bilateral ORBmid, and SMA. In PCG.R and PCL.L, the ASD
group showed significantly higher values of NLe (Tables 6, 7).
For Ne, the ASD group had significantly higher values in IPL.L,
ORBmid.R, PCL.L, PCL.R, PUT.L, PUT.R, THA.R compared
with the NC group (Table 8) but lower in the HIP.R, LING.R.
Nevertheless, in SOG.R, the ASD group showed significantly
higher values of NLp, while lower in ITG.L, MFG.R, SMG.L
(Table 9) (P < 0.05, for all).

Consensus Significant Morphological
Connections
By using Student’s t-tests, we selected the consensus connections
with P-values < 0.01 in each loop, resulting in a total of 16

TABLE 7 | Between-group comparison in NLe.

Region Nodal graph measure Mean value P-value

NCs ASD

ORBmid.L NLe 0.394183 0.383576 0.042599

SMA.L NLe 0.406270 0.390297 0.034042

PCG.R NLe 0.194410 0.284032 0.037018

PCL.L NLe 0.263333 0.396279 0.003965

THA.R NLe 0.336583 0.365775 0.040534

TABLE 8 | Between-group comparison in Ne.

Region Nodal graph measure Mean values P-value

NCs ASD

ORBmid.R Ne 0.237425 0.258050 0.009147

HIP.R Ne 0.249732 0.219698 0.013432

LING.R Ne 0.271090 0.235913 0.047874

IPL.L Ne 0.224450 0.271096 0.016760

PCL.L Ne 0.141197 0.191237 0.019205

PCL.R Ne 0.153426 0.205746 0.037053

PUT.L Ne 0.227609 0.254986 0.008673

PUT.R Ne 0.224428 0.248695 0.024248

THA.R Ne 0.202564 0.243955 0.000197

TABLE 9 | Between-group comparison in NLp.

Region Nodal graph measure Mean value P-value

NCs ASD

MFG.R NLp 3.300256 1.176965 0.048548

SOG.R NLp 0.858391 1.471262 0.015142

SMG.L NLp 1.459081 0.860388 0.018943

ITG.L NLp 3.970017 1.084850 0.039177

connections, as shown in Figure 2. We observed that most
consensus connections in the frontal, parietal, and thalamic
regions were increased inpatients with ASD but decreased in
the occipital, prefrontal, and temporal lobes and pallidum. There
were 24 nodes with consensus connections, which are listed in
Table 10.

Classification Results
For the morphological connectivity (C), global metric (G), and
node metric (N) of brain network, the corresponding AUC values
were 0.9112, 0.6852, and 0.8088 AUC, respectively (Table 11,
Figure 3). By combining C and G, G and N, and C and N,
we obtained 86.48, 89.20, and 81.08% accuracy, respectively.
Interestingly, although the classification ability of global graph
metrics is low, it still improve the ability of node graph metrics
and morphological connections. Finally, the combination of
morphological connection, global metrics, and node metrics
(C+G+N) achieves the best classification performance, with an
accuracy of 94.59%, a specificity of 95.00%, and an AUC of 0.9882.
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FIGURE 2 | The most consensus connections. The arc thickness indicates
the discriminative power of an edge, which is inversely proportional to the
estimated P-values.

FIGURE 3 | The ROC results of different methods. C, morphological
connectivity; G, global metric; N, nodal metric; TPR, true positive rate; FPR,
false positive rate.

DISCUSSION

In this study, we selected characterized features from different
properties of brain connective groups and combined these
information to train the classifier to distinguish between patients
with ASD and NCs. Our detailed results are as follows. First,
the individual brain network built based on the JSSE method
provides multidimensional indicators for individual analysis.

TABLE 10 | Between-group comparison in consensus connections.

Region Region Mean value P-value

ASD NCs

PAL.R STG.L −0.046500 0.071894 0.000197

PCG.L IPL.L −0.353380 −1.033010 0.000214

PCL.L THA.R −0.629460 −1.055520 0.000397

PCL.R THA.R −1.169130 −0.978770 0.000451

INS.R THA.R 0.389428 −0.149830 0.000523

HIP.R PHG.L −1.262140 0.485249 0.000606

INS.L THA.R 0.358809 −0.304150 0.000690

OLF.R TPOmid.L 0.326674 0.281932 0.000970

PCG.L ITG.L −0.675520 −1.288400 0.001128

HIP.R CAL.L −0.987930 0.346887 0.001265

PreCG.L SMA.R 0.185599 −0.114520 0.001612

SMA.R PreCG.L 0.185599 −0.114520 0.001612

HIP.R LING.R 1.253025 0.126837 0.001616

OLF.L IOG.L −0.461760 0.310021 0.001773

ORBsup.L ORBsupmed.L −1.291030 0.580881 0.001840

IPL.L IPL.R 0.198135 −0.239100 0.002110

TABLE 11 | Classification performance corresponding to different methods.

Method Sensitivity (%) Specificity (%) Accuracy (%) AUC

C 82.35 84.00 83.78 0.9112

G 52.94 65.00 59.46 0.6852

N 70.58 80.00 75.67 0.8088

C + G 86.49 85.00 86.48 0.9402

C + N 88.24 90.00 89.20 0.9588

G + N 76.47 86.00 81.08 0.9382

C + G + N 94.11 95.00 94.59 0.9882

Morphological connectivity (C), global metric (G) nodal metric (N).
C + G + N methods are significantly superior to connection, global, and nodal.

Second, patients with ASD affected abnormal brain regions,
and their pathways were predominantly distributed in the BG,
thalamus, and cortical regions spanning the frontal, temporal,
and parietal lobes. The over connection of the above brain
regions provides effective brain network features for identifying
preschool children with ASD. Finally, the combination of
morphological connectivity, global metrics, and node metrics
(C+G+N) effectively improves classification performance, and
consensus connectivity contributes the most to classification.

Compared with those of participants in the control group,
the brain regions with local nodal graph measurements and
consensus connections in patients with ASD, differences were
mainly distributed in the bilateral precentral gyrus, left inferior
parietal, supramarginal and angular gyri, left inferior temporal
gyrus, right hippocampus, right lingual gyrus, right thalamus,
and right posterior cingulate gyrus. This suggests that the
patients with ASD affected abnormal brain regions and that their
pathways are predominantly distributed in the BG, thalamus,
and cortical regions spanning the frontal, temporal, and parietal
lobes, which is consistent with previous studies (Courchesne,
2002; Belmonte et al., 2004; Just et al., 2004; Kumar et al., 2010;
Abbott et al., 2018). These brain regions play an important role
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in social interaction, communication, and repetitive behavior.
Although structural abnormalities are not the only mechanism
that leads to changes in functional connections, abnormal brain
structure, and connections in patients with ASD are one of the
theological bases for their abnormal brain function connection
patterns (Zikopoulos and Barbas, 2013). The posterior cingulate
gyrus is the core hub of the default mode network (DMN) (De
Pasquale et al., 2018; Busler et al., 2019) and exhibits the strongest
connectivity in its trajectory, especially within the DMN (Gao
et al., 2009). The left inferior parietal connects the patterns
of action and social cognition and is the key node in the
action observation network (AON) (Wymbs et al., 2021). AON
is hypothesized to support imitation behavior. When the left
inferior parietal is damaged, it may lead to impairment of the
core social and communicative characteristics of ASD (Oberman
and Ramachandran, 2007). In addition, the thalamus is involved
in the processing of neuronal signaling among different cortical
regions and is related to cognitive processing and emotion
processing. The atypical sensory reactivity seen in ASD could
be related to altered thalamic connectivity. ASD-related studies
also showed that the thalamus may play a role in sensory
overresponsivity (SOR) (Ben-Sasson and Podoly, 2017; Podoly
and Ben-Sasson, 2020), an extreme negative response to sensory
stimuli (Green et al., 2017).

At the local brain network level, compared with NCs, patients
with ASD have a higher value of Ne in the frontal parietal
lobe (ORBmid.R, IPL.L, PCL.L, PCL.R), BG (PUT.L, PUT.R),
and thalamus, while the limbic system (HIP.R, LING.R) is
reduced. In addition, the value of DC in HIP.R and LING.R
were decreased. This indicates high input of cortical and BG
information, while limbic system information integration and
processing efficiency were reduced. The primitive limbic system
dominates the control system, which can cause it to be unable to
properly regulate external stimuli, thus affecting the child’s ability
to think and act. This may be the cause of repetitive stereotyped
behaviors and communication disorders in patients with ASD.
The increased BC value in patients with ASD in MOG.R, IPL.L,
PCL.R regions indicates an enhanced role in the entire brain
information transmission system. This study found that the NLp
in the MPG.R, ITG.L of patients with ASD is shorter than that
of NCs, indicating that the ability of corresponding brain region
function integration is enhanced, and the ability to transmit
information over long distances is stronger. Some studies have
also reached similar conclusions using diffuse tensor imaging.
This abnormality may be related to the WM over connection
of the brain of patients with ASD, especially in the network
involving the BG and the collateral-limbic system. Moreover, the
nodal clustering coefficiency of ORBmid.L, ORBmid.R, SMA.L,
MOG.R, SMG.L were also reduced compared to those in NCs,
suggesting that the degree of connectivity between those brain
regions in the ASD group was reduced, which may be the cause of
communication disorders in ASD. However, at the whole-brain
level, the means of assortativity, modularity score, hierarchy (Hr),
Eglobal, Elocal, clustering coefficient, characteristic path length, and
small world in the ASD group were higher than those of NCs
but lower in normalized clustering coefficient and normalized
characteristic path length. Additionally, there was no significant

difference in the comparison between groups, which is the same
as the study of Chen et al. (2021). This is different from the
result of Gao et al. (2020), which may be related to the tool of
morphological connectivity construction.

In addition, this study also showed that the marginal-
cortical-basal ganglia-thalamus-cortical circuits in patients
with ASD were disturbed. In our analysis of consensus
significant morphological connections, the most involved was
the cortico-BG-thalamic pathway (Kim et al., 2016). The BG
play a crucial role in stereotyped behavior. These structures
include the neostriatum (caudal and shell nuclei), globus
pallidus, and thalamus and are functionally interconnected. The
corticostriatal pathway receives information input from multiple
brain regions, and each loop route consists of two distinct
pathways: the “direct pathway” (cerebral cortex-striatum-
pallidum medial/subthalamic-cerebral cortex) and the indirect
pathway (cerebral cortex-striatum-lateral part of the globus-
pallidus-subthalamus nucleus-medial palette/subthalamus
nigra/subthalamus-cerebral cortex). The BG are involved in
regulation through direct and indirect pathways. Any imbalance
in these loops can lead to stereotypical behavior. This finding
indicates that children with ASD showed overconnectivity within
whole-brain networks and internetwork reduction compared to
NCs. On the other hand, cortico-subcortical over connection
provides a theoretical framework for the existence of social
disorders in conceptual autism (Nair et al., 2020). In addition
to these regions, our results showed that more connections
(16 significant connections in total) of patients with ASD were
affected, worthy of further study on a larger scale combined
with clinical data.

Our current brain connective approach can effectively
distinguish individuals with ASD from HCs because it can
measure local network properties and the whole network. In our
work, we observed that morphological consensus connectivity
and nodal metrics can provide effective indicators for identifying
ASD. Although the classification effect of global indicators is the
worst, they can still provide information about morphological
connections and nodal indicators. By combining morphological
connection and nodal metric (C + N), global metric and nodal
metrics (G + N), and morphological connection and global
metrics (C + G), the classification performance was effectively
improved. All of this information is combined to achieve more
accurate classification results.

The study has several limitations. First, the study didn’t further
classify the severity of ASD patients due to small sample size
and imbalanced data. Second, the morphological network of ASD
patients will change with aging, and we need to track these
patients for further study in the future.

CONCLUSION

The individual brain network indicator based on the JSSE
method is an effective indicator for identifying individual-
level brain network abnormalities in patients with ASD. The
proposed classification method can contribute to the early clinical
diagnosis of ASD.
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