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Background. Acute myocardial infarction (AMI) and coronary artery bypass graft (CABG) surgery are associated with a pathogen-
free inflammatory response (sterile inflammation). Complement cascade (CC) and bioactive sphingolipids (BS) are postulated to be
involved in this process. Aim. The aim of this study was to evaluate plasma levels of CC cleavage fragments (C3a, C5a, and C5b9),
sphingosine (SP), sphingosine-1-phosphate (S1P), and free hemoglobin (fHb) in AMI patients treated with primary percutaneous
coronary intervention (pPCI) and stable coronary artery disease (SCAD) undergoing CABG. Patients and Methods. The study
enrolled 37 subjects (27 male) including 22 AMI patients, 7 CABG patients, and 8 healthy individuals as the control group
(CTRL). In the AMI group, blood samples were collected at 5 time points (admission to hospital, 6, 12, 24, and 48 hours post
pPCI) and 4 time points in the CABG group (6, 12, 24, and 48 hours post operation). SP and S1P concentrations were
measured by high-performance liquid chromatography (HPLC). Analysis of C3a, C5a, and C5b9 levels was carried out using
high-sensitivity ELISA and free hemoglobin by spectrophotometry. Results. The plasma levels of CC cleavage fragments (C3a
and C5b9) were significantly higher, while those of SP and S1P were lower in patients undergoing CABG surgery in comparison
to the AMI group. In both groups, levels of CC factors showed no significant changes within 48 hours of follow-up. Conversely,
SP and S1P levels gradually decreased throughout 48 hours in the AMI group but remained stable after CABG. Moreover, the
fHb concentration was significantly higher after 24 and 48 hours post pPCI compared to the corresponding postoperative time
points. Additionally, the fHb concentrations increased between 12 and 48 hours after PCI in patients with AMI. Conclusions.
Inflammatory response after AMI and CABG differed regarding the release of sphingolipids, free hemoglobin, and complement
cascade cleavage fragments.

1. Introduction

According to WHO, cardiovascular diseases (CVD) are the
leading cause of morbidity and mortality worldwide (17.5
million per year) [1]. The epidemiological data reflects the
global trend for Europe, where coronary artery disease

(CAD) with its complication in the form of acute myocardial
infarction (AMI) and, in the longer-term, heart failure,
accounts for 20% of all deaths among Europeans [2, 3].

Despite the significant advancement in therapeutic
strategy including optimized pharmacotherapy and myocar-
dial revascularization, the prognosis of patients with CVD
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remains unsatisfactory. Addressing this medical and socio-
economical challenge, a better understanding of the patho-
physiology of myocardial ischemia must be achieved. Since
inflammation plays the key role in coronary plaque
rupture, new markers of this process such as bioactive
sphingolipids (BS) and complement cascade (CC) seem
to be important.

Both forms of myocardial injury—AMI and CABG
procedure—trigger an intense local and systematic inflamma-
tory response in pathogen-free form termed sterile inflam-
mation [4]. At the molecular level, this process relies on a
complex intracellular interaction network orchestrated by
chemoattractant gradient of growth factors, cytokines,
kinins, chemokines, BS, CC, coagulation, and fibrinolysis
cascades [5–8]. Conventionally, activation of the inflamma-
tory response is associated with adverse clinical outcomes.
However, according to new research data, CC and BS play
an essential role also in the myocardial repair process.

BS, including sphingosine (SP) and sphingosine-1-
phosphate (S1P)[9, a biologically important class of com-
pounds, have essential functions including regulation of cell
growth, differentiation, proliferation, adhesion, migration,
and apoptosis as well as inflammation and angiogenesis
[10]. Erythrocytes (generating almost half of S1P concentra-
tion in blood), activated platelets, albumin, high-density lipo-
proteins, endothelial cells, and circulating microvesicles are
the primary source of plasma S1P [11–15]. S1P mediates its
biological function via five receptor subclasses (S1P1–5),
where S1P1–3 are characteristic for the cardiovascular sys-
tem influencing cardiac morphogenesis [16], endothelial
integrity [17], smooth muscle cell function [18], and heart
rate [19]. Overall, SP and S1P have a protective role in ische-
mia/reperfusion injury (IRI) in the heart [20]. Nevertheless,
they are also involved in atherogenesis [21] and vessel
remodeling [22]. Apart from metabolic function, S1P has a
crucial position in bone marrow (BM) stem cell mobilization
and homing [23]. Stem cell mobilization is S1P1- and S1P3-
dependent [24, 25], while S1P2 receptor activation promotes
BM cell retention [26].

The complement cascade consists of more than 50 pro-
teins functionally associated with receptors and regulatory
proteins. The mechanism of CC activation is based on cas-
cade enzymatic cleavage of specific proteins [27]. Apart from
its crucial role in innate and adaptive immune system
response against pathogens, CC is involved in AMI- and
CABG-induced inflammatory processes and stem cell mobi-
lization [6, 28–30].

The study aimed at exploring further the role of BS
and CC in the myocardial injury induced by AMI and
cardiac surgery.

2. Patients and Methods

The study population consisted of 37 patients (mean age
57.8 ± 11.9 years) including 22 patients (59%) with ST-
segment elevation myocardial infarction (STEMI) (2nd and
3rd Department of Cardiology, Medical University of Silesia)
and 7 patients (19%) undergoing CABG (Department of
Cardiac Surgery, Medical University of Silesia). Eight healthy

individuals consisted a control group (CTRL). The study
adhered to the principles of the Declaration of Helsinki and
was approved by the Ethics Committee of the Medical
University of Silesia in Katowice.

The project was funded by the European Union struc-
tural funds—Innovative Economy Operational Programme,
Grant POIG.01.01.02-00-109/09 “Innovative methods of
stem cells applications in medicine”, and statutory funds
of Medical University of Silesia (KNW-2-052/D/5/N). More-
over, Tomasz Jadczyk was supported by the DoktoRIS—
Scholarship Program for Innovative Silesia.

2.1. Patients. After hospital admission, medical history tak-
ing, and physical examination, individuals with AMI under-
went coronary angiography with radial or femoral artery
vascular access. Subsequently, pPCI with stent(s) implanta-
tion was performed on the infarct-related artery.

Exclusion criteria were as follows: (1) history of myo-
cardial infarction within 30 days prior to study enrolment,
(2) history of coronary artery intervention or CABG within
30 days prior to study enrolment, (3) pregnancy, (4) neo-
plasm, (5) chronic kidney failure (eGFR < 30mL/kg/min),
(6) liver failure, (7) coagulopathies and/or hematopoietic sys-
tem diseases, (8) autoimmunological disorder, (9) systemic
inflammatory process, (10) chronic obstructive pulmonary
disease, (11) myopathies, and (12) muscle injury within 30
days prior to study enrolment.

Inclusion criteria were as follows: (1) age 18–80 years,
(2) AMI diagnosed according to the European Society of
Cardiology guidelines and referred for primary PCI within
<12 hours after the onset of chest pain, or (3) multivessel,
coronary artery diseases, referred for elective CABG, and
(4) signed written informed consent.

2.2. Laboratory Investigations. In AMI patients, blood
samples were obtained at hospital admission and 6, 12, 24,
and 48 hours post pPCI. In the CABG group, blood samples
were drawn 6, 12, 24, and 48 hours after cardiac surgery. In
the control group, the samples were taken once. Samples
(5mL of peripheral blood) were drawn, mixed with anticoag-
ulant (EDTA), and centrifuged within 1 h (10min, 20°C;
2500 rpm). Plasma was divided into 3-4 tubes and stored in
−20°C until analysis.

2.3. Plasma Concentration of CC Cleavage Fragments. Analy-
sis of C3a, C5a, and C5b9 plasma concentrations was carried
out using commercially available, highly sensitive ELISA kits
(duplicate measurements): (1) C3a—Human C3a Platinum
ELISA, BMS2089TEN, eBioscience; (2) C5a—Human C5a
Platinum ELISA, DE3327, eBioscience; and (3) C5b9—Hu-
man Terminal Complement Complex C5b-9 (C5b-9) ELISA
Kit, DL-C5b-9-Hu, DLDEVELOP, according to the manu-
facturer’s protocol.

2.4. Plasma Concentration of Sphingosine and Sphingosine-1-
Phosphate. SP and S1P plasma concentration measurements
were performed as previously described [31, 32]. Briefly,
plasma (300μL) was thawed at room temperature, and inter-
nal synthetic standard D-erytro-sphingosine-1-phosphate
(S1P C18, Avanti Polar Lipids Company) and chloroform/
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methanol mixture (1 : 2, v/v) were added. Then, samples were
sonicated for 10 minutes, and 600μL 1M NaCl, 600μL chlo-
roform, and 60μL 3M NaOH were added. The samples were
thoroughly vortexed and centrifuged (10min, 5000 rpm).
The upper aqueous phase containing sphingoid phosphates
was transferred to another tube. The lower phase was
extracted (with 600μL 1M NaCl, 600μL chloroform, and
60μL 3M NaOH), mixed, and centrifuged once more. Both
aqueous phases were combined, and chloroform (1500μL)
and concentrated HCl (160μL) were added. The samples
were vortexed and centrifuged (10min, 5000 rpm). The lower
organic phase was transferred to another tube and vacuum-
dried in a SpeedVac for 45 minutes in 45°C (RVC 2-25 CD,
Martin Christ GmbH) and stored at −80°C until assays were
performed.

Directly before analytical measurements, dried residue
was dissolved in methanol (150μL). After addition of reac-
tion mixture OPA to derivatization (5mg o-phthalaldehyde,
100μLmethanol, 5μL of mercaptoethanol, and 5mL of boric
acid in pH10.5), samples were incubated at room tempera-
ture and then centrifuged (10min, 5000 rpm). The clear
supernatant was transferred to a fresh tube and subjected to
RP HPLC analysis.

Analysis of S1P was carried out using a Hewlett
Packard Series 1200 (Agilent, USA). Reversed-phase HPLC
was performed on the column Cosmosil 5μm C18-ARII
(150× 4.6mm) with precolumn 5μm C18-ARII (10×
4.6mm) (Waters). The column temperature amounted to
25°C. The isocratic method with active phase consisting
of 10mM K2HPO4 (pH5.5) and methanol (15 : 85; v/v)
was applied. The flow rate was 1.0mL/min. 50μL samples
were injected every 30 minutes. The wavelength for detec-
tion of the derivatives of S1P was 340 nm for excitation
and 455nm for emission. The quantitation was based on
peak areas with and without internal standard calibration
(S1P-C17 from Avanti Polar Lipids).

2.5. Plasma Concentration of Free Hemoglobin. The
concentration of free hemoglobin was assessed applying
spectrophotometry (UV/VIS Lambda 650, PerkinElmer,
USA) with Drabkin’s reagent [33].

2.6. Statistical Analysis. Statistical analysis was carried out
using SAS University Edition (SAS Institute Inc., Cary, NC,
USA) and expressed as the mean ± standard deviation (SD).
Qualitative data were expressed as crude values and/or
percentages. Differences between groups were analyzed using
T-test for normally distributed data and Mann–Whitney U
test for nonnormally distributed data. Within-group plasma
concentration differences of analyzed factors were assessed
using the one-way analysis of variance (ANOVA) test for
normally distributed data and Friedman Two-way Analysis
of Variance by Ranks test for nonnormally distributed data.
A post hoc group comparison was performed with Tukey’s
and Dunn’s test, as appropriate. Data distribution was veri-
fied with the Shapiro-Wilk test [34]. A value of p < 0 05 was
considered as significant.

3. Results

Clinical characteristics of the study population are presented
in Table 1. In the CABG group, the number of patients with
hypertension, dyslipidemia, and diabetes mellitus was signif-
icantly higher than in the AMI group. Moreover, there were a
numerically higher number of males in all groups. All
patients in the AMI group were treated successfully with
TIMI 3 flow in the culprit vessel. No deaths and adverse
events were noted during the study.

In the CABG group, surgery and the periprocedural
period were uncomplicated. Patients healed their sternal
wounds uneventfully without subsequent problems allowing
timely respiratory and mobility rehabilitation.

3.1. Complement Cascade Cleavage Fragments. Within the
48-hour observational period, C3a and C5b9 plasma levels
were significantly higher in the CABG group when compared
to AMI patients (p < 0 01). Also, levels of C3a were higher in
CABG than in the CTRL group. In patients with MI, C5a
concentration was 2-fold higher in comparison with the con-
trol group at 12 and 48h hours after admission (Figure 1).

A point-by-point analysis of CC component plasma
concentrations within 48 hours did not show statistically
significant differences between AMI and CABG patients
(Figure 2).

Table 1: Baseline characteristics of study groups.

AMI group n = 22 CABG group n = 7 CTRL group n = 8
Males, n (%) 17 (77.3) 6 (85.7) 4 (50.0)

Age (mean ± SD) 58.4±12.7 55.6 ± 9.3 48.1 ± 4.9

Previous myocardial infarction, n (%) 4 (18.2) 1 (14.3) 0 (0)

Previous percutaneous coronary intervention, n (%) 3 (13.6) 1 (14.3) 0 (0)

Previous coronary-artery bypass graft surgery, n (%) 1 (4.5) 0 (0) 0 (0)

Hypertension, n (%) 14 (63.6) 7 (100) 0 (0)

Diabetes mellitus, n (%) 3 (13.6) 3 (42.9) 0 (0)

Dyslipidemia, n (%) 11 (50.0) 7 (100) 0 (0)

Current smoking, n (%) 12 (54.5) 6 (85.7) 1 (12.5)

Family history of cardiovascular diseases, n (%) 8 (38.1) 3 (75.0) 1 (12.5)

AMI: acute myocardial infarction; CABG: coronary artery bypass graft; CTRL: control group; SD: standard deviation.
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3.2. Sphingosine and Sphingosine-1-Phosphate. Oppositely,
SP and S1P concentrations were significantly lower in subjects
undergoing CABG compared to AMI patients (p < 0 01).
Moreover, in comparison to CTRL, BS showed similar levels
in CABG and AMI groups (Figures3(a)[SP] and3(b)[S1P]).
In patients with myocardial infarction, there is a signifi-
cant decrease in S1P and SP levels starting from 12 and 24
hours post pPCI, respectively (Figure 4).

3.3. Free Hemoglobin. The plasma concentration of fHb was
significantly higher in patients with acute MI in comparison
to the CABG group 24–48 hours post pPCI. Furthermore, at
admission and 24 and 48 hours after AMI, there was a ~2–2.5
fold increase in fHb level compared to CTRL (Figure 3(c)).
Moreover, in the AMI group, fHb concentration showed an
increase between 12 h and 24–48 h time points after stent
implantation (Figure 4).

4. Discussion

There are inconsistent data regarding CC and BS function
in ischemic myocardium. Thus, the current study assesses
dynamics of plasma C3a, C5a, C5b9, SP, S1P, and fHb
concentration changes in post-pPCI AMI patients and stable
CAD subjects undergoing CABG procedure. Both clinical
scenarios are associated with a pathogen-free intense
inflammatory process initiated by ischemia/reperfusion and
mechanical trauma [4]. Correspondingly to microbial-
induced inflammation, so-called sterile inflammation is
characterized by infiltration of neutrophils and synthesis
of cytokines/chemokines (i.e., tumour necrosis factor and
interleukin-1 [IL-1]) [35]. However, distinct triggers, activa-
tion, and signaling pathways are also involved in this form of
inflammatory response. Amultidirected activation of proteo-
lytic enzyme pathways (complement cascade, coagulation,
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Figure 1: CC component (a) C3a, (b) C5a, and (c) C5b9 plasma concentration in AMI, CABG, and CTRL (∗p < 0 05). AMI: acute myocardial
infarction; CABG: coronary-artery bypass graft; CTRL: control group; pPCI: primary percutaneous coronary intervention.
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and fibrinolysis system) occurs with the secretion of molec-
ular agents termed danger-associated molecular patterns
(DAMPs). Subsequently, the signal is transduced via spe-
cialized receptors, such as toll-like receptors (TLRs) and
the NOD-like receptor family, inducing upregulation of
IL-1β, which promotes recruitment of other inflammatory
cells [35].

Regarding the presented study, it is important to note
that it does not directly address an association between
sterile inflammation and changes of BS, CC, and fHb
levels. Dynamics of plasma concentration is presented in
a context of literature data strongly supporting involve-
ment of analyzed particles in the myocardium injury-
induced process.

The complement cascade is a crucial element of the adap-
tive and innate immune system [36]. Apart from antimicro-
bial activity, CC is a part of the DAMP recognition system

allowing tissue clearance under pathological conditions
including myocardial infarction and general inflammatory
response in patients undergoing CABG procedure [7, 37].
Moreover, it plays an important role in the pathogenesis of
coronary artery disease being associated with plaque instabil-
ity and a higher risk of vascular complications [38]. In
patients with AMI, the plasma level of CC components is a
resultant of intravascular cascade activation (induced by
plaque rupture and thrombus formation) [39] as well as
intramyocardial CC induction [40]. Importantly, comple-
ment activation is also associated with a percutaneous
coronary intervention, a first-line treatment strategy in
patients with STEMI. Recent studies investigating dynam-
ics of plasma CC component concentration in post-pPCI
AMI patients showed heterogeneous results [41–45]. In
the analysis by Karapetyan et al., an elevated C5b9 level
was observed 24 h after pPCI [44], whereas, within the same
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myocardial infarction; CABG: coronary-artery bypass graft; pPCI: primary percutaneous coronary intervention.
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timeframe, the research group of Horváth described an
opposite result [45]. Furthermore, Orn et al. described the
statistically significant increase in plasma C5b9 within 7 days
post AMI with subsequent normalization after 2 months
[41]. Oppositely, Cubedo et al. found reduced C3 concentra-
tion after 72 h post pPCI [43].

As mentioned, in patients with AMI complement, cas-
cade activation is triggered during intravascular thrombus
formation. Crucially, there is a direct interaction between
CC, coagulation, and fibrinolytic cascade components, as
well as platelets. This fact is important regarding study results
because both thrombin and plasmin have C5 convertase-like
activity [29, 46]. C5 plays a pivotal role in an acute phase of
myocardial infarction being associated with augmentation
of the inflammatory process and tissue damage. C5 is a
strong chemotactic factor for neutrophils increasing their
adhesion to endothelium [47, 48], stimulating them to

produce reactive oxygen species (ROS) and proteolytic
enzymes [49]. Moreover, IRI-induced C5a component gener-
ation is involved in the synthesis of cytokines, chemokines,
and proinflammatory molecules [50, 51]. Regarding myocar-
dial function, a complement cascade is predominantly
presented in a negative and deleterious context [52, 53].
Nevertheless, recent studies cast new light on CC showing
its role in the regeneration process through cell growth and
differentiation, antiapoptotic activity, and bone marrow
stem/progenitor cell (BMSPC) mobilization [54]. In con-
trast to C5, C3 has a dominant role in a chronic phase of
myocardial infarction. C3 deficiency due to gene deletion
results in left ventricle dysfunction, remodeling, and dilata-
tion. Moreover, in the animal model, pathological conse-
quences were related to reduced number and proliferation
potential of c-kit+ cardiac stem/progenitor cells as well as
impaired BMSPC mobilization [54].
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Figure 3: (a) SP, (b) S1P, and (c) fHb plasma concentrations in AMI, CABG, and CTRL (∗p < 0 05). AMI: acute myocardial infarction;
CABG: coronary-artery bypass graft; CTRL: control group; fHb: free hemoglobin; pPCI: primary percutaneous coronary intervention; S1P:
sphingosine-1-phosphate; SP: sphingosine.
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Correspondingly, CABG surgery triggers an intensive
local and general inflammatory response activating CC,
coagulation, and fibrinolytic cascade. Dynamic changes of
complement function during this procedure are associated
with surgical trauma, bioincompatibility of the cardiopul-
monary bypass circuit (CBP), pharmacotherapy (general
anesthesia, heparin, and protamine), and IRI [6, 55]. Cardiac
surgery initiates complement classical and lectin pathways
[37, 56]. Furthermore, operational tissue injury is responsi-
ble for the synthesis of plasmin, which has C3 and C5
convertase-like activity [29, 57]. Importantly, hepariniza-
tion of CBP improves biocompatibility [58, 59] reducing
C3 surface adsorption, thus inhibiting the alternative path-
way [60, 61]. Furthermore, heparin impairs coagulation
system function decreasing thrombin formation which has
C5 convertase-like activity [29]. Interestingly, reversal of

heparinization by protamine application alters CC through
classical pathway activation [62].

Hoedemaekers et al., analyzing CC function during post-
operative period, showed a biphasic activation pattern of
the classic pathway (reduction within the first 8 h after CABG
with subsequent increase). Simultaneously, researchers
described monophasic alternative pathway deactivation. It
is worth noting that, in a small population of patients, a
biphasic pattern of classic pathway activity was not seen [56].

In the current study, when compared to AMI patients, a
higher CC cleavage fragment concentration in the CABG
group might be resultant of general anesthesia, periproce-
dural tissue damage, and/or extracorporeal circulation.
Postoperative C3a concentration changes correspond to a
monophasic dynamics described by Hoedemaekers et al.
[56]. Oppositely, the C5b9 plasma level showed different
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characteristics. Interestingly, there was an increase in C5b9
concentration without increase in C5a in the same time-
frame. This result, as hypothesis [56], indicates that CC activ-
ity is decreased at the level of C5 convertase. Moreover,
changes in C5b9 and fHb plasma levels have a biphasic pat-
tern with an initial increase in concentration within 6–12 h
after surgery and subsequent decrease.

SP and S1P are responsible for fundamental cellular func-
tions playing an important role in physiology and patho-
physiology of the cardiovascular system [63]. S1P synthesis
in myocardium mediates a cardioprotective function against
cell damages caused by IRI [64]. Noteworthy, short-term
ischemia triggers generation of ROS, which induces sphingo-
sine kinase (SK) activity resulting in an increased tissue S1P
concentration [65]. Conversely, long-lasting ischemia is asso-
ciated with SK degradation [66], which could explain the
dynamics of S1P plasma concentration changes observed in
this study. SP and S1P concentrations decreased in AMI
patients within 48 hours after pPCI, which corresponds
to S1P dynamics described by Knapp et al. [67]. Similarly,
the detailed lipidomic analysis in patients with acute coro-
nary syndrome showed the statistically significant lower
concentration of S1P in comparison with healthy individuals
[68]. On the contrary, Karapetyan et al. described higher—
compared to the control group—level of this phosphosphin-
golipid in STEMI patients during the 48-hour observation
period [44].

According to the best knowledge of the authors, the pre-
sented experiment is the first study evaluating the dynamics
of bioactive sphingolipid plasma concentration in patients
undergoing CABG surgery. Interestingly, in this group, there
is a statistically significant lower SP and S1P concentration in
comparison with AMI patients and control. The results
might be related to systemic metabolic response as well as
changes in the activity of enzymes involved in sphingolipid
metabolism. In this context, the study findings could be
explained by the decreased activity of SK1 and SK2 or
increased activity of S1P phosphatase and lyase. Further-
more, restrictive diet preceding surgical procedure and
mechanical ventilation during the surgery could influence
BS metabolism. Sun et al. proved that hypoxia induces higher
SK1 activity [69]. On the contrary, in patients undergoing
CABG, periprocedural oxygenation could reduce SK activity
decreasing S1P concentration. It must also be noted that the
evaluation of plasma sphingolipid level was analyzed without
assessment of myocardial tissue concentration, which could
impact a final result.

Limitations of this study include the small number of
patients. A larger study would be needed to more clearly
understand the dynamics of SP, S1P, C3a, C5a, C5b9,
and fHb.

Moreover, in the case of sphingolipids, appropriate sam-
ple collection and preparation are critical to obtaining reli-
able results. In the current study, after taking blood from a
peripheral vein, samples were kept on ice to avoid comple-
ment cascade activation and release of sphingolipids from
platelets. On the other hand, in vivo, S1P has a short half-
life (15min) suggesting a dynamic metabolism. Thus, it
would be more preferable to maximally reduce time between

sample collection, centrifugation, and storage. In the study,
despite utilization of the ice, samples were proceeded within
1 hour, which could influence the results. Moreover, it is
important to note that centrifugation parameters are very
important. Frej et al. [70] compared the effect of centrifuga-
tion speed and time (300g for 15min versus 1000g for
10min versus 2000g for 10min versus 2000g for 20min)
on platelet count and S1P concentration establishing the
most optimal protocol (2000 g for 10min). In the presented
study, samples were vortexed and centrifuged at 5000 rpm
for 10min to obtain a platelet-free plasma. This strategy
was also applied in the study by Knapp et al. [71], who
analyzed the dose-dependent effect of aspirin on plasma
sphingolipid levels.

In regard to study limitations, the presented hypotheses
require further detailed experimental investigation.

The knowledge about bioactive sphingolipids and com-
plement system components may help to optimize thera-
peutic strategy in patients with myocardial infarction and
individuals undergoing CABG procedure. Novel pharma-
cological agents such as fingolimod (FTY720) or amiseliod
are promising candidates [72].

5. Conclusion

Plasma levels of BS and CC cleavage fragments are signif-
icantly different in AMI and CABG patients. Post-pPCI,
SP, and S1P concentrations were higher in comparison to
individuals undergoing a surgical procedure. Conversely,
C3a and C5b9 plasma concentrations were higher in the
CABG group. Moreover, the dynamics of analyzed com-
pounds was different between the groups. In AMI patients,
S1P and SP concentration decrease was observed after 12
and 24 h post pPCI, respectively. Moreover, 1 and 2 days after
percutaneous revascularization, fHb plasma level was signif-
icantly higher in comparison to patients undergoing CABG.
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