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Abstract
Despite the still prevailing notion of a shared substrate of action for all addictive drugs, there is evidence
suggesting that opioid and psychostimulant drugs differ substantially in terms of their neurobiological and
behavioral effects. These differences may reflect separate neural circuits engaged by the two drugs. Here we used
the catFISH (cellular compartment analysis of temporal activity by fluorescence in situ hybridization) technique to
investigate the degree of overlap between neurons engaged by heroin versus cocaine in adult male Sprague
Dawley rats. The catFISH technique is a within-subject procedure that takes advantage of the different transcrip-
tional time course of the immediate-early genes homer 1a and arc to determine to what extent two stimuli
separated by an interval of 25 min engage the same neuronal population. We found that throughout the striatal
complex the neuronal populations activated by noncontingent intravenous injections of cocaine (800 �g/kg) and
heroin (100 and 200 �g/kg), administered at an interval of 25 min from each other, overlapped to a much lesser
extent than in the case of two injections of cocaine (800 �g/kg), also 25 min apart. The greatest reduction in
overlap between populations activated by cocaine and heroin was in the dorsomedial and dorsolateral striatum
(�30% and �22%, respectively, of the overlap observed for the sequence cocaine–cocaine). Our results point
toward a significant separation between neuronal populations activated by heroin and cocaine in the striatal
complex. We propose that our findings are a proof of concept that these two drugs are encoded differently in a
brain area believed to be a common neurobiological substrate to drug abuse.
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Introduction
Virtually all current theories of drug abuse posit that the

addictive properties of drugs depend on common neuro-

biological processes, including hyper-reactivity of motiva-
tional systems (Wolf, 2010; Berridge and Robinson, 2016),
impaired impulse control (Jentsch and Taylor, 1999), and
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Significance Statement

Despite significant advances in the substance use disorders field, effective prevention and treatment
strategies are scarce and still under active development. Here we add to growing evidence indicating major
differences in the neurobiological effects of opioid versus psychostimulant drugs, which is at odds with the
still prevailing notion of a shared substrate of action for all addictive drugs. This suggests that, to be effective,
the development of prevention and treatment strategies should not look for a “silver bullet” solution to all drug
addictions. Instead, they should be tailored to the specific drug preference of pathologic users.
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aberrant learning (Everitt and Robbins, 2005). Regardless
of the core process on which each theory focuses, the
biological substrate of said processes involves the meso-
telencephalic dopamine (DA) system projecting from ven-
tral tegmental area (VTA) and substantia nigra to the
striatal complex, including caudate and nucleus accum-
bens (NAcc), and to the prefrontal cortex (PFC). Indeed, it
is commonly assumed that all substances of abuse in-
crease dopamine levels in the terminal regions of the
dopaminergic system (Di Chiara and Imperato, 1988;
Robinson and Berridge, 1993; Wise, 1996; Nestler, 2001,
2004; Hyman et al., 2006; Koob and Volkow, 2010; Ber-
ridge, 2012; Covey et al., 2014; Keiflin and Janak, 2015;
Volkow and Morales, 2015; Berridge and Robinson, 2016;
Keramati et al., 2017; Volkow et al., 2017) albeit via dif-
ferent mechanisms of action. Psychostimulant drugs,
such as cocaine and amphetamines, produce dopamine
overflow by binding the dopamine transporter (for review,
see Kuczenski et al., 1982; Johanson and Fischman,
1989). Opioid agonists, such as heroin and morphine, are
thought to increase dopamine concentrations indirectly
by binding �-opioid receptors located on inhibitory in-
terneurons in the VTA; hence, disinhibiting dopaminergic
neurons (Gysling and Wang, 1983; Matthews and Ger-
man, 1984; Johnson and North, 1992). Yet, the magnitude
of drug-induced dopamine overflow differs enormously
from one drug to another, even within the same pharmaco-
logical class. For example, some opioids produce dramatic
increases in dopamine, whereas others have very little effect
(Gottås et al., 2014; Vander Weele et al., 2014). Furthermore,
electrophysiological experiments have shown that neurons
in the striatum respond in a very different manner to heroin
versus cocaine self-administration (Chang et al., 1998; Wei
et al., 2018), suggesting that the effects of the two drugs are
encoded differently in this brain area.

The aim of the two experiments reported here was to
further explore this hypothesis using the catFISH (cellular
compartment analysis of temporal activity by fluores-
cence in situ hybridization) technique, which is a within-
subject technique that takes advantage of the different
transcriptional time course of the immediate-early genes
(IEGs) homer 1a (h1a) and arc to detect the activation of
partly distinct neuronal populations in response to two
temporally distinct stimuli (Fig. 1; Guzowski et al., 1999;
Vazdarjanova et al., 2002; Vazdarjanova and Guzowski,
2004). To date, a few studies have looked at the effects of
cocaine on arc ( Caffino et al., 2011) or homer 1a expres-
sion (Unal et al., 2009), whereas there is no information on
the effects of heroin administration on the expression of

these two IEGs. As in the case of the IEG c-fos, which is
known to be transcribed across the striatum in response
to heroin and cocaine administration (Harlan and Garcia,
1998; Paolone et al., 2007; Celentano et al., 2009), both
arc and homer 1a are activated by the transcription factor
CREB; that is, they are transcribed following the activation
of the ERK/MAPK pathway, elevated cAMP activity, or
calcium influx to the cell (Impey et al., 1998; Sato et al.,
2001; Kawashima et al., 2014). Considering these shared
mechanisms of expression, we expected that arc and
homer 1a would be suitable markers of neuronal activity
produced by drug administration. We predicted that in-
travenous injections of heroin and cocaine will produce a
rapid and transient IEG transcription in the striatum. Indeed,
we found that intravenous administration of low doses (i.e.,
those typically used in self-administration experiments) of
heroin and cocaine produce temporally distinct increases in
the expression of h1a and/or arc suggesting that both drugs
induce neuronal activity across the striatum. In a second
experiment, we used the catFISH technique to establish to
what extent this activity occurs in overlapping versus drug-
specific neuronal populations. Based on electrophysiologi-
cal evidence suggesting distinct neuronal activity produced
by heroin versus cocaine (Chang et al., 1998), we predicted
that the administration of heroin following cocaine would
activate nonoverlapping neuronal populations across the
striatum.

Materials and Methods
Subjects

A total of 66 male Sprague Dawley rats [n � 37 in
experiment (Exp) 1 and n � 29 in Exp 2] from ENVIGO
were tested at a weight of 300–375 g. The rats were
housed and tested in a temperature- and humidity-
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Figure 1. The catFISH paradigm. Working hypothesis based on
the review by Guzowski et al. (2005): the expression of mRNA
encoding for h1a and arc should be detectable at different time
points after drug administration. A, arc mRNA expression in the
nucleus should peak at �5 min after drug administration,
whereas h1a mRNA should peak at �30 min. B, Overlap in the
expression of Drug 1-induced h1a mRNA and Drug 2-induced
arc mRNA should be observed at time 30 min (25 min after Drug
1 and 5 min after Drug 2).
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controlled room (21 � 1°C; 50%) with a reversed 12 h
light/dark cycle (lights on at 7:00 P.M.). The rats were
housed in groups of three or four until surgery and indi-
vidually thereafter. Food and water were provided ad
libitum except during testing sessions. All regulated pro-
cedures were conducted in accordance with the UK 1986
Animal Scientific Procedures Act (ASPA) and received
approval from the relevant Animal Welfare and Ethics
Review Board. After their arrival in the animal facilities, the
rats were given a period of at least 7 d before undergoing
experimental procedures.

Drugs
Anesthesia was induced with 110 mg/kg ketamine

(Anesketin, Dechra) and 2 mg/kg xylazine (Rompun, Bayer
HealthCare). Cocaine and heroin hydrochloride (Johnson
Matthey-MacFarlan Smith) were dissolved in sterile saline
and infused intravenously at the doses specified in the
next paragraphs. Each infusion consisted of a volume of
40 �l of the appropriate drug solution delivered over 4 s.
Saline-treated rats received equivalent volumes of saline.

Intravenous catheter surgery
The surgical procedures were similar to those recently

described by Avvisati et al. (2019). Briefly, after anesthe-
sia, an 11 cm silicone catheter (0.37 mm inner diameter,
0.94 mm outer diameter), sheathed at 3.4 cm from its
proximal end by a silicone bead, was implanted in the
right jugular vein, externalized at the nape of the neck, and
attached to a cannula secured to the top of the skull with
dental cement. Following surgery, rats were allowed to
recover for at least 7 d. Catheter patency was maintained
by flushing the catheters daily with 0.1 ml saline.

Catheter patency test
At the appropriate time (see next sections), the rats

were killed via an intravenous infusion of pentobarbital
(120 mg/kg in 200 �l of saline) through the catheter. This
also served as a catheter patency test: the rats that did
not become ataxic and die within 5 s would be excluded
from the data analysis. All catheters were found to be
patent.

Drug administration procedures
Experiment 1

After recovery, the rats received, while briefly restrained,
an intravenous infusion of either 400 �g/kg cocaine (n � 18)
or 50 �g/kg heroin (n � 19) in their home cage. These doses
were selected based on the findings of previous self-
administration experiments (Caprioli et al., 2007b, 2008).
The rats received the lethal pentobarbital injection and were
then decapitated at different time points after the cocaine or
heroin infusion, as follows: 0 min (n � 3 for both the cocaine
and heroin groups), 8 min (n � 3 for both the cocaine and
heroin groups), 16 min (n � 4 for both the cocaine and heroin
groups), 25 min (n � 4 for both the cocaine and heroin
groups), and 35 min (n � 4 and n � 5 for the cocaine and
heroin groups, respectively).

Experiment 2
After recovery, the rats were moved to testing cham-

bers used for self-administration experiments (PRS Italia;

Avvisati et al., 2019). To reduce the potentially confound-
ing effects of environmental novelty on drug-induced IEG
expression (Uslaner et al., 2001; Paolone et al., 2007), we
let the rats habituate to these chambers for 18 h before
tethering them to the infusion lines. Food and water were
available ad libitum during this habituation period and
were removed immediately before tethering. The use of
self-administration chambers allowed us to deliver drug
infusions remotely via a computer-controlled infusion
pump. The infusion pumps were programmed to start
automatically, in the absence of the experimenter, 1 h
after tethering. In this way, we avoided the confounding
effects usually associated with signaled drug administra-
tion (Crombag et al., 1996) and/or handling. All rats re-
ceived two intravenous infusions, 25 min apart, of the
following: saline–saline (n � 4), cocaine 800 �g/kg–saline
(n � 6), cocaine 800 �g/kg–cocaine 800 �g/kg (n � 6),
cocaine 800 �g/kg–heroin 100 �g/kg (n � 6), or cocaine
800 �g/kg–heroin 200 �g/kg (n � 7). To administer two
separate injections through the same catheter, the infu-
sion lines were backfilled with the appropriate drug solu-
tions, separated by a tiny air bubble, just before tethering
of the rats. The rationale for using higher doses of cocaine
and heroin in Exp 2 was to boost the magnitude of IEG
expression. These doses were still within the range of
those used in self-administration experiments (Zito et al.,
1985; Dai et al., 1989; Roberts et al., 1989; Pettit and
Justice, 1991; Shaham and Stewart, 1994; Wise et al.,
1995; Mantsch et al., 2001; Wee et al., 2007; Mandt et al.,
2012).

Five minutes after the second infusion, the rats were
given 120 mg/kg pentobarbital, i.v., and, after decapita-
tion, their brains were snap frozen in isopentane at
�50°C.

Brain slicing
The brains were excised and snap frozen in 400 ml of

isopentane cooled to �50°C and later sectioned on a
cryostat at 16 or 20 �m thickness. In Exp 1, sectioning
started from the tip of the olfactory bulbs and brain sec-
tions were removed until the Sylvian fissure no longer
reached the midline (�3.70 mm from bregma). At this
point, either 100 or 80 sections were removed (when
sectioning at 16 and 20 �m, respectively) to reach �2.00
mm from bregma at which point the sections contained
anterior dorsal striatum (DS) and NAcc core (Fig. 2A). Two
coronal sections per rat (16 or 20 �m thick) were obtained
at this point. An identical procedure was used in Exp 2 to
collect two coronal sections containing NAcc core and
shell, dorsomedial striatum (DMS), and dorsolateral stria-
tum (DLS) at �1.70 mm from bregma (Fig. 3A).

In situ hybridization
Immediately after cutting, the brain tissue sections were

mounted on Superfrost Plus slides. On the first day of
staining, the slides were incubated in 10% neutral buff-
ered formalin (catalog #HT501128-4L, Sigma-Aldrich) for
20 min at 4°C, followed by 2� 1 min washes in 1� PBS,
and then serial dehydration in ascending concentrations
of ethanol (5 min incubation in 50%, 70%, and 2� 100%).
Following this, the tissue was stored in 100% ethanol
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overnight. On day 2, the tissue was air dried and then
incubated with protease for 20 min, followed by 2� 1 min
washes in distilled H2O. Protease, probe, and amplifier
solutions were supplied by Advanced Cell Diagnostics
(ACDbio) as part of a commercially available RNAscope
Kit (ACDbio). Arc and h1a hybridization probes (catalog
#317071-C2 and #433261, respectively, ACDbio) were
hybridized to fresh frozen brain coronal sections sliced on
a Leica CM1900 cryostat. The signal was amplified with
an RNAscope Multiplex Fluorescent Reagent Kit (catalog
#320850, ACDbio). The arc probe targeted the region
spanning 1519–2621 bp of the arc gene mRNA (acces-
sion No. NM_019361.1). The h1a probe targeted the 3=
untranslated region of the h1a gene mRNA, spanning
5001–5625 bp (accession #U92079.1).

The arc and h1a probes were applied (50 �l/section),
and the sections were incubated for 2 h at 40°C in a hu-
midity-controlled oven. After incubation with the probes,
the signal was amplified at four separate stages with 15,
30, 15, and 30 min of incubation in between (respectively)
at 40°C in the hybridization oven. The probe and amplifier

solutions were applied to the sections with the help of a
hydrophobic pen barrier. There were 2� 2 min washes in
wash buffer after each incubation (including after probe
hybridization). Finally, sections were coverslipped and
counterstained with DAPI mounting medium (catalog #H-
1500, Vector Laboratories) and left at 4°C overnight.

Image acquisition and analysis
Fluorescent signal was detected using a Zeiss Axios-

kop 2 Plus epifluorescent microscope, and images were
acquired using AxioVision software (Zeiss).

Grayscale images were taken from both hemispheres of
two adjacent sections for each rat at 20� magnification.
This yielded four images per brain area for each rat. Final
counts of DAPI-, arc-, and h1a� nuclei were averaged
from these four images. The resulting images represented
a region of interest of 700 � 550 �m. These images were
analyzed using the RIO Montpelier extension of the Im-
ageJ software (Baecker and Travo, 2006). Grayscale im-
ages were analyzed separately for each channel—DAPI,
Alexa Fluor 488 (h1a) and Cy3 (arc)—as follows. First,
each DAPI image was analyzed by applying a Gaussian
blur filter (sigma � 2), then a “rolling ball” background
subtraction algorithm (ball radius � 20), followed by the
application of the default automatic global thresholding
algorithm. This yielded a binary image, which was then
used to count objects selected on the basis of their size
and circularity using the “analyze particles” function of
ImageJ. The size criterion was set to 0.0045–0.045

Figure 2. Effect of single drug injections on IEG expression. Time
course of arc mRNA and h1a mRNA expression in experiment 1.
A, Regions of interest (plate from Paxinos and Watson, 1986). B,
Average number of arc- or h1a� cell nuclei as a function of brain
area and administered drug (expressed as a percentage of all
DAPI� nuclei). The brains were excised at different time points
after drug administration, as follows: 0 min (n � 3 for both the
cocaine and heroin groups), 8 min (n � 3 for both the cocaine
and heroin groups), 16 min (n � 4 for both the cocaine and heroin
groups), 25 min (n � 4 for both the cocaine and heroin groups),
and 35 min (n � 4 and n � 5 for the cocaine and heroin groups,
respectively).

Figure 3. Overlap in the neuronal populations engaged by heroin
and cocaine. Coexpression of arc and h1a mRNAs in experiment
2. A, Regions of interest (plate from Paxinos and Watson, 1986).
B, Overlap expressed as the percentage of overlap in the coca-
ine–cocaine condition as a function of brain area and drugs
administered, 25 min apart, in Exp 2: saline–saline (n � 4),
cocaine (800 �g/kg)–saline (n � 6), cocaine (800 �g/kg)–cocaine
(800 �g/kg; n � 6), cocaine (800 �g/kg)–heroin 100 �g/kg (n �
6), and cocaine (800 �g/kg)–heroin 200 �g/kg (n � 7).
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square inches, and the circularity—to 0.7–1.00. This anal-
ysis resulted in a binary mask image containing only
objects fulfilling the aforementioned criteria.

The images from the Alexa Fluor 488 and Cy3 channels
were first adjusted for brightness so that the most visible
signal was that coming from nuclear staining for arc and
h1a. This was defined as any signal representing one or
two bright dots close to each other, as opposed to the
cytoplasmic signal, which is less bright and more diffused
(Guzowski et al., 1999). A global threshold was then ap-
plied to the images (default algorithm), and the “analyze
particles” function was used again to select only objects
of 4–90 square pixels and to create a binary image mask
showing only the defined particles.

A Windows 10 Dell OptiPlex 7060 desktop computer
ran a MATLAB script to overlay the three binary mask
images and count instances where objects defined as
DAPI nuclei coincided with objects defined as arc mRNA,
h1a mRNA, or both. The MATLAB code will be made
available on request. Thus, IEG expression was measured
by counting DAPI� cell nuclei also positive for h1a, arc, or
both.

Statistical analyses
The data from Exp 1 were analyzed by two-way mixed

ANOVAs, with time and IEG as fixed factors. The number
of IEG� cell nuclei (as a percentage of all DAPI-stained
nuclei) was the dependent variable. The data from Exp 2
were analyzed using a two-way ANOVA, with brain area
and treatment group as fixed factors. The outcome vari-
able was overlap (expressed as a percentage of the co-
caine–cocaine group). All analyses were conducted in
SPSS 25 software (IBM). An � value of �0.05 was used for
determining statistically significant effects.

Results
Experiment 1 (time course of Arc and h1a
expression following intravenous drug
administration)

Figure 2B shows the amount of arc and h1a� nuclei in
the NAcc core and DMS expressed as a percentage of all
DAPI� nuclei and as a function of time elapsed since
intravenous injections of cocaine and heroin. Table 1
shows the same data before conversion to a percentage.

Arc and h1a expression in the NAcc core
Cocaine administration increased both arc and h1a

mRNA levels in the NAcc core, but at different time points.

A two-way mixed ANOVA showed nonsignificant main
effects of IEG (F(1,13) � 0.08, p � 0.782, �2 � 0.006) and
time (F(4,13) � 1.62, p � 0.227, �2 � 0.333), but a signif-
icant time � IEG interaction (F(4,13) � 7.93, p � 0.002, �2

� 0.977).
Heroin produced a similar pattern of mRNA expression,

but the effect did not reach significance: a two-way mixed
ANOVA showed nonsignificant main effects of IEG (F(1,14)

� 2.32, p � 0.150, �2 � 0.142) and time (F(4,14) � 0.72, p
� 0.596, �2 � 0.17), and a nonsignificant time � IEG
interaction (F(4,14) � 2.15, p � 0.129, �2 � 0.38).

Arc and h1a expression in the DMS
As in the NAcc core, cocaine treatment increased IEG

levels in a time-dependent manner. A two-way mixed
ANOVA showed significant main effects of IEG (F(1,13) �
18.93, p � 0.001, �2 � 0.593) and time (F(4,13) � 5.36, p �
0.009, �2 � 0.623), and a significant time � IEG interac-
tion (F(4,13) � 44.58, p � 0.001, �2 � 0.932).

Heroin produced a similar effect. A two-way mixed
ANOVA showed nonsignificant main effects of IEG (F(1,14)

� 3.17, p � 0.097, �2 � 0.185) and time (F(4,14) � 0.22, p
� 0.924, �2 � 0.059), but a significant time � IEG inter-
action (F(4,14) � 3.58, p � 0.033, �2 � 0.506).

Experiment 2 (overlap in neuronal populations
activated by cocaine and heroin)

Table 2 shows the average number of arc-only, h1a-
only, and double-stained cell nuclei as a function of brain
area and drugs administered in experiment 2. Figure
4-Figure 7 show representative images from all brain
areas analyzed using catFISH.

Figure 3B shows the extent of overlap between neuro-
nal populations activated by cocaine and heroin as a
percentage change from the cocaine–cocaine group.
Overlap was quantified as the number of nuclei coex-
pressing arc and h1a expressed as a percentage of all
mRNA� nuclei (single and double labeled). In all four brain
areas examined, there was a substantial reduction in
overlap when cocaine and heroin were administered in
succession, relative to the overlap seen when cocaine
was administered twice, and regardless of heroin dose
(Fig. 3). A two-way mixed ANOVA showed a significant
main effect of treatment group (F(3,19) � 20.97, p � 0.001,
�2 � 0.768) and brain area (F(3,57) � 3.40, p � 0.024, �2 �
0.152), but not treatment � brain area interaction (F(9,57) �
0.79, p � 0.619, �2 � 0.112).

Table 1: Mean (SE) number of arc- and h1a-stained cell nuclei as a function of brain area and drug administered in Exp 1

NAcc DS
Cocaine (400 �g/kg) Heroin (50 �g/kg) Cocaine (400 �g/kg) Heroin (50 �g/kg)
Arc H1a Arc H1a Arc H1a Arc H1a

0 min 19.50 (1.52) 12.50 (4.44) 18.42 (6.86) 11.33 (1.8) 30.10 (1.97) 16.42 (5.85) 21.17 (6.59) 14.83 (1.02)
8 min 25.50 (5.36) 9.75 (2.38) 26.92 (13.66) 8.83 (2.71) 44.58 (4.43) 11.83 (1.91) 26.92 (8.21) 14.58 (5.27)
16 min 16.31 (3.35) 14.81 (1.22) 13.88 (3.63) 8.63 (2.94) 21.81 (3.08) 32.19 (3.73) 12.31 (2.86) 20.88 (5.59)
25 min 9.94 (2.78) 17.81 (0.82) 18.19 (3.95) 18.69 (4.29) 15.00 (3.89) 48.88 (5.99) 16.44 (3.76) 31.75 (7.3)
35 min 11.00 (1.67) 26.25 (5.13) 8.00 (2.22) 14.6 (4.26) 11.25 (1.44) 58.50 (1.52) 7.50 (2.2) 28.35 (4.58)

The brains were excised at different time points after drug administration: 0 min (n � 3 for both the cocaine and heroin groups), 8 min (n � 3 for both the co-
caine and heroin groups), 16 min (n � 4 for both the cocaine and heroin groups), 25 min (n � 4 for both the cocaine and heroin groups), and 35 min (n � 4
and n � 5 for the cocaine and heroin groups, respectively)
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Table 2. Mean (SE) number of h1a-only, arc-only, and double-stained cell nuclei as a function of brain area and drugs
administered, 25 min apart, in Exp 2: saline–saline (n � 4), and cocaine (800 �g/kg)–saline (n � 6), cocaine (800
�g/kg)– cocaine (800 �g/kg; n � 6), cocaine (800 �g/kg)– heroin 100 �g/kg (n � 6), and cocaine (800 �g/kg)– heroin 200
�g/kg (n � 7)

NAcc core NAcc shell DMS DLS
First saline
Second saline

h1a 4.94 (0.66) 4.44 (1.61) 5.98 (2.18) 8.5 (2.54)
arc 2.38 (0.94) 2.48 (0.75) 1.98 (0.95) 3.75 (1.59)

Double 0.13 (0.07) 0.38 (0.16) 0.13 (0.07) 0.13 (0.13)
First cocaine (800 �g/kg)
Second saline

h1a 21.5 (4.44) 8.67 (2.36) 51.1 (7.99) 65.1 (7.83)
arc 4.25 (0.77) 3.13 (0.68) 5.58 (1.77) 4.33 (0.95)

Double 1.46 (0.25) 1.67 (0.35) 3.63 (0.43) 4.46 (1.49)
First cocaine (800 �g/kg)
Second cocaine (800 �g/kg)

h1a 20.54 (5.45) 11.00 (2.87) 42.17 (8.65) 49.71 (7.5)
arc 8.08 (0.59) 5.13 (0.67) 12.54 (1.99) 15.33 (3.89)

Double 5.46 (1.04) 3.33 (0.77) 14.17 (3.17) 21.33 (5.19)
First cocaine (800 �g/kg)
Second heroin (100 �g/kg)

h1a 20.33 (3.72) 8.04 (2.36) 58.67 (16.42) 66.04 (11.36)
arc 23.29 (9.55) 18.92 (9.13) 3.63 (0.70) 3.04 (1.06)

Double 5.00 (2.07) 2.46 (0.87) 4.17 (1.19) 3.63 (0.96)
First cocaine (800 �g/kg)
Seconds heroin (200 �g/kg)

h1a 18.96 (4.33) 7.57 (1.75) 50.68 (7.34) 56.46 (7.64)
arc 12.11 (1.53) 12.61 (2.91) 5.17 (0.74) 4.32 (1.16)

Double 3.14 (0.59) 1.75 (0.49) 3.11 (0.46) 3.93 (0.93)

Figure 4. Representative microscope images taken from the
NAcc core. DAPI-stained cell nuclei (blue) coexpress only h1a
(green), only arc (red), or both. The columns show green and red
channels separately and then merged. Taken from Nacc core.
Scale bars, 0.1 mm. Arrows point to mRNA� nuclei.

Figure 5. Representative microscope images taken from the
NAcc shell. DAPI-stained cell nuclei (blue) coexpress only h1a
(green), only arc (red), or both. The columns show green and red
channels separately and then merged. Scale bars, 0.1 mm.
Arrows point to mRNA� nuclei.
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Discussion
We have shown that intravenous injections of heroin

and cocaine at doses typically self-administered by rats
produce a quick and transient increase of homer 1a and
arc expression across the striatum. More importantly,
using the catFISH technique, we took advantage of the
difference in the timing of expression between the two
IEGs to show that heroin and cocaine activate partly
distinct neuronal populations in this brain area.

In line with our findings, previous studies have shown
that heroin and cocaine increase c-fos levels in the ventral
and dorsomedial striatum (Hope et al., 1992; Harlan and
Garcia, 1998; Uslaner et al., 2001; Ferguson et al., 2004;
Paolone et al., 2007; Celentano et al., 2009). The IEG c-fos
is a marker of neuronal activity expressed under similar
conditions of arc and homer 1a (Guzowski et al., 2001). In
addition, our findings indicate that this activity occurs in
separate neuronal populations and may explain why only
a small proportion of neurons shows similar electrophys-
iological responses to heroin and cocaine (Chang et al.,
1998).

It is likely that drug-induced IEG expression represents
glutamatergic activity modulated by DA, because NMDA
and DA D1 receptors play a key role in IEG expression
through the activation of CREB (Impey et al., 1998;
Mattson et al., 2005; Surmeier et al., 2007; Guez-Barber
et al., 2011; Tritsch and Sabatini, 2012), and both DA and
glutamate levels are increased in the striatum following
heroin and cocaine administration. Note, however, that
DA release alone does not produce IEG expression in the
absence of glutamatergic activity (Kreuter et al., 2004). In
addition, NMDA receptor activity and DA transmission in
the accumbens are necessary for food and cocaine self-
administration, but not heroin self-administration (Etten-
berg et al., 1982; Pettit et al., 1984; Pulvirenti et al., 1992;
Kelley et al., 1997). Finally, D1 receptor-expressing me-
dium spiny neurons (MSNs) in the dorsal striatum appear
to be sufficient to sustain operant behavior (Kravitz et al.,
2012), and these neurons express IEGs (i.e., are activated)
following cocaine administration. Thus, loss- and gain-of-
function studies have provided evidence that the activity
of cells in the striatum plays a key role for cocaine, but not

Figure 6. Representative microscope images taken from the
DMS. DAPI-stained cell nuclei (blue) coexpress only h1a (green),
only arc (red), or both. The columns show green and red chan-
nels separately and then merged. Scale bars, 0.1 mm. Arrows
point to mRNA� nuclei.

Figure 7. Representative microscope images taken from the
DLS. DAPI-stained cell nuclei (blue) coexpress only h1a (green),
only arc (red), or both. The columns show green and red chan-
nels separately and then merged. Scale bars, 0.1 mm. Arrows
point to mRNA� nuclei.
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for heroin, reinforcement through DA and glutamate trans-
mission. The functional role of the distinct neuronal pop-
ulations engaged by heroin relative to cocaine remains to
be determined.

A case for drug-specific neural circuitries
Perhaps the most intriguing interpretation of the results

presented here is that partly distinct neuronal populations
activated by heroin and cocaine across the striatum are
suggestive of dissociated circuitry processing the acute
effects of the two drugs. There is already evidence that
the striatum is functionally and structurally organized to
accommodate circuits that operate in parallel but carry
out separate functions. First, striatal MSNs are character-
ized by more or less excitable states (i.e., “up” and
“down” states; Wolf et al., 2001; O’Donnell, 2003), and in
order for MSNs to be excited (and to express IEGs), they
must receive input from several sources, which may in-
clude different combinations of amygdala, hippocampus,
thalamus, PFC, and VTA/SNc afferent inputs (Pennartz
et al., 1994). Each of the brain areas sending these affer-
ent projections (1) is affected differently by heroin, co-
caine, and natural rewards (Chang et al., 1998; Mukherjee
et al., 2018); (2) contains neuronal ensembles involved in
distinct functions (Zelikowsky et al., 2014; Warren et al.,
2016); and (3) might be composed of genetically distinct
projection neurons. Thus, considering the integrative
function of the striatum, the diverse connectivity and spe-
cialized functions of its input regions, and the necessity
for synchronized excitatory input to elicit action potentials
from MSNs, it is quite possible that the activation of partly
distinct neuronal populations in the striatum reflects the
activation of dissociated circuitries. Here it must be noted
that, although the afferent inputs of the striatum from
limbic and cortical areas are topographically organized in
a ventromedial–dorsolateral fashion, they are not con-
strained to perfectly defined striatal subregions, but are
overlapping, with higher concentrations of certain affer-
ents in, for example, shell versus core (Voorn et al., 2004).
It should also be considered that MSNs send collateral
GABAergic projections to neighboring MSNs. This mutual
inhibition between MSNs is another functional-anatomic
feature predisposing the accumbens and the rest of stria-
tum to accommodate neuronal ensembles embedded in
distinct circuitries; while one ensemble is active, it can
decrease the activity in other ensembles so that only one
computation is taking place over others (Pennartz et al.,
1994). The experiments presented here are only sugges-
tive of distinct striatal circuitry engaged by heroin and
cocaine. Future studies should address this hypothesis by
expanding on our findings in three ways. First, single-cell
quantitative PCR studies can further elucidate phenotypic
differences between neuronal populations activated by
heroin and cocaine in terms of their genetic makeup
(Hrvatin et al., 2018). Second, retrograde and anterograde
labeling studies in conjunction with immunohistochemis-
try can reveal whether these neuronal populations con-
nect to distinct upstream and downstream targets. And
third, selective loss- and gain-of-function studies can be
used to test whether inactivation of neurons responding

to cocaine in the dorsal striatum and accumbens core
would impair heroin reinforcement. The Daun02 technique
(Koya et al., 2009, 2016) would be a useful technique in
this regard, as well as other techniques that manipulate
neuronal ensembles such as the TetTag approach using
the Fos-tTA mouse line combined with optogenetics
(Reijmers and Mayford, 2009; Liu et al., 2012; Du and
Koffman, 2017).

Methodological considerations
Two caveats to the experimental design used here are

worthy of mention. There are known differences between
the effects of noncontingent versus contingent exposure
to heroin and cocaine (Galici et al., 2000; Lecca et al.,
2007; Radley et al., 2015). In the present study, we ad-
ministered heroin and cocaine in a noncontingent but
unsignaled manner as we were interested in comparing
the acute pharmacological effects of these two drugs
using IEG expression as a marker of neuronal activation.
Contingent administrations (e.g., self-administration) re-
quire repeated exposure to drugs over several test ses-
sions, which has been shown to produce habituation to
IEG expression (Hope et al., 1992; Unal et al., 2009). Of
course, we recognize the value of studying the encoding
of drug-related information in the striatum during and after
periods of drug self-administration. Future studies could
use in vivo imaging techniques such as the UCLA/In-
scopix Miniscope to address this question directly. A
second, somewhat related caveat is that our paradigm
includes a multisubstance component. It is possible that
circuit activity may differ following polysubstance versus
single-drug use histories. However, electrophysiological
evidence from rats self-administering both substances is
congruent with our findings (Chang et al., 1998). Also, we
administered only two injections of cocaine and/or heroin
to drug-naive rats, so it is unlikely that any long-term
polysubstance use effects would have influenced our ob-
servations.

Conclusion
In summary, we found a significant dissociation in the

neuronal populations responding to self-administration
doses of heroin versus cocaine, as indicated by arc and
homer 1a expression. Our findings provide a proof of
concept that heroin and cocaine effects on the brain must
be studied as separate phenomena, adding to the evi-
dence of major differences among the various drugs of
abuse (for review, see Badiani et al., 2011). Although the
functional significance of these differences remains to be
fully explored, they might have implications for both re-
search and treatment. It is remarkable, for example, that
the functional or anatomic integrity of the dopaminergic
system is required for the reinforcing properties of co-
caine but not of heroin (Ettenberg et al., 1982; Pettit et al.,
1984; Pisanu et al., 2015), that distinct projections from
the PFC to the shell of the NAcc are implicated in the
relapse to cocaine versus heroin seeking after abstinence
(Peters et al., 2008; Bossert et al., 2012), and that basic
environmental manipulations gate in opposite directions
the reinforcing, affective, and neurobiological responses
to heroin versus cocaine in rats and humans (Uslaner
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et al., 2001; Ferguson et al., 2004; Caprioli et al., 2007a,
2008, 2009; Paolone et al., 2007; Celentano et al., 2009;
Montanari et al., 2015; Avvisati et al., 2016; De Pirro et al.,
2018; De Luca et al., 2019).
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