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 Background: Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes di-
sastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue 
is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is 
available for the immature brain tissue at dynamic strain rates.

 Material/Methods: We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar 
to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the sam-
ples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a bio-
logical material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for imma-
ture brainstem tissue material property were developed for the recorded experimental data using OriginPro® 
8.0 software. The t test was performed for infinitesimal shear modules.

 Results: The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test 
groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 
30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The 
adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820£R2£0.933, 0.774£R2£0.940, 
0.650£R2£0.922, and 0.852£R2£0.981, respectively. The infinitesimal shear modulus of the strain energy func-
tions showed a significant association with the strain rate (p<0.01).

 Conclusions: The immature brainstem is a rate-dependent material in dynamic tensile tests, and the tissue becomes stiff-
er with increased strain rate. The reported results may be useful in the study of brain injuries in children who 
sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.
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Background

With a rapid rise in motor vehicle use around the world, large 
numbers of injuries and deaths due to road traffic accidents 
(RTAs) occur annually, as detailed in a report of World Health 
Organization (WHO) [1]. In some countries children account 
for a large proportion of traffic injuries. For example, although 
children aged 15 years and younger account for about 18% 
of the population in some developed countries, children in-
jured in crashes account for about one-third of the pedestri-
an accident dataset [2].

Brain injury is still a leading cause of death and disability 
for children and adolescents involved in RTAs. A report by 
Langlois et al. [3] showed that approximately 475 000 TBIs oc-
curred each year among children aged 0 to 1 years. It was sug-
gested that trauma to the brainstem is a hallmark of severe head 
injury because of its important role in physiological function. The 
mechanism of brain injury has been discovered to substantial-
ly involve impact to or rotation of the head, causing deforma-
tion of the brain, in which brain injury is associated with strain 
and strain rate. Owing to the geometry of the central nervous 
system (CNS), the brainstem is vulnerable to the high strain in-
duced by the combination of compression, tension, and shear, 
especially in rotational acceleration loading on the head [4].

Head computational models are powerful tools for use in study-
ing adult traumatic brain injury (TBI) mechanisms and deter-
mining adult brain injury tolerance [5]. To discover age-perti-
nent mechanisms and estimate the injury threshold of children 
and young adults, models are needed for use in studying pedi-
atric brain injuries [6]. Such tools depend heavily on knowledge 
of pediatric brain tissue material properties and anatomical 
structures. Owing to the paucity in basic data on the material 
properties of pediatric brain tissue and skull, the child head 
finite element model was developed, mostly by scaling the 
adult head models, in which the child model was regarded as 
a miniature adult model. However, recent studies show age-re-
lated differences in the brain [7,8], meaning that it is not rea-
sonable to regard the child’s head as a miniature adult head.

There have been many studies concerning brain tissue proper-
ties. For example, compressive and tensile tests of brain tissue 
at quasi-static strain rates were done to study the tissue me-
chanical properties under surgical conditions owing to consid-
erably lower strain rate [9,10]. Other studies were performed 
to address the mechanical properties of brain tissue during 
impact events with compression tests at strain rates of 1, 10, 
and 50/s and tension tests at strain rates of 0.9, 4.3, and 25/s 
[11,12]. In the experiments involving brain tissue compression 
and tension by Rashid et al. [13,14], the 30% strain rates were 
30, 60, and 90/s. Numerous studies have reported the adult 
brain tissue mechanical properties associated with brain injury 

in experiments at over 20% strain at strain rats of between 1 
and 100/s [13–18]. A few studies have reported on the mate-
rial properties of immature brain tissue: Prange [19], Prange 
and Margulies [8], Duhaime et al. [20], Ning et al. [21], and Li 
et al. [22]. Consequently, the brain material properties of chil-
dren are not well understood, especially the tensile behavior.

Due to ethics constraints, there is great difficulty in obtain-
ing fresh brain tissue from children; therefore, in the present 
study we used immature porcine brain tissue to serve as a 
substitute to study pediatric brain tensile behavior. The aim 
of this study was to conduct tensile tests in immature brain-
stem specimens at high stretch velocity (i.e., dynamic strain 
rates) and then determine the mechanical behavior of the im-
mature brainstem during traumatic events.

Material and Methods

The Research Ethics Committee of the Third Military Medical 
University granted ethics approval prior to the tests. All the 
tests were performed strictly following the rules listed in the 
Guide for the Care and Use of Laboratory Animals, as confirmed 
by the U.S. National Institutes of Health. Great care was taken 
to reduce suffering of the animals.

Specimen preparation

A total of 23 immature pigs from the same farm, aged 4 weeks 
(at a developmental stage similar to human toddlers), with an 
average weight of 16±0.5 kg, were killed at a local slaughter 
house (Chongqing BORN Biological Technology Co., Ltd.). The 
brain was harvested immediately from the pigs as byproduct, 
and then stored in a thermally insulated stainless steel vessel 
filled with a saline solution with 0.9% NaCl at 4–50°C to main-
tain ionic balance during transportation to our lab.

The cerebrum, cerebellum, and brainstem were separated in 
the lab, and then the midbrain of the brainstem was cut into 
a plate with a thickness of 5 mm along the axis of the upper 
brainstem. A steel circular trephine of a diameter of 9 mm 
with sharp edges was used to cut the brainstem plate to pro-
duce a specimen with a length of 5 mm and a diameter of 9 
mm. In this section the main fibers of the brainstem were con-
sidered to orient along the long axis of the cylinder, as illus-
trated in Figure 1. During the preparation, the samples were 
sprayed with the physiological solution to maintain the in vi-
tro physical environment.

Experimental study

To perform the tensile experiment, we used a computer-con-
trolled, high test precision Bose ElectroForce 3100 machine 
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(Bose Corporation, Gillingham, UK), adapted for testing bio-
logical specimens. The instrument contains an electromagnet-
ic motor with a stroke resolution of 0.0015 mm and a maxi-
mum stroke length of 5 mm, and a minimum load resolution 
of 6 mN with a 22N load cell. The equipment was designed 
to have a high response speed so that the configured load-
ing speed can be achieved instantly. The history of stretch 
and force experienced by the tissue were recorded when per-
forming tensile tests.

Experimental protocol

Owing to the great challenge in gripping the very soft biologi-
cal tissue in the tensile test [10,23], great care was taken dur-
ing preparation and testing of the specimens. We used tensile 
grips and clips of the apparatus to rigidly fix 2 glass slides in 
which the one fixed to the stroke was considered as the top, 
and the one fixed to the load cell was regarded as the bot-
tom. A thin layer of surgical glue (Cyanoacrylate, low-viscosity 
Z105880-1EA, Sigma-Aldrich) was used to firmly cover the sur-
face of both slides. The prepared tissue specimen was careful-
ly placed on the bottom slide, and then the stroke was slowly 
lowered to slightly touch the superior surface of the specimen. 
The stroke was stopped when the load reached 5 mN. To en-
sure proper adhesion of the specimen to the top and bottom 
platen, the stroke would stay for 1 min prior to the tensile test.

After super- and sub-surfaces of the tissue were fixed to both 
slides using the procedure detailed above, the tests were 

carried out at stroke velocities of 10, 100, and 500 mm/s, in 
which the strain rate of the specimen was 2, 20, and 100/s, 
respectively. For all the test specimens, no preconditioning 
was done, and each sample only experienced 1 loading cycle. 
The final status of the specimens was checked when finish-
ing the test, and the data were not used in subsequent anal-
ysis if the glue between the slides and faces of the specimen 
failed. All the tests were finished at room temperature of 22°C 
within 6 h postmortem.

Data processing and analysis

The nominal stress, S11, was calculated using Formula (1), in 
which F represents the tension force in newtons, and A was 
the cross-section area of tested tissue in m2.
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be developed based on quasilinear viscoelastic (QLV) theory 
[24,25], in which the relationship between stress and strain 
tensors was derived from a strain energy potential function. 
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Figure 1.  Photos of specimen preparation, dynamic tensile machine. (A) An immature pig. (B) Fresh porcine brain harvested as a 
byproduct. (C) Separated infant porcine cerebrum, cerebellum, brainstem, and the steel circular cylindrical trephine used to 
make specimens. (D) Infant porcine brainstem tissue. (E) Schematic diagram for the anatomical location of the cylindrical 
brainstem sample, indicated in the black rectangle area. (F) Porcine brainstem tissue sample experienced extension. (G) The 
biomaterial test machine.
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The function, W, is defined using the invariants (I1, I2, I3) of the 
strain tensor. The third strain (I3) is unity, as the tissue is in-
compressible. As a result, the function is described in simpli-
fied form using I1 and I2. The invariants, I1 and I2, are defined as: 
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stress-versus-stretch ratio shown by the following formula: 

S�� = S� + �������               (14)

All operations for fitting were done using the software 
OriginPro® 8.0. The t test was performed for infinitesimal 
shear modulus, µ, in which a value of p<0.05 was considered 
to be significant.

Results

The history curve of Lagrange stresses for the tested brain-
stem specimens determined according to the formula (1) are 
illustrated in Figure 2. The brainstem tissue stretch ratio l 
was determined using equation (2) from the distance that the 
tissue was stretched. The curves of the stress-versus-stretch 
ratio shown in Figure 3 were convex in shape. The average 
Lagrange stress for the tested specimen at the 30% strain at 
the strain rates of 2, 20, and 100/s were 273.3±114, 515±107, 
and 1121±197 Pa, respectively.

From the curves of Lagrange stress-versus-stretch ratio illus-
trated in Figure 3, it was found that the material became stiff-
er with an increase in strain rate. An interesting phenomenon 
was that all curves indicated points of inflection at the tensile 
strain of about 2.5% in each test group.

The Lagrange stress-against-stretch ratio, l, can be fitted with 
the strain energy function of Fung (0.820£R2£0.933), Ogden 
(0.774£R2£0.940), and Gent (0.650£R2£0.922), and the expo-
nential model (0.852£R2£0.981), as shown in formulas (15–17). 
Figure 4 exhibits curve fitting of Fung, Ogden, and Gent strain 
energy function, and the exponential model for the average 
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curve experimentally acquired. We noted that the change trend 
of stress increase at the 2.5% tensile strain did not agree well 
with the fitted models: 

S11=499.9–4348.4e–l/0.438 (15)

S11=845.8–10187.8e–l/0.377 (16)

S11=1200–8377460.0e–l/0.108 (17)

Table 1 lists the infinitessimal shear modulus, μ, derived from 
the fitted strain energy function, Fung, Ogden and Gent, in 
which the infinitessimal shear modulus, μ, was found to have 
a strong rate dependence. For Ogden model in the table, for 
instance, the infinitessimal shear modulus at the strain rate 

Figure 2.  The history curve of Lagrange stress for the infant porcine brainstem specimen at the dynamic tensile tests. A total of 6 tests 
were conducted successfully at the stretch speed of 10 mm/s (strain rate 2/s), 7 at the stretch speed of 100 mm/s (strain 
rate 20/s), and 6 at the stretch speed of 500 mm/s (strain rate 100/s).
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Figure 3.  The curve of Lagrange stress-versus-stretch ratio for the infant porcine brainstem specimen at the dynamic tensile tests. 
A total of 6 tests were conducted successfully at the stretch speed of 10 mm/s (strain rate 2/s), 7 at the stretch speed of 
100 mm/s (strain rate 20/s), and 6 at the stretch speed of 500 mm/s (strain rate 100/s).
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Figure 4.  The curve fitting of Fung, Ogden, and Gent strain energy function, and exponential model for the average experimentally 
acquired data of stress-versus-stretch ratio at each test group. The adjusted R-Square of the model fitting the experimental 
data up to the strain of 30% at the dynamic strain rate is 0.820£R2£0.933 in Fung, 0.774£R2£0.940 in Ogden, 0.650£R2£0.922 
in Gent, and 0.852£R2£0.981 in exponential model.

400
350
300
250
200
150
100

50
0

Exponential
Ogden
Gent
Fung
Averaged curve

Exponential
Ogden
Gent
Fung
Averaged curve

Exponential
Ogden
Gent
Fung
Averaged curve

Strain rate: 2/s

1.0 1.21.1 1.3 1.0 1.21.1 1.3
Stretch ratio Stretch ratio

1.0 1.21.1 1.3
Stretch ratio

Strain rate: 20/s Strain rate: 100/s

St
re

ss
 (P

a)

700

600

500

400

300

200

100

0

St
re

ss
 (P

a)

1400

1200

1000

800

600

400

200

0

St
re

ss
 (P

a)

10

Zhao H. et al.: 
Mechanical characterization of immature porcine brainstem…

© Med Sci Monit Basic Res, 2016; 22: 6-13

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License

IN VITRO STUDIES

Indexed in: [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS] [Index Copernicus]



of 100/s seemed to be 4.2 times higher than that at the strain 
rate of 2/s.

Discussion

Road traffic injuries will increase to become the fifth leading 
cause of death by 2030 and child safety recently has become 
an important research field around the world according to the 
WHO [1,2]. Head injuries are common in children involved in 
RTAs [2,3]. To protect children from injury and death, there-
fore, it is necessary to thoroughly understand the mechanisms 
of TBI prior to developing the measurements to reduce and 
eliminate the injury.

The finite element model, as a powerful tool, may play a sig-
nificant role in discovering injury mechanisms in the human 
body, in which injury response and tolerance could be deter-
mined [5,6,30]. The characteristics of brain material mechani-
cal properties are of importance in developing accurate com-
putational models, contributing to an increasing research 
focus on brain tissue mechanical characterization [6,30,31], 
and many adult brain tissue property studies have been car-
ried out [7,8,11,15]. However, few studies have been performed 
to investigate pediatric brain tissue properties, especially for 
the tensile test, because of challenges in the experimental 
techniques [31]. It should be noted that mechanical charac-
terization of brain tissue at high loading velocities is crucial 
for modeling TBI. Brain tissue properties in tension are not as 
well defined as in other loading modes, such as compression 
and shear. Therefore, we carried out a series of tests to study 
the tensile material property of the brainstem.

Methodological issues could contribute to the apparently dis-
parate material properties reported in some published stud-
ies [31] and the experimental technology was regarded as 
the greatest challenge for tensile tests in very soft biological 
tissue [24]. Much of the large disparity in previously report-
ed data may be explained by the more rigorous approaches 
to control of sample preparation, test conditions, and the test 
procedures [31]. In the present study, the brain samples were 
uniform and came from the same source, the experimental 

protocol remained consistent, and great care was taken when 
performing the tensile tests, while there was a huge disparity 
in each test group, as shown in Figures 2 and 3.

Because of the paucity of data on pediatric brainstem tis-
sue, the present results are difficult to directly compare with 
previous reports. The present results show that the average 
Lagrange stress for the tested brainstem specimen at the 
30% tensile strain at the strain rate of 2, 20, and 100/s was 
273±114, 515±107, and 1121±197 Pa, respectively. In the re-
sults of Miller and Chinzei [10], at the strain rate of 0.64/s and 
0.0064/s, the stress sustained by the tested brain specimen 
was lower than 300 Pa, while Rashid et al. [14] reported that 
under tensile tests at the dynamic strain rates of 30/s, 60/s, 
and 90/s, the stresses were over 3000 Pa.

Similar to the material behavior of adult brain specimens found 
in some previous reports [13,32–36], the immature brainstem 
tissue showed a significant rate dependence in dynamic ten-
sile tests in the present study. With an increase of the strain 
rate in the tensile tests, the immature porcine brainstem tis-
sue became stiffer. Using porcine brain tissue, Thibault and 
Margulies [37] performed the first study of the immature brain, 
reporting a significant increase in the complex shear modu-
lus of cortical gray matter obtained from 2–3-day-old piglets.

Some published data on brain tissue material properties at 
low strain rate show the brain tissue becomes softer with 
strain increase [10,38], but another study reported that at dy-
namic strain rate the brain tissue became stiffer with an in-
crease of the strain [13]. In the present study, the immature 
porcine brainstem tissue became softer with strain increase, 
in which all the curves of stress-versus-stretch ratio were con-
vex in shape. The exponential model seems to best match the 
immature brainstem tissue material property data in the ten-
sile tests compared to the strain energy function. In addition, 
we noted that there were significant inflection points at the 
strain of 2.5% for all the test groups. We presumed that the 
linear viscoelastic regime of immature porcine brainstem in 
dynamic tensile tests was within the tensile strain of 2.5%. 
However, all the models developed for the immature porcine 
brainstem tissue did not fit the multi-stage experimental data 

Strain rate/s
Strain energy function (Unit: Pa)

Fung Ogden Gent

2  543.0±252.1*  545.2±210.3*  691.1±202.8

20  882.9±135.2*,**  964.2±178.3*,**  802.2±163.9*

100  2010.7±315.3**  2281.1±503.2**  1547.0±348.7*

Table 1. The infinitessimal shear modulus, μ, of Fung, Ogden, and Gent function at dynamic strain rates (mean ±SD and μ>0).

*,**: p<0.01.
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combining the linear regime and non-linear regime, and an-
other model needs to be developed to fit the immature brain 
material property of multi-stage characterization.

Our results show that the immature porcine brainstem had 
strong rate dependence, while the estimated shear modulus 
increased with an increase of the strain rate. In addition, we 
found that the shear modulus of immature brainstem tissue 
in the present study was higher than that of immature cere-
bellum tissue previously determined in the lab following the 
same procedures [22]. By conducting oscillatory shear tests, 
Arbogast and Margulies [5] reported that the complex modu-
lus and its 2 components, the storage and loss modulus, var-
ied with testing frequency, indicating a viscoelastic response. In 
their results, the experimentally determined shear modulus of 
the brainstem was 2 orders of magnitude lower than 168 kPa. 
Compared with the brain test data in the same lab [39], the 
brainstem has more complex modulus, particularly for the stor-
age modulus component [5].

Computer models of the pediatric head commonly use ratios 
of adult-to-juvenile porcine brain material properties to extrap-
olate pediatric material properties from human adult material 
properties because of the paucity of data on the properties pe-
diatric human brain tissue [6,30]. It should be noted that age-
dependent material properties of brain tissue are not linear, 
but rather rapidly change during the first few years of life, and 
then change more gradually in early childhood. Axons, rather 
than the surrounding matrix of astrocytes and oligodendro-
cytes, contribute more to the stiffness of brain tissue accord-
ing to some previously reported biomechanical models [21,31]. 
Axons in the pediatric brain undergo rapid myelination during 
the first year of life and the pediatric brain reaches adult levels 
of myelination at approximately 18 months old; therefore, the 
composition of the 5-year-old brain is more similar to that of 
an adult brain. In the present study, only 4-week-old pigs were 
chosen to test the brainstem material properties, in which the 
material property of the immature brainstem tissue was car-
ried out in 1 direction, and only the tensile experiment, with-
out the shear and compressive tests, was performed. Further 
research is needed to improve our understanding of the de-
tails of brainstem mechanical behavior.

Limitations

We attempted to describe the material properties of imma-
ture porcine brainstem tissue at dynamic strain rates to build 
a finite element model of the pediatric brain. However, our 
study has some limitations that need to be mentioned. First, 
the number of samples and valid data for studying the ma-
terial properties of brainstem tissue from immature pigs was 
limited. Furthermore, pigs aged 4 weeks are similar to human 
infants, which only account for a small proportion of all chil-
dren. In high-rate tests, there is a period in which the cross-
head is ramping up to the specified speed, and it is not ex-
actly clear how long it took to achieve this speed in our study. 
The brainstem is anisotropic and therefore may violate the as-
sumption of Miller [23] that the materials are isotropic and in-
compressible. In this study, only tensile tests were done, and 
it would be better if the compression and shear tests could 
also be performed in discover the material properties of the 
brain. Finally, immature porcine brain tissue served as a sub-
stitute to study the pediatric material tensile behavior in the 
current study, but a significant difference may exist in mate-
rial properties between pigs and humans.

Conclusions

To address the material properties of immature brainstem in 
tension, dynamic tensile tests at 3 stretch speeds were per-
formed for the brainstem tissue specimens obtained from 
4-week-old pigs in the present study. Although some limi-
tations exist in our study, the results show that the imma-
ture brainstem is a rate-dependent material in dynamic ten-
sile tests, and the tissue becomes stiffer with an increase of 
strain rate, with inflection points in all the test groups at the 
strain of about 2.5%. The function of Fung, Ogden, Gent, and 
exponential model may match well with the material behav-
ior of the brainstem for immature pigs in dynamic tensile test-
ing. The reported results may be useful in understanding brain 
injuries in children who have been in road traffic accidents.
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