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Ferroptosis is a type of programmed cell death characterized by the accumulation of

lipid reactive oxygen species (L-ROS) driven by the oxidative degeneration of lipids

in an iron-dependent manner. The mechanism by which lipid oxidative degradation

drives ROS-ferroptosis involvesmetabolic dysfunctions that result in impaired intracellular

metabolic processes and ROS production. Recent studies have found that p53 acts

as a positive regulator of ferroptosis by promoting ROS production. p53 directly

regulates the metabolic versatility of cells by favoring mitochondrial respiration, leading

to ROS-mediated ferroptosis. In mild stress, p53 protects cell survival via eliminating

ROS; additionally, in human colorectal cancer, p53 antagonizes ferroptosis by formation

of the DPP4–p53 complex. In short, the mechanisms of p53-mediated ROS production

underlying cellular response are poorly understood. In the context of recent research

results, the indistinct roles of p53 on ROS-mediated ferroptosis are scrutinized to

understand the mechanism underlying p53-mediated tumor suppression.
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INTRODUCTION

Ferroptosis, a new form of cell death, was first described in a high-throughput screening
of molecules for selectively inducing cell death in RAS mutant isoform cancer cells (1).
As a novel subtype of programmed cell death, ferroptosis is primarily characterized by
increased mitochondrial membrane density and volume shrinkage with distinct morphological,
biochemical, and genetic differences from other types of cell death, including apoptosis, necrosis,
necroptosis, and autophagy; for instance, the typical characteristics of apoptosis, including activated
caspases, chromatin condensation, and DNA fragmentation, are absent in ferroptosis (1, 2),
the distinctive morphological feature of erastin-treated cells involved smaller mitochondria with
increased membrane density (3). In addition, loss of the plasma membrane integrity of necrotic
morphological features and formation of double membrane-layered autophagic vacuoles during
autophagy are not observed in ferroptosis.
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Small molecules belonging to class I and class II ferroptosis-
inducing agents trigger ferroptosis via inhibiting cystine-
glutamate exchange transporter (system X−

c ) and glutathione
peroxidase 4 (GPX4), respectively (4). Class I ferroptosis
inducers, such as erastin, sorafenib, sulfasalazine and the
neurotransmitter glutamate, system X−

c , class II ferroptosis
inducers, such as RSL3, FIN56 (5), or altretamine (6) are shown
to induce ferroptosis via inhibition of GPX4.

Recent studies have reported that p53 activation is essential
for ferroptosis in certain cancers. Since the discovery of p53,
its role on tumor suppression in tumorigenesis and cancer
therapy has attracted considerable attention. Loss of p53 is a
vital event in the tumorigenesis of many human cancers (7, 8).
In general, the tumor suppression activity of p53 in response
to cellular stress relies on its capability to elicit cell-cycle arrest,
apoptosis, and senescence. Nevertheless, recent efforts indicate
that other unconventional activities of p53 are also crucial for
tumor suppression (9, 10).

Novel roles of p53 on tumor suppression have come to light
when a synthetic mutant of p53, incapable of transactivating
the majority of known p53 target genes, displays antitumor
activities in unstressed organisms and some cancer-prone
mouse models (10, 11). A mutant p53 that loses acetylation
at some definite residues of the DNA binding domain is
disabled to evoke growth arrest, senescence, and apoptosis,
thereby inhibiting spontaneous tumor development through
sensitizing cells to ferroptosis (12, 13). Given that p53 is a
main regulatory factor of critically important cellular biological
processes, elucidating the mechanism by which p53 responds to
stress may clarify the upstream signaling of ferroptosis. In the
context of recent insights, the indistinct roles of p53 signaling
in reactive oxygen species (ROS)-mediated ferroptosis via the
transcriptional and non-transcriptional regulation of metabolic
targets are scrutinized (Table 1).

ACTIVATION OF P53 SENSITIZES CELLS
TO ROS AND TRIGGERS FERROPTOSIS

Increased accumulation of lipid reactive oxygen species (L-ROS)
in an iron-dependent manner is a fundamental characteristic
of ferroptosis (14, 27). Metabolic dysfunctions contribute to
ferroptosis by elevating the production of ROS independent of
mitochondria (5). Thus, several investigations have been devoted
to elucidate the regulatory roles of p53 on metabolic targets in
ROS production for regulating ferroptosis.

p53 participates in various cellular processes by acting as
a DNA binding transcription factor that selectively modulates
the expression of target genes. For example, wild-type p53
regulates the transactivation of cytochrome c oxidase 2 (SCO2),
favoring mitochondrial respiration over glycolysis (28). In
addition, p53 plays a negative regulatory role on glycolysis
via transcriptionally modulating glucose transporter (GLUT)1,
GLUT4 (24), TP53-induced glycolysis and apoptosis regulator
(TIGAR), and glutaminase 2 (GLS2) (15, 29) (Figure 1). p53
could also suppress glucose metabolism directly by binding
and inhibiting glucose-6-phosphate dehydrogenase (30). Clearly,

p53 directly adjusts the metabolic polyfunctionality of cells by
supporting mitochodial respiration, leading to ROS-mediated
ferroptosis.

MODULATION OF P53 ON THE
EXPRESSION OF SLC7A11 TO MEDIATE
FERROPTOSIS

p53 Represses SLC7A11 Expression
SLC7A11 (xCT) is a light-chain subunit of the membrane Na+-
dependent system X−

c , which is a disulfide-linked heterodimer
composed of SLC7A11 and a heavy-chain subunit (SLC3A2)
(31). Previous experiments showed the inconformity in the p53
activation and expression of SLC7A11, which could directly
affect ferroptosis in mouse embryonic fibroblast (MEF) cells (32).
System X−

c transfers intracellular glutamate to the extracellular
space and extracellular cystine into cells (33). Cystine is
then converted into cysteine for synthesizing glutathione
(GSH), which protects cells from oxidative stress. Inhibition
of system X−

c reduces intracellular GSH, resulting in an iron-
dependent ferroptosis mediated by the accumulation of L-ROS
(23).

Activation of p53 by nutlin-3 markedly decreases SLC7A11
expression in HT-1080 cells with basal system X−

c activity
(34). Knockdown of p53 completely abrogates the inhibition
of SLC7A11 (35), and system X−

c function and SLC7A11
expression in p53KO cells are insensitive to nutlin-3 (36).
Furthermore, microarray analysis confirmed that SLC7A11
is a novel target gene of p53 in a tetracycline-controlled
p53-inducible cell line (13). A previous study identified

a p53-binding sequence at the 5
′

flanking region of the
SLC7A11 gene and subsequently confirmed the formation
of a p53–DNA complex at the promoter region (13). The
transcriptional repression of p53 on SLC7A11 leads to
the destruction of cystine import, resulting in declined
glutathione production and enhanced ROS-mediated ferroptosis
(Figure 2).

p53-Dependent Repression of SLC7A11 Is
Independent of p53 Mutation
The molecular cascade whereby p53 restrains cystine transfer
by suppressing SLC7A11 expression to induce ferroptosis
may be conducive to the oncosuppressive roles of p53
(13). Although an acetylation-absent p533KR (K117/161/162R)
variant at certain lysine residues cannot transcriptionally
activate gene expression involved in pro-apoptotic and cell
cycle arrest, knock-in mice expressing p533KR are not tumor
prone and exhibit similar overall survival with the wild-type
mice (12). Similarly, studies on p5325,26, a transactivation-
compromised mutant variant of p53, displayed intact tumor
suppression of p533KR in the absence of the most downstream
genes of p53 (10). Reduced levels of SLC7A11 expression
caused by the p533KR variant in xenograft tumor models
lead to an apparent depression of tumor growth (13).
This finding indicates that the intact p53-SLC7A11 axis,
reserved in the p533KR variant, promotes the inhibition
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TABLE 1 | The mechanisms of transcriptional and post-translational regulation on metabolic genes involving in ferroptosis.

Active style Targets Function References

Transcriptional

regulation

GLUT1,

GLUT4

Negatively regulates glycolysis by transcriptional repression (14)

TIGAR Negatively regulates glycolysis by transactivation (15–17)

GLS2 Favoring aerobic glycolysis over oxidative phosphorylation and contributing to Warburg

metabolism

(11, 18–20)

SCO2 Coupling p53 to mitochondrial respiration provides a possible interpretation for the

Warburg phenomenon

(13, 21)

SLC7A11 Repression of SLC7A11 leads to destruction of cystine import, resulting in declined

glutathione production and enhanced ROS-mediated ferroptosis

(9, 15)

RRAD Negatively regulates glycolysis (17)

SAT1 lipid peroxidation and ROS-induced ferroptosis (22)

p21 Slower depletion of intracellular glutathione and a reduced accumulation of toxic L-ROS (23)

Post-translational

regulation

G6PDH Suppress glucose metabolism directly via binding and inhibiting with G6PDH (24)

DPP4 Dismantling of DPP4-p53 complex (25)

SOSC1 The regulation of SAT1 by p53 was SOCS1-dependent, stabilizating p53 (26)

of tumorigenesis independent of the conventional tumor
suppression mechanisms of p53. Thus, ferroptosis can ensue
from the transcriptional repression of SLC7A11 in a p53-
dependent mechanism in response to stress, irrespective of p53
mutational status (37).

However, whether cell ferroptosis upon ROS-induced by
p533KR in human cancer cells is similar to that of wild-type
p53 remains unclear. In addition, whether cyclophilin D could
be a downstream responder of p53 activation has yet to be
clarified (38).

Acetylation Is Crucial for p53-Mediated
Ferroptosis
p53 activity is controlled by a complex fine-tuning network
that includes protein stability, recruitment of co-inhibitor or
activator, and various post-translational modifications, such as
acetylation, ubiquitination, phosphorylation, and methylation
(25, 39). In particular, acetylation of p53 serves a vital
role in regulating downstream targets in a promoter-specific
activation during stress responses. Acetylation of p53 at
K120 by Tip60/MOF is crucial for p53-induced apoptosis
(40). Nevertheless, p53-mediated cell cycle arrest is involved
in the combinative acetylation of K120 by Tip60/MOF and
K164 by CBP/p300 (41). The p533KR mouse expressing
acetylation-deficient p53, similar to the K120/164R mutations
in human, displays intact p53-dependent metabolic regulation
but lacks p53 functions in pro-apoptosis activity and growth
arrest (12).

A recent study has found that p53 is acetylated at lysine
residue K98 by acetyltransferase CBP. Acetylation of p53
at K98 lysine residue in mouse does not interfere with the
steady-state, DNA-binding abilities and transcriptional activity
of p53. However, combinatorial absence of K117/161/162
acetylation and K98 acetylation abrogates p53-mediated
transcriptional regulation on SLC7A11, TIGAR, and
GLS2 (32).

Binding of p53 With DPP4 Limits
Ferroptosis by Regulating SLC7A11
Although p53 induces ferroptosis in a transcription-dependent

manner in various cancers, in human colorectal cancer (CRC),
it unusually functions in the regulation of erastin-mediated

ferroptosis. p53-deficiency contributes to the increased lipid
oxidation and GSH downregulation in CRC cells treated with

erastin (42). Interestingly, the aforementioned alterations in

malondialdehyde and GSH were recovered after transfecting p53
cDNA into p53−/− CRC cells (42).

Depletion of p53 contributing to ferroptosis is involved
with interdicting dipeptidyl-peptidase-4 (DPP4) activity in a

transcription-independent mechanism. DPP4, a membrane-

bound dimeric peptidase, is widely expressed in different cell
types and can cleave and degrade various bioactive peptides

biologically (43, 44). The function of DPP4 in tumorigenicity

has been studied in many tumors (45). Deviant expression of

DPP4 is associated with tumor aggressiveness in different cancers
(18, 46). Paradoxically, some advanced malignancies, including

lung squamous cell carcinoma and endometrial carcinoma, show
the absence of DPP4 (22). Thus, DPP4 may play different roles in

different backgrounds or cancers, and further studies are needed
to elucidate the exact mechanism of DPP4 in cancer.

DPP4 has been related to increased proportion of cancer stem

cells and worse prognosis of CRC patients (16). Loss of p53
restrains the nuclear localization of DPP4 and boosts plasma-

membrane-associated DPP4-dependent lipid peroxidation

in CRC cells; then, the DPP4–NOX complex is formed
and facilitates lipid peroxidation-induced ferroptosis. p53

antagonizes ferroptosis in CRC cells by facilitating DPP4 into
nuclear to form the DPP4–p53 complex; dismantling of the

DPP4–p53 complex can recover the ferroptosis sensitivity of

CRC cells to erastin (Figure 3). This mechanism differs from

the previously recognized role of p53 as a positive regulator
of ferroptosis in non-CRC cells (13, 32, 47, 48). Thus, the
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FIGURE 1 | p53 binding sites within the upstream regulatory region of the target gene promoters. Schematic diagram indicates the p53 binding sites within the

upstream regulatory region of the SLC7A11, SAT1, SCO2, TIGAR, and GSL2 promoters.

bidirectional regulation of ferroptosis by p53 in a transcription-
dependent and transcription-independent manner is dependent
on tumor types and background.

However, many vital questions need to be elucidated. First,
only two types of CRC cell lines are used in Xie’s experiment
(42), which is insufficient to prove the role of p53 and DPP4 on
ferroptosis in CRC. Second, DPP4 is ubiquitously expressed in
various cell types, including different tumors, whereas mutations
and deletions of p53 are also common in malignant tumors.
Further studies are needed to reveal the mechanism underlying
the different roles of the DPP4–p53 complex on the regulation
of SLC7A11 in CRC and other types of malignant tumors.
Third, whether that p53 favors the localization of DPP4 into
nuclear to form the DPP4–p53 complex could be affected
by the mutation of p53 or modification of p53, such as
acetylation, should be illuminated, and this may provide an

answer to the opposite effects of p53 in different cellular
context.

P53 REPRESSES THE TIGAR, GLS2, SCO2,
AND SAT1 GENES TO MEDIATE
FERROPTOSIS

TIGAR Plays an Antioxidant Functions in a
p53-Dependent Manner
As a target of p53, TIGAR is prefigured to participate in tumor
suppression and plays a role in antioxidant functions, which is in
line with its functions in preventing cells from the acquirement
of injury (49) (Figure 2). Nevertheless, in mouse models, the
absence of TIGAR reduces capabilities to regenerate injured
intestinal epithelium and represses tumor development with
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FIGURE 2 | Schematic diagram of transcriptional regulation of p53 on targets. (a) p53 transcriptionally represses the expression TIGAR, GLS2, and SCO2 to mediate

ferroptosis. (b) SOCS1 is required for p53 modulating some target genes and SOCS1–p53 complex preserves a pool of preactive p53 via preventing p53

degradation. (c) Modulation of p53 on the expression of SLC7A11 system X−c activity to mediate ferroptosis.

FIGURE 3 | Schematic diagram of post-translational regulation of p53 on targets. (a) p53 antagonizes ferroptosis by favoring DPP4 into a nuclear to form of the

DPP4–p53 complex and impeding formation of the DPP4–NOX complex, which is required for lipid peroxidation in ferroptosis. (b) p53 suppresses glucose

metabolism and production of NADPH via inhibiting glucose-6-phosphate dehydrogenase directly.

Frontiers in Oncology | www.frontiersin.org 5 November 2018 | Volume 8 | Article 507

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. Targeted p53 on Ferroptosis

ROS restriction (50). TIGAR is upregulated in some cancer
models and tumor types via a pattern that may be independent
on the maintenance of p53 (51, 52). Furthermore, TIGAR
expression negatively correlates with p53 expression in human
breast cancer (53). p53-independent expression of TIGAR is
poorly understood, although some transcription factors, such as
SP1, CREB, and other members of the p53 family (p63 and p73),
have been implicated in the regulation of p53 (17, 19, 54). In
brief, these results highlight that TIGAR functions as a tumor
suppressor in response to p53 but might also participate in
cancer development when TIGAR expression is deregulated and
uncoupled from p53 (20).

GLS2 Plays an Antioxidant Functions in a
p53-Dependent Manner
Glutaminolysis plays crucial roles in ferroptosis (27).
Glutaminolysis refers to the switch of glutamine into glutamate
under the catalysis of GLS1 and GLS2. Although both enzymes
are similar in structure and enzyme catalysis, GLS2 is required for
ferroptosis (27). Human GLS2 gene is located on chromosome
12q13 and contains two potential p53 binding sites (BS).
Adenovirus-mediated expression of p53 binds to both BS1
and BS2, but only BS2 is associated with endogenous p53.
These data show that p53, once activated, can directly combine
with BS2 in the GLS2 promoter and augment the mRNA
expression of GLS2 (21). Upregulation of GLS2 contributes to
p53-dependent ferroptosis by favoring aerobic glycolysis over
oxidative phosphorylation and contributing to Warburg effect
(27, 47, 55, 56) (Figure 2).

p53-Mediate Metabolisms via Repressing
the SCO2
Synthesis of SCO2 is essential for regulating the cytochrome c
oxidase complex, which is the main site of oxygen utilization
in eukaryotic cells. The balance between the utilization of
respiratory and glycolytic pathways is modulated by SCO2,
which is a downstream target of p53 (57) (Figure 2). The
source of energy from cellular respiration to glycolysis caused
by the loss of p53 function resembles metabolic switch toward
glycolysis in cancer cells with wild-type p53 when the SCO2
gene is depleted. SCO2 coupling p53 tomitochondrial respiration
provides a possible interpretation for the Warburg phenomenon
and supplies new ideas as to how p53 influences metabolism and
ferroptosis (28).

P53-MEDIATED ACTIVATION OF SAT1
ENGAGES IN FERROPTOSIS

The polyamines, amino acid-derived polycationic alkylamines,
are basic for the growth and survival of eukaryotic cells (58).
Polyamine metabolism is frequently dysregulated in cancers
(59). Spermidine/spermine N1-acetyltransferase 1 (SAT1), a rate-
limiting enzyme, catalyzes the acetylation of spermidine and
spermine into N1-acetylspermidine and N1-acetylspermine (60).

SAT1 could be highly induced by p53 (48). It is a p53-regulated
target in wild-type p53 melanoma cells treated with Nutlin using

RNA sequencing and two p53-binding sites have been found on
the promoter region of SAT1. SAT1 transcriptionally activated
in a p53-dependented manner is critical for lipid peroxidation
and ROS-induced ferroptosis, and decreased expression of SAT1
significantly abrogates p53-induced ferroptosis. Elevation of
prostaglandin-endoperoxide synthase 2 (PTGS2), a ferroptosis
inducer, was identified in high-SAT1-expression xenograft
tumors. Ferroptosis induced by SAT1 is arachidonate 15-
lipoxygenase (ALOX15) dependent (Figure 2). ALOX15 is a
lipoxygenase that catalyzes the peroxidation of arachidonic acid,
and inhibition of ALOX15 can entirely rescue SAT1-induced
ferroptosis. These results are consistent with the previous
finding that ALOX15 is a main adjuster with which oxidative
stress is transformed into lipid peroxidation and cell death
(61). Nevertheless, whether that SAT1 plays a role in tumor
suppression remains largely unknown.

SOCS1 REGULATES FERROPTOSIS BY
ACTIVATING P53 VIA PHOSPHORYLATION
AND STABILIZATION

Suppressor of cytokine signaling (SOCS) family proteins have
been implicated as negative feedback regulators of cytokine
signaling pathways mediated by JAK-STAT (62). SOCS is
involved in tumor development by regulating STATs in the
background of aberrant activation of the JAK/STAT5 pathway.
In particular, SOCS1 is thought to act as a pivotal tumor
suppressor through negative regulation of JAKs and plays vital
roles in tumor progression. Downregulated SOCS1 expression in
various human cancers has been associated with dysregulation of
cytokine receptor signaling pathways (63), whereas upregulated
SOCS1 expression is associated with earlier tumor stages and
better clinical outcomes in breast cancer (64).

A significant correlation exists between the expression of
SOCS1 and the SOCS1-dependent p53 target genes in human
fibroblasts, and SOCS1 is required for p53 activation (26, 65).
SOCS1-regulated genes overlap with a set of genes induced
by oxidized phospholipids, which has been recently linked to
ferroptosis (66). The regulation of SAT1 by p53 is SOCS1-
dependent, suggesting a role for SOCS1 in ferroptosis. Aside
from influencing p53 target gene expression, SOCS1 also plays a
general role in senescence by stabilizing the interactions of p53
with protein complexes at DNA damage foci (Figure 2). This
function of SOCS1 allows the maintenance of a pool of preactive
p53 that could be slowly released and contribute to generate a
lasting chronic p53 response (67). SOCS1 activates the functions
of p53 via facilitating the serine 15 phosphorylation of p53 and
stabilizing p53 by interfering with KAP1 (67).

DELAYED FERROPTOSIS ONSET
REQUIRES P21

CDKN1A (encoding p21) is a well-characterized target of p53
and key mediator of p53-dependent cell-cycle progression. p21
upregulation could cause a coordinated p53-mediated response
that normally decreases cystine import to match the lower
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metabolic demands of growth-arrested cells. The impact of
p21 on GSH metabolism renders it a reasonable target for
inducing ferroptosis in the context of p53 (68). Stabilization
of p53 and activation of the p53–p21 axis make many cancer
cells insensitive to ferroptosis induced by system X−

c inhibition
or direct cystine deprivation. p21-dependent suppression of
CDKs may be required to preserve GSH by regulating CDK-
regulated metabolic enzymes and inhibit ferroptosis by inducing
a complete cell-cycle arrest (69). However, the mechanism
through which the p53–p21 axis reduces cellular reliance on
system X−

c -mediated cystine import and ongoing de novo GSH
synthesis is unclear (36). Thus, the p53–p21 axis may help cancer
cell survive metabolic stress, such as cystine deprivation, by
suppressing the onset of ferroptosis, indicating that the p53–
p21 transcriptional axis negatively regulates ferroptosis in cancer
cells.

S47 POLYMORPHISM OF P53 DECREASES
FERROPTOSIS

Aside from mutations that impair p53 activity, single-nucleotide
polymorphisms of p53 also alter cancer risk and clinical outcome
significantly by impairing p53 signaling. About 20 years earlier,
a naturally occurring polymorphism in p53 was discovered in
Africans and African Americans; this polymorphism transforms
the proline residue adjacent to Ser46 to a serine in human p53
(70). In particular, the Pro47Ser polymorphism (S47) impairs
p53 apoptotic and transcriptional functions through reducing
phosphorylation on serine 46 (47, 55). The defect in p53 function
is traced to a restriction in downstream gene regulation that
reduces cell ferroptosis in response to stress (70).

Profound cell death is induced in wild-type MEFs cells treated
with erastin. However, cell viability assays certified that S47

MEFs and heterozygote S47/wild-type MEFs are resistant to
erastin, especially S47 MEFs (47). Interestingly, treatment with

erastin remarkably upregulates GLS2 expression in wild-type
cells but not S47 cells, and depletion of GLS2 in wild-type
MEFs recapitulates the cell death defect that is exhibited in S47
cells treated with erastin (47). The defective capacity of S47 to
transactivate GLS2 might annotate the ferroptosis defect and
tumor-prone characteristics of S47 mice (55).

In brief, elucidating the relevancy between p53 and ferroptosis
has shown the other features of p53 biology and provided insights
into the tumor suppression roles of p53. Clarification of the
mechanism provides further insights into exploiting feasible
therapeutic means through inducing ferroptosis defined by the
occurrence of ROS in p53-retaining tumors. Nevertheless, the

roles of p53 in ferroptosis remain formally demonstrated in
different contexts due to the appearance of opposite effects in

various cancer cells. Moreover, p53 could protect cells from
slight stress damage via eliminating ROS, but p53-mediated
ferroptosis owing to serious stress in cancer cells relies on the
accumulation of ROS. Nevertheless, the mechanism of p53-
mediated ROS production underlying cellular response is poorly
understood.
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