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A PRIMER ON VITAMIN D BIOLOGY AND MEDICINE

The primary biological action of the secosteroid hormone vitamin D (1,25(OH)2D3) is to 

bind to the vitamin D receptor (NR1I1/VDR) and to regulate serum calcium levels. As a 

downstream consequence, the actions of the receptor control bone formation and 

maintenance. The first clinical manifestation of insufficient VDR endocrine signaling, 

rickets, was discovered by Daniel Whistler in the Netherlands in the 17th century; 300 years 

later, the VDR gene was cloned by Bert O’Malley and coworkers.1 Between these dates, 

research into vitamin D was at the forefront of areas of public health, chemistry and 

biochemistry including the light catalyzed synthesis of vitamin D3 by Adolf Windaus. For 

this work, he received the Nobel Prize in Chemistry (1928). Work in the 1960s and 1970s 

led to analyses of vitamin D endocrine metabolism and led to remarkable strides describing 

biochemical synthesis of 1,25(OH)2D3 and the diverse biology in which VDR participates.

The precursor of 1,25(OH)2D3, cholecalciferol or vitamin D3, is produced in the skin and 

converted in the liver to 25-hydroxyvitamin D3, (25(OH)D3); circulating levels of 25(OH)D3 

serve as a useful index of vitamin D total body stores. A further hydroxylation occurs in the 

principally in the kidney at the carbon 1 position by 25-hydroxyvitamin D-1α-hydroxylase 

(encoded by CYP27B1) to produce the biologically active hormone, 1,25(OH)2D3. A second 

mitochondrial cytochrome P450 enzyme, the 24-hydroxylase (encoded by CYP24A1), can 

use both 25(OH)D and 1,25(OH)2D3 as substrates, and is the first step in the inactivation 

pathway for these metabolites. Because of the direct role 1,25(OH)2D3 plays in control of 

serum calcium levels, elevated levels of 1,25(OH)2D3 block its synthesis and induce 

inactivation and accelerate catabolism2 via induction of CYP24A1, in a classical negative 

feedback loop.
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In parallel to these VDR-centered discoveries a greater awareness emerged of the 48 

members of the nuclear hormone receptor (NR) superfamily, of which the VDR is a member. 

As a result, the VDR and other NRs represent some of the most well-studied human 

transcription factors and have yielded significant insight into the mechanisms of 

transcriptional control.

It is worth stressing the fundamental importance of the precise monitoring and regulation of 

serum calcium levels to human health; hence, the endocrine role of the VDR in the 

regulation of calcium homeostasis is critical. The levels of vitamin D depend on cutaneous 

synthesis initiated by solar radiation and on dietary intake; a decrease of either one or both 

sources leads to insufficiency. The contribution from the ultraviolet light (UV)-initiated 

cutaneous conversion of 7-dehydrocholesterol to vitamin D3 is the greater, contributing more 

than 90% toward final 1,25(OH)2D3 synthesis in a vitamin D–sufficient individual.

The importance of the relationships between solar exposure and the ability to capture UV-

mediated energy is underscored by the inverse correlation between human skin pigmentation 

and latitude and associated 25(OH)D levels. That is, skin pigmentation was lost as humans 

migrated out of Africa to adjust to life with reduced solar UV exposure. As a result, 

individual capacity to generate vitamin D3 in response to solar UV exposure is intimately 

associated with forebear environmental adaptation. The correct and sufficient level of solar 

exposure and serum vitamin D3 are matters of considerable debate, and an Institute of 

Medicine report3 in 2010 recommended daily vitamin D3 intake at the levels of 600 IU/d for 

most groups in the population (800 IU/d for those >70 years of age). However, this 

recommendation is not without controversy; parallel reassessment of the vitamin D impact 

on the prevention of osteoporosis has suggested that the correct level may be as high as 2 to 

3000 IU/d, which may reflect more accurately ancestral serum levels.4 Another challenge is 

determining how a given intake relates to serum levels among individuals5,6 and what are the 

appropriate biochemical readouts for measuring systemic response.

However, given that there has been a concerted research focus on VDR signaling, there now 

exists a fairly sophisticated appreciation of this process, and it has been extensively 

reviewed.7–13

WHY CONSIDER TREATING CANCER WITH VITAMIN D COMPOUNDS?

The first report that VDR actions could control cancer cell growth were discovered partly 

through serendipity, and partly through logical extension of other studies. Reports in the 

1970s identified purified cell fractions that bound 1,25(OH)2D3 with high affinity,14 and 

encouraged investigators to begin to consider what were the molecular actions of the VDR in 

the classic tissues involved in calcium homeostasis, for example, skin, bone, intestine, and 

kidney.15 In 1981, Kay Colston and coworkers16 were first to demonstrate that 

1α,25(OH)2D3 at nanomolar concentrations inhibited human melanoma cell proliferation in 

vitro. That the workers used a cancer cell model was serendipitous; cancer cell models are 

more readily available to study in cell culture experiments than nonmalignant counterparts, 

and in this case16 the cells chosen were available in an adjacent laboratory.
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In parallel, it was also known that retinoids, which are also small lipophilic molecules that 

target NRs, could drive cell differentiation, for example, in HL60 leukemia cells lines cells.
17 In turn these studies led to the pharmacologic exploitation of all-trans retinoic acid in 

acute promyelocytic leukemia (APL). The molecular cause of APL are translocations of the 

RARγ receptor forming chimeric proteins such as PML-RARγ. These chimeric proteins 

disrupt the control of differentiation and give rise to APL.18–20 Pharmacologic doses of all-

trans retinoic acid are able to trigger differentiation and, therefore, this therapy in APL is a 

dramatic example of targeted cancer therapies; in addition, these findings contributed 

significantly to the rise of the concept of differentiation therapy.21–29 All-trans retinoic acid 

remains the mainstay of therapy for APL30,31 and this is a major catalyst for studying RARs 

across cancers.29,32,33 As a result, workers began to consider exploiting the antiproliferative 

actions of 1,25(OH)2D3 as a differentiation therapy in cancers. In the first instance, the 

ability of 1,25(OH)2D3 to induce differentiation in cultured mouse and human myeloid 

leukemia cells was examined.34,35 From the early 1980s onwards the antiproliferative effects 

of 1,25(OH)2D3 have been explored in a wide variety of cancer cell lines, which include all 

major solid tumors and leukemia.36–43

WHAT HAS BEEN LEARNED FROM PRECLINICAL STUDIES?

One of the most highly cited papers in the last 20 years of cancer research is the Hallmarks 
of Cancer paper by Douglas Hanahan and Robert Weinberg.44 This landmark paper defined 

6 stages necessary for cancer to develop and be sustained. Although this work has been 

expanded to include additional steps, this original thesis provides a highly significant 

backdrop against which to examine anticancer VDR functions.

Insensitivity to Antigrowth Signals and Evasion of Apoptosis

Cancer cells sustain their own proliferative signals and silence cues for programmed cell 

death. Signaling via 1,25(OH)2D3 drives antiproliferative events, and counters the 

insensitivity to antigrowth signals and the evasion of apoptosis in cancer cells. Multiple 

investigators have examined the mechanistic basis for cell sensitivity to VDR 

antiproliferative responses. For example, early studies focused on understanding 

antiproliferative pathways, be they mediating cell cycle arrest37,45–47 or programmed cell 

death.48–50 However, other studies supported a role for 1,25(OH)2D3 to block or impede 

programmed cell death.51,52 Historically, hematologic malignancies combined an ease of 

interrogation with robust classification of cellular differentiation capacity that were envied 

by investigators of solid tumors. It is, therefore, no coincidence that these cell systems led to 

the identification of VDR control of genes that control cell cycle progression, including 

p21(waf1/cip1) and p27(kip1), as well as the direct binding sites on the gene CDKN1A 
(encodes p21(waf1/cip1)).53,54 The regulation of p27(kip1) seems to be mechanistically 

enigmatic and exemplifies the broad effects of VDR signaling in that both transcriptional 

and translational regulation, such as enhanced mRNA translation, and attenuating 

degradative mechanisms are described?55–58

The upregulation of p21(waf1/cip1) and p27(kip1) principally mediate G1 cell cycle arrest, but 

1α,25(OH)2D3 has been shown to mediate a G2/M cell cycle arrest in a number of cancer 
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cell lines via direct induction of GADD45α.59–61 Concomitant with these events is a 

downregulation of cyclins such as cyclin A, a decrease in kinase activities associated with 

activated complexes, and ultimately the dephosphorylation of the retinoblastoma protein and 

sequestration of E2F family members in a repressive complex.62 Concomitant with changes 

in the cell cycle, 1,25(OH)2D3 induces differentiation, most clearly evident in myeloid cell 

lines, but also supported by other cell types and most likely reflects the intimate links that 

exist between the regulation of the G1 transition and the induction of cellular differentiation.
63–72

Programmed cell death has been reported in breast cancer models and leukemia models,
73–76 with evidence that the levels of BCL-2 family of proteins are tightly regulated.77 

Treatment with 1α,25(OH)2D3 upregulates vitamin D upregulated protein 1, which binds to 

the disulfide reducing protein thioredoxin and inhibits its ability to neutralize reactive 

oxygen species, which in turn can lead to stress-induced apoptosis.78–80

Tissue Invasion and Metastasis

VDR signaling enhances adhesion and suppresses the invasive capacity of cells; many of 

these effects are associated with a more differentiated phenotype. In an elegant series of 

studies, Munoz and coworkers have dissected the relationships between VDR signaling and 

invasion in colon cancer cell lines and primary tumors.81–86 These workers established the 

delicate interplay between VDR, E-cadherin, and the Wnt signaling pathway in cell lines 

and clinical samples. Others have examined adhesion protein expression in other cancer 

models, suggesting that these mechanisms may be generalizable beyond colon cancer cells.
38,87–89

Limitless Replicative Potential

An essential component of cancer is the ability to replicate without limits that often requires 

silencing of mechanisms of genomic surveillance. The VDR seems to play roles in 

maintaining genomic integrity and facilitating DNA repair. There is close cooperation 

between VDR actions and the p53 tumor suppressor pathway. Correlative data suggest that, 

generally, cells that respond to 1,25(OH)2D3 most profoundly have wild-type p53, and at the 

molecular level several target genes are shared by both signaling pathways, such as 

CDKN1A and GADD45A.53,54,59,90–95 Notably in the skin, VDR signaling is combined 

with surveillance of genomic damage to regulate mitosis negatively.96,97 In other epithelial 

tissues, close cooperation between VDR regulates BRCA1 mRNA and protein via 

transcriptional activation, again supporting a role in genomic surveillance.98–100

IDENTIFYING VITAMIN D RECEPTOR–MEDIATED TRANSCRIPTOMES

To identify critical target genes that mediate these actions, comprehensive genome-wide 

transcriptomic screens have revealed broad consensus on certain targets, but have also 

highlighted variability.36,60,101,102 There is a significant history of VDR-centric 

transcriptomic studies that support the cell phenotypes observed.36,60,61,101–111 For example, 

the study of isogenic cell pairs with differing sensitivities to 1,25(OH)2D3 signaling has 

identified networks that mediate antiproliferative sensitivity. In this manner, a significant 
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role of cross-talk between VDR and transforming growth factor (TGF)-β signaling has been 

revealed.112,113 In addition, similar studies have shown that VDR transcriptional targets can 

distinguish leukemia aggressiveness.114 The list of gene targets that is common across cell 

models seems to be short; the most clearly shared target is CYP24A1. Beyond that, 

commonly enriched gene networks often focus on cell cycle control and signal transduction. 

However, substantial variations in experimental design (eg, dose, exposure time, and use of 

1,25(OH)2D3 or an analog) limit strict comparisons. Thus, although a formal metaanalysis to 

reveal common themes has not been applied,115,116 it seems clear that there is little overlap 

between the transcriptomic studies. It is also noteworthy that datasets have been developed 

that are aimed at noncoding RNA species.117,118 Therefore, the diversity of the VDR 

regulated transcriptome is likely to increase.

More recently, these transcriptomic studies have been complemented by VDR ChIP-Seq 

studies in which the VDR genomic binding patterns have been captured. VDR ChIP-seq 

studies have been performed in several human cell types,119–123 in the presence and/or 

absence of ligand, and revealed the impact of ligand binding on VDR genomic targeting. 

Arguably, VDR ChIP-seq studies are more important than transcriptomic studies because 

they reveal direct VDR genomic interactions, whereas transcriptomic analyses inevitably 

include direct and indirect VDR-mediated effects. Each VDR ChIP-Seq analysis revealed 

approximately 2000 to 6000 genomic loci normally distributed around transcription start 

sites, reflecting the binomial distributions found for other transcription factors,123,124 but 

many loci are found at considerable distance from the transcription start sites. Another 

important finding from these studies is that the dual hexameric DNA motif spaced by 3 bp, a 

so-called DR3 motif,125,126 is found in the majority but not all of the most prominent 

genomic VDR binding sites. Other binding motifs have also been suggested, for example, an 

inverted palindrome spaced by 9 bp, a so-called IP-9.127,128 The application of ChIP-Seq 

approaches to NRs in general has revealed greater binding site diversity than previously 

expected; in addition the importance of flanking regions for cofactors to be biologically 

important to determine function.129 These aspects of transcriptional regulation are described 

in greater depth in J. Wesley Pike and Sylvia Christakos’ article, “Biology and Mechanisms 

of Action of the Vitamin D Hormone,” in this issue.

The precise frequency of DR3 type elements in part remains ambiguous, because it depends 

on a number of variables that include the depth of the sequence read, the precise discovery 

motif algorithm applied, and the statistical thresholds used. Regardless of the actual 

percentage of VDR binding sites that contain DR3 motifs, it is clear that the VDR binds in 

significant levels to genomic regions that do not contain a canonical DR3. This may be 

explained by the VDR interacting with the genome in both direct (VDR–DNA) and indirect 

(VDR–protein–DNA) modes (reviewed in reference8).

There is a compelling case to be made for the reanalysis of the VDR ChIP-Seq data, from 

genomic alignment to differential peak calling. The rationale for reanalyses is two-part. 

Analyses of ChIP-Seq is not trivial in terms of statistical assumptions, and the existing 

studies have all been analyzed in a different manner. Therefore, there is the possibility that 

thresholds and cutoffs differ between studies. Second, the methodologies for ChIP-Seq 
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processing are an area of active development and advancement, and the most recent 

approaches display a number of benefits over earlier analytical workflows.130

IN VIVO VITAMIN D RECEPTOR ANTICANCER ACTIONS

Given this wealth of understanding of the broad anticancer actions of the VDR, and the aim 

to exploit this understanding in cancer settings, the use of rodent models is a major 

intermediary step before clinical exploitation of VDR signaling in either chemoprevention or 

chemotherapy settings.

A clear difficulty in investigating the efficacy of targeting VDR with either 1,25(OH)2D3 or 

analogues that have more attractive pharmacologic propterits33,126,131–140 is that mice are 

not humans. Their spectra of age-associated malignancies are different from humans and 

other key metabolic differences exist. Recapitulating these lifetime effects are further 

compounded by the need to establish the window in which chemoprevention effects may 

play a role in either tumor initiation or progression.

Notwithstanding these caveats, the Vdr−/− animals are extremely useful tools to elucidate 

more clearly the role for the VDR to act in a cancer preventive manner.2,141,142 A series of 

animals have been generated in which the VDR-ablated background has been crossed into 

animals with tumor disposition phenotypes. In the first instance, there is evidence that 

deleting or reducing VDR levels alters the morphology in the colon143,144 and breast.145 

Furthermore, crossing the Vdr-deficient and heterozygote mice with mouse mammary tumor 

virus–neu transgenic mice has generated animals that show a degree of Vdr haplosufficiency.
145 The mammary tumor burden in the crossed mice is reduced with the presence of one 

wild-type Vdr allele and further with 2 wild-type Vdr alleles. Alternatively, the Vdr−/− 

animals demonstrate greater susceptibility to carcinogen challenge. For example, 

challenging Vdr−/− mice with DMBA induced more preneoplastic lesions in the mammary 

glands than in wild-type mice.146

Previously, other workers have established that deletion of the Adenomatous polyposis coli 

(Apc) gene in a mouse can faithfully recapitulate human colon cancer. In turn, these mice 

have been exploited to examine the impact of Vdr deletion on the progression of colon 

cancer147; similar studies support an antitumorogenic role for the VDR in the skin.148 

Numerous studies have examined the ability of dietary or pharmacologic addition of vitamin 

D compounds to either prevent tumor formation or inhibit the growth of xenograft tumors.
82,149–159

One area of investigation is the impact of experimental dietary variations and their impact on 

tumor predisposition. Long-term studies of mice fed with a Western-style diet (eg, high fat 

and phosphate and low vitamin D and calcium content) have been exploited to examine the 

impact of vitamin D on colon cancer proliferation.160 Similarly, vitamin D and calcium 

dietary interventions and can modulate colon crypt hyperplasia161 and provide a rationale 

for how diet, inflammation, and premalignant cells could all interact and modulate cancer 

progression.143,162–165

Campbell and Trump Page 6

Endocrinol Metab Clin North Am. Author manuscript; available in PMC 2020 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HUMAN EPIDEMIOLOGIC FINDINGS AND CLINICAL TRIALS

Epidemiologic studies by Cedric Garland and coworkers were the first to investigate 

relationships between intensity of sunlight exposure and cancer incidence and revealed an 

inverse correlation with risk of colon cancer, and subsequently extended these findings to 

implicate a relationship with other cancers.166–170 For example, levels of 25OH-D, the major 

circulating metabolite of vitamin D, are significantly lower in breast cancer patients than in 

age-matched controls.171–173 However, these relationships are clearly complex and reflect 

lifetime exposures, and indeed controlling for lifestyle factors can significantly impact the 

strength of the relationships.174 Although these are all association studies, and therefore 

function cannot be readily inferred, there are some suggestive findings that low serum levels 

of 25OH-D are an unfavorable prognostic indicator175–178 or may trigger worse 

chemotherapy responses.179 In other cancers, prostate for example, the relationships are 

more equivocal, with some positive findings,180,181 although more generally the results are 

not able to support a cancer-preventative impact of vitamin D levels.182–185 To address these 

ambiguities, investigators are now in the first stages of randomized supplementation trials,
186 one of which, VITAL (VITamin D and omega-3 TriaL), has now accrued 25,000 people 

and is examining the impact of supplementing vitamin D and omega 3 fatty acid on a range 

of pathologies, principally cancer and heart disease incidence187

Collectively, these preclinical studies and aspects of the epidemiologic findings encouraged 

academic and pharmaceutical partnerships in the design of vitamin D analogues that may 

have an optimal balance of in vivo properties to be used as a chemoprevention or 

chemotherapy agent. Optimizing vitamin D compounds for in vivo anticancer efficacy is 

aimed at ensuring a favorable balance between calcium mobilizing actions, which result in 

hypercalcemia, and enhancing the anticancer actions of targeting the VDR. Several 

medicinal chemistry groups undertook this goal, led in many ways by the group of Milan 

Uskokovic at Hoffman la Roche,64,188–200 alongside Lisa Binderup at Leo Pharmaceuticals,
201–204 as well as other groups in academic settings, including Gary Posner.205–208 Together, 

these and other investigators have synthesized a blizzard of vitamin D analogues that have 

many promising properties, being resistant to metabolism and yet have tolerable impact on 

serum calcium levels.

Several of these analogues have served as the lead compounds in the search for disease 

settings where the anticancer actions of vitamin D compounds can be exploited. For 

example, phase I trials have been undertaken in a range of advanced cancers209,210 and led 

to more targeted phase II trials in pancreatic,211 liver,212 prostate,213–216 and breast cancers.
186,217 In all cases, the regimens were well-tolerated but clinical responses were at times 

modest. However, this in part may reflect that the doses chosen were too conservative and 

the correct endpoints for these trials would be measuring cellular differentiation (or reduced 

proliferation or enhanced apoptosis), and this is not readily undertaken in the context of 

clinical trials.

These challenges are illustrated by considering prostate cancer in more detail. A number of 

investigators have considered the option of treating men with localized disease before 

surgery and then studying the prostate tumor after surgery for characterization of known 
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VDR target genes. In a trial of nearly 40 patients with localized prostate cancer, Beer and 

colleagues218 administered either 1,25(OH)2D3 or placebo for 4 weeks before radical 

prostatectomy. Expression changes in the VDR or known candidate VDR target genes of 

markers of cell proliferation were examined. Interestingly VDR was downregulated in the 

treatment group, whereas the other genes chosen (eg, TGFBR2) were unchanged. Others 

replicated this approach but with doxercalciferol and revealed significant modulation of 

TGFBR2. Interestingly, microarray studies of 1,25(OH)2D3 sensitivity in isogenic breast 

cancer cell lines established that TGFBR2 was a critical mediator and marker of sensitivity 

toward 1,25(OH)2D3.112 Other investigators have examined the question of efficacy by 

escalating dose to assess how well higher levels of 1,25(OH)2D3 can be tolerated.219 

Together these studies suggest that 1,25(OH)2D3 can be given to prostate cancer patients at 

quite high doses and changes in expression of VDR-dependent genes can be observed.

This finding has also led others to consider how chemotherapy with 1,25(OH)2D3 could be 

potentiated by combinations with other cytotoxic agents for added clinical benefit. Such 

combination studies are intrinsically challenging; in the vitamin D arena, Novocea 

undertook such an approach in their development of DN-101 (a new formulation of 

1,25(OH)2D3) as a cancer therapy in combination with docetaxel for men with advanced 

prostate cancer that had failed hormonal therapy, so-called castration resistant prostate 

cancer. Based on numerous preclinical studies and a single institution clinical study, 

Novocea conducted a randomized phase III study (ASCENT I [AIPC Study of Calcitriol 

ENhancing Taxotere]) to determine whether the prostate-specific antigen response rate 

(defined as a >50% decline in prostate-specific antigen for >1 month) was different for the 

standard therapy for castration resistant prostate cancer at the time (docetaxel 36 mg/m2 

weekly intravenously for 4 weeks every 6 weeks) compared with the same dose and 

schedule of docetaxel plus DN-101, 45 mg weekly.220 Although this study did not meet the 

prostate-specific antigen response criteria, it did alter the overall survival and therefore 

justified a large randomized trial to assess survival. This new trial (ASCENT II) was halted 

before full recruitment because survival in the DN-101 arm was reduced compared with 

standard of care. However, the ASCENT II trial design was seriously flawed: the 

chemotherapy in each arm was not equal in efficacy. The design of the trial was docetaxel A 

+ DN-101 versus docetaxel B + placebo. Substantial data existed at the time that the trial 

was initiated that docetaxel A was clearly inferior to docetaxel B in terms of survival in men 

with castration resistant prostate cancer. Therefore, the trial was actually designed to ask the 

question, can DN-101 overcome the inferiority of docetaxel regimen A.

A more fundamental flaw of both trials was that the dose of 1,25(OH)2D3 chosen was 

neither the biologically optimal nor the maximum tolerated dose. Other studies have clearly 

shown that a 2 to 3 times higher doses of calcitriol can be given safely to such patients. 

However, the result of ASCENT II has been interpreted as “calcitriol does not potentiate 

docetaxel (and hence any chemotherapy) in a large clinical trial.” This is a conclusion based 

on no adequate data. As a result, the application of vitamin D formulations have probably 

been left in a challenging development point.221

Given these tantalizing preclinical and epidemiologic findings, the question then is why have 

the clinical trials not been successful? It is clear that clinical exploitation of any drug is hard, 
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and there is a very high attrition rate of drugs passing from preclinical development to 

clinical implementation.222 There are many therapies that struggle to balance preclinical 

promise with clinical realities, and the clinical development pipeline is often challenged by 

ensuring optimal clinical trial design, as illustrated by PARP inhibitors and antiangiogenesis 

therapies223–227 that, although approved by the US Food and Drug Administration, have 

required further reanalyses to define optimal efficacy.228,229 Therefore, it is possible that 

vitamin D–centered chemotherapies will fall to a similar fate. It may well be that, to date, an 

incomplete understanding of what are the desirable anticancer actions and inappropriate 

clinical trial design have impeded clinical success with vitamin D compounds.

CELLULAR MECHANISMS OF RESISTANCE

A major focus emerged on dissecting how cancer cells vary in their response to 

1,25(OH)2D3. One initial focus was on genetic variation in the 3′ and 5′ regions of the VDR 

gene itself.230–233 For example, a start codon polymorphism in exon II at the 5′ end of the 

gene, determined using the fok-I restriction enzyme, result in a truncated protein.234 These 

findings were initially suggestive of a functional relationship between VDR gene genetic 

variation and cancer risk, but in larger studies these associations seem to be equivocal, or 

more nuanced.235–242 Indeed, this is also reflected by the fact that the National Human 

Genome Research Institute genome-wide association studies (GWAS) catalog does not list 

any genome-wide significant genetic variation that is annotated to the VDR and related to 

cancer phenotypes; rather the genetic variation of the VDR seems to associate with immune, 

diabetic, and reproduction phenotypes.243–245

Also at the genetic level, various investigators have considered how cell responsiveness to 

1,25(OH)2D3 may be determined by the expression of the activating (CYP27B1) and 

metabolizing (CYP24A1) enzymes. For example, comparative genome hybridization studies 

found that CYP24A1 is amplified in human breast cancer in relation to paired normal tissue.
246,247 Others have revealed reduced CYP27B1 mRNA and protein levels in a wide variety 

of cancer cell lines and primary tumors.248–254 Together these findings suggest that cancer 

cell sensitivity toward 1,25(OH)2D3 may primarily depend on autocrine metabolism in target 

cells rather than the endocrine synthesis and uptake in target cells. This raises the possibility 

that local control of these enzymes could be exploited in targeted VDR-centric therapies.

Finally, others have considered how epigenetic mechanisms may disrupt VDR signaling. 

Evidence for this approach arises from the observation that 1,25(OH)2D3-reclacitrant cells 

still often respond transcriptionally, but lack transcriptional responsiveness to 

antiproliferative target genes such as CDKN1A, but sustain or even enhance induction of 

CYP24A1 gene.61,100,112,118,255 These data suggest that the VDR transcriptome is skewed 

in cancer cells to disfavor antiproliferative target genes, and that lack of functional VDR 

alone cannot explain resistance. The interactions of transcriptional corepressors such as 

NCOR1 and NCOR2/SMRT have been examined to investigate this possibility.61,256–261 In 

turn, altered VDR–corepressor interactions may form a molecular lesion that could be 

targeted by cotreatment of 1,25(OH)2D3 plus the HDAC inhibitors.262–267

Campbell and Trump Page 9

Endocrinol Metab Clin North Am. Author manuscript; available in PMC 2020 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LESSONS FOR BIG DATA TO OPTIMIZE VITAMIN D RECEPTOR–CENTERED 

THERAPIES

Biology is very clearly in the genomic era, in which the sum total of genes, transcripts, 

proteins and metabolites in cells are captured and analyzed. Arguably, the achievements of 

the Human Genome Project268 served as a major catalyst for this approach, and other 

research consortia have applied similar technologies and approaches to tackle other 

fundamental challenges in biology. Powerful examples are illustrated by Encyclopedia of 

DNA coding elements (ENCODE),269,270 RoadMap Epigenome,271 Functional and 

Taxonomic Analysis of Metagenomes,272 International Human Epigenome Consortium,
273,274 the Cancer Genome Atlas (TCGA),275 and the Genotype-Tissue Expression (GTEx) 

project.276 The volume of data generated by these projects is unprecedented and truly 

transformative in terms of the questions that can be addressed, the manner in which they are 

tackled, and the how the findings are interpreted and widely translated.

Bioinformatic analyses are central to both the generation of these complex datasets and their 

investigation. Unbiased bioinformatics analyses can reveal organizational insight that is 

neither obvious nor intuitive. Unbiased and agnostic analyses are achieved by applying 

algorithmic approaches that depend on discrete mathematics and information theory, 

combined with graph theory, data mining, and computer science generally, with a central 

role for the statistical sciences. In this manner, bioinformatic approaches offer the promise to 

reveal underlying mechanisms of biology in health and disease.

For example, -omic technologies can be applied to capture genomic structural variants and 

mutations, gene and protein expression patterns, protein posttranslational modifications, and 

metabolites across cell states. Bioinformatics analyses is applied to all steps from data 

capture, to data processing (eg, filtering and normalization), to establishing reproducible 

changes between states A and B, and to more complex integrative analyses from combining 

different -omic datasets. The statistical sciences are central to all these steps. The ultimate 

goal from these workflows is to identify network changes between states, and finally to 

identify nodes that exert control. Such nodes would then form attractive targets for 

interventionist wet laboratory-based experiments.

Several points are worth stressing from this theoretic workflow. First, study design and 

phenotype definition are critical. Second, all analyses include a denominator (eg, the 

genome, the detectable transcriptome, etc) so that any change is considered against the 

appropriate backdrop of all events occurring in the cell. Third, all data processing includes 

normalization across samples, including replicates and states, and subsequent filtering to 

remove the large component of the signal that is unchanging to, therefore, control the 

penalties of false discovery. Finally, the integrative steps have very high potential for 

creativity and novelty. That is, as the volume of publicly available data grows, the statistical 

approaches and types of data integration that can occur are varied and represent where many 

of the key biological questions of the future will be framed.

The mechanics of VDR signaling and disruption in cancer can, therefore, be analyzed in the 

paradigm of mining and analyzing large biological datasets. Therefore, there are several 
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bioinformatics approaches that are applicable to the VDR. In the first instance, applying the 

genome as the denominator allows the question to be addressed of where VDR biology is 

significant. For example, in what cancer does a significant role for the VDR emerge when 

considering all genetic variations or gene expression?

At the simplest, GTEx project277 and the TCGA data can be investigated to identify in 

which normal tissue is the VDR most highly expressed, or in what cancer is it most 

commonly altered. The GTEx data reveal that the VDR is most abundant in tissues of the 

colon and small intestine, and least abundant in basal ganglia and brain tissues. The TCGA 

data reveal that the VDR is most commonly altered by deletion in 2 cohorts of adenoid 

cystic carcinoma of the breast.278,279 Interestingly, the GTEx data clearly reflect the focus at 

the preclinical and epidemiologic level of investigated VDR in colon cancer. However, no 

studies to date have examined VDR in the context of adenoid cystic carcinoma of breast 

cancer.

The TCGA280,281 data are derived from more than 33 different cancer types that were 

collected from approximately 11,000 patients. The analyses of these data have been the 

subject of more than 350 papers to date and it is striking that none of these papers identified 

a genome-wide significant role for disruption or association of the VDR with tumor 

phenotypes. By comparison, more than 100 TCGA papers report a significant relationship 

with TP53.

Often, biological signals are extremely contextual. Analyses of myeloid282 and 

megakaryocyte283 cells illustrate that there is a significant role for the VDR to act in distinct 

transcriptional units that control specific points of cell differentiation. These findings reveal 

the intricate mechanistic basis to some of the earliest cancer studies on VDR signaling in 

leukemia,284,285 which revealed that exogenous vitamin D compounds can trigger cell 

differentiation. Therefore, reflecting on the role VDR seems to be playing in myeloid 

systems, it is worth stressing the apparent importance of VDR in immune phenotypes. That 

is, GWAS identify significant roles for VDR genetic variation in immune phenotypes.
244,286,287

Perhaps reflecting the reproduction-related functions of the VDR in murine systems,288 the 

Vdr−/−mice display a mammary gland phenotype, and this genotype can modulate cancer 

incidence in murine cancer models.145,289,290 However, transcriptional and epigenomic 

control of breast epithelial systems in human cells does not reveal a genome-wide significant 

role for the VDR,291 and the major breast cancer papers from TCGA have not identified a 

genome-wide significant role for the VDR to act as a cancer driver.292–295

Putting these findings together from leukemia and common cancers suggests that the VDR 

itself does not act as a direct cancer driver, either through loss or gain of function. This 

finding may limit the likelihood of therapeutic exploitation in the cancer context.

Other approaches can be applied to leverage public data by changing the denominator. It is 

possible to address questions centered around the VDR and related genes, and thereby limit 

the penalties of false discovery. For example, previously we analyzed 13 transcription factor 

families implicated in cancer, including the NR superfamily, across 3000 tumors from 6 
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different tumor types.296–300 Bootstrapping approaches301 established that, across cancers, 

only the NR family was significantly downregulated, but was neither significantly mutated 

nor altered by copy number variation.302 Within the NRs, we found that several NRs were 

uniquely suppressed in only one tumor site, including VDR in the colon cancer (COAD) 

cohort; this finding may reflect the strong expression of VDR in the normal colon. VDR 

downregulation was not found to be driven by copy number variation or mutation and thus 

epigenetic mechanisms may be primarily responsible for altered expression.301,302 There is a 

very well-established literature supporting links between corrupted VDR signaling and 

colon cancer.85,147,303–308 Our pan-cancer analyses add to these findings, suggesting that 

loss of VDR-induced growth restraint may be more apparent in colon cancer than in other 

cancers where alterations are not apparent.

The VDR ChIP-seq data also lend themselves to be combined with other types of publicly 

available data to ask further questions concerning VDR function. For example, an attractive 

integration approach is to examine how significant genetic variation in transcription factor 

binding site can relate to phenotypes and disease susceptibility. Testing the possibility that 

genetic variation impacts transcription factor function underpins trait differences and disease 

phenotypes is analytically challenging, given the size of the datasets and the potential for 

false discovery. Various groups have addressed this challenge; notably, both the ENCODE 

and Roadmap Epigenome consortia leveraged the remarkable volume of ChIP-seq data they 

generated and merged the binding sites with GWAS data to reveal and rank sites where 

single nucleotide polymorphisms (SNPs) seem to have a significant impact on the activity of 

multiple transcription factors.124,271,309

However, given that VDR has not been considered in any of these consortia, we have 

recently integrated VDR ChIP-Seq119–123 with National Human Genome Research Institute 

GWAS SNPs, and SNPs in linkage disequilibrium, to provide novel insight into the 

interaction between disease- and phenotype-associated SNPs and VDR binding. From these 

analyses, we applied transcription factor motif searching and exploited other ChIP-Seq data 

to identify significant interactions between the VDR and other transcription factors and 

disease traits. In this manner, we identified genetic variation that was significant at the 

genome-wide level enriched in VDR binding sites that were shared with nuclear factor-κB 

binding regions related to immune phenotypes, including self-reported allergy.310 However, 

none of the GWAS SNPs identified in VDR binding sites were neither in a DR3 type motif, 

again underscoring the diversity of VDR binding sites, nor related to cancer phenotypes.

However, there does seem to be a significant relationship between VDR and colon cancer, 

given that the VDR is highly expressed in the normal colon, associated with the control of 

local immunity,82,308,311–315 and that, of all the NRs, the VDR is commonly and 

significantly downregulated in colon cancer. To test this possibility, we leveraged VDR 

ChIP-Seq data derived in LS180 colon cancer cells121 with the expression of VDR target 

genes in the TCGA–COAD cohort.298 Clustering the tumors by expression patterns then 

allowed testing the relationships between expression of VDR target genes and clinical 

outcome. Expression of VDR target genes were either significantly repressed or activated in 

the COAD cohort, suggesting that VDR functions in both activating and repressing 

complexes at the basal (or physiologically activated) state.316 For instance, LGALS4 is a 
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VDR target gene that is specific to colonic cells and is downregulated in colon cancer, acting 

as a tumor suppressor,303,317,318 and LGALS4 quartile expression patterns significantly 

associated with disease-free survival in specific patient subgroups.

A further opportunity available for meaningful data integration of ChIP-Seq studies is in the 

judicious choice of the cell line of study. For example, there are 3 tier 1 cell lines in the 

ENCODE project including K562 cells, which has approximately 600 publicly available 

genome-wide datasets. Therefore, there is an exciting opportunity once VDR ChIP-Seq is 

undertaken in one of these models in terms of integrative analyses319 that could leverage 

ENCODE or RoadMap Epigenome data.

FUTURE CONSIDERATIONS AND SUMMARY

Enthusiasm remains for exploiting vitamin D signaling in cancer systems. This partly 

reflects that the biology is now very well-understood, that the toxicities associated with 

vitamin D compounds are easily monitored and managed and that in an era of high 

dimensional biological data it is possible to measure and dissect the actions of VDR 

signaling in very great detail. It seems likely that efforts will continue to exploit vitamin D 

compounds in the clinical setting, and it may well be that by exploiting tools to very 

accurately measure tumor type and burden will allow vitamin D-centered therapies to be 

applied with great precision. It seems likely that among the actions of VDR, the 

immunomodulatory capacity may ultimately be the ones that are most advantageous in 

cancer therapies.
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KEY POINTS

• Preclinical and epidemiologic data justify the concept that vitamin D 

compounds could be exploited as a differentiation therapy for a wide range of 

malignancies.

• Clinical evaluation of vitamin D compounds has been more equivocal and, 

although biological responses can be measured in vivo, clinical responses 

have not justified further evaluation.

• Dissecting mechanisms of cellular resistance is one route to defining patient 

groups with greater precision who may respond more fully to clinical 

targeting.

• Large genomic and population datasets are available that can be mined to 

define patient responses more completely and identify which tumor types may 

be most effectively targeted.
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