
Unraveling near real-time spatial dynamics of population using 
geographical ensemble learning

Yimeng Songa,*, Shengbiao Wub, Bin Chenb, Michelle L. Bella,c

aSchool of the Environment, Yale University, New Haven, CT 06511, USA

bFuture Urbanity & Sustainable Environment (FUSE) Lab, Division of Landscape Architecture, 
Faculty of Architecture, The University of Hong Kong, Hong Kong Special Administrative Region

cSchool of Health Policy and Management, College of Health Sciences, Korea University, Seoul, 
South Korea

Abstract

Dynamic gridded population data are crucial in fields such as disaster reduction, public health, 

urban planning, and global change studies. Despite the use of multi-source geospatial data 

and advanced machine learning models, current frameworks for population spatialization often 

struggle with spatial non-stationarity, temporal generalizability, and fine temporal resolution. To 

address these issues, we introduce a framework for dynamic gridded population mapping using 

open-source geospatial data and machine learning. The framework consists of (i) delineation 

of human footprint zones, (ii) construction of muliti-scale population prediction models using 

automated machine learning (AutoML) framework and geographical ensemble learning strategy, 

and (iii) hierarchical population spatial disaggregation with pycnophylactic constraint-based 

corrections. Employing this framework, we generated hourly time-series gridded population maps 

for China in 2016 with a 1-km spatial resolution. The average accuracy evaluated by root mean 

square deviation (RMSD) is 325, surpassing datasets like LandScan, WorldPop, GPW, and GHSL. 

The generated seamless maps reveal the temporal dynamic of population distribution at fine 

spatial scales from hourly to monthly. This framework demonstrates the potential of integrating 

spatial statistics, machine learning, and geospatial big data in enhancing our understanding of 

spatio-temporal heterogeneity in population distribution, which is essential for urban planning, 

environmental management, and public health.
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1. Introduction

Data on the fine-scale distribution of population play an important role across various 

domains, including but not limited to disaster reduction (Sudmeier-Rieux et al., 2021), 

public health (Tran et al., 2022), urban planning (Chen et al., 2022), and global change 

studies (Goodwin et al., 2023). Census and survey data, while foundational, face limitations 

such as infrequent updates, limited spatial granularity, and confinement to administrative 

boundaries, affecting their usefulness in many contexts (Batista e Silva et al., 2020). 

Moreover, information that captures the dynamic nature of population distribution, moving 

beyond static residence-based statistics to include place-of-activity, is critical for diverse 

real-world applications, such as transport planning (Nieuwenhuijsen, 2020), epidemic 

surveillance (Li et al., 2020), and hazard exposure assessment (Caplin et al., 2019). In 

response to these challenges and demands, dynamic gridded population data, providing a 

comprehensive spatio-temporal representation of population distribution at a finer scale, are 

recognized as a promising solution (Leyk et al., 2019).

Gridded population mapping, or population spatialization, involves disaggregating 

population from larger geographic units to finer target units using spatial disaggregation 

methods such as areal interpolation, dasymetric mapping, statistical modeling, and machine 

learning modeling (Batista e Silva et al., 2020). Areal interpolation (e.g., areal weighting) 

uniformly redistributes census data across target grid cells based on spatial overlap (Doxsey-

Whitfield et al., 2015), but may not capture the actual spatially heterogeneous features of 

population distributions. Dasymetric mapping, on the other hand, uses ancillary variables 

such as land cover, topography, and street networks to create more reasonable population 

redistribution schemes by assuming relationships between the population and ancillary 

variables (Freire et al., 2016; Wei et al., 2021). Statistical modeling and machine learning 

refine the dasymetric mapping method using regression relationships between the target 

variable (i.e., population size/density) and auxiliary variables (Stevens et al., 2015; Tatem, 

2017). In practice, researchers typically do not use only one method alone, but combinations 

of methods to capitalize on the strengths of each and improve the overall accuracy of 

population mapping (Leyk et al., 2019).

While advancements in population spatialization methodologies are growing, they still 

face many challenges. A primary concern is spatial non-stationarity, a phenomenon where 

relationships vary across different locations, which is particularly challenging for areas with 

significant spatial heterogeneity in population distribution (Cockx & Canters, 2015). Efforts 

have been made to address this issue through the application of localized models, such as 

geographical weighted regression (GWR) (Wang et al., 2018), and geographical random 

forest (Georganos et al., 2021). Such models provide localized relationships between 

population and ancillary variables, rather than assuming spatially uniform relationships 
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among variables as in global models (Xu et al., 2021). An important advance in addressing 

this concern has been the emergence of hybrid approaches, such as the integration of 

Random Forest, XGBoost, and GWR (Tu et al., 2022). Nevertheless, the potential of hybrid 

approaches for solving spatial non-stationarity remains largely unexplored, especially in 

maximizing the benefits of various machine learning models across distinct geographic 

contexts.

Addressing the challenges of temporal generalization within population spatialization 

frameworks is crucial for achieving dynamic population mapping with a fine temporal 

resolution. Since around 2010, the use of human digital footprint data, such as mobile 

phone records, geotagged social media, and location-based service (LBS) data from mobile 

applications, has become increasingly prevalent for capturing the dynamic spatial patterns of 

populations (Batista e Silva et al., 2020; Cheng et al., 2022; Song et al., 2018; Tsou et al., 

2018). A distinguishing characteristic of these data is its temporal variability in magnitude, 

such as the daily fluctuations observed in Twitter/X usage (Tsou et al., 2018). This 

variability challenges the direct application of a time-specific framework across different 

times, thereby constraining their temporal generalization capabilities. Current frameworks 

often fail to adequately address this issue, leading to the generated dynamic population maps 

that represent broader temporal aggregates, such as monthly average (Cheng et al., 2022), 

diurnal average (Batista e Silva et al., 2020), or yearly averages for each individual hour 

(Tu et al., 2022), despite the availability of digital footprint data capable of supporting finer 

temporal analysis. Consequently, the task of mitigating the effects of digital footprint data’s 

magnitude fluctuations to improve a framework’s ability for temporal generalization and 

to facilitate the generation of detailed time-series dynamic population maps is a pressing 

concern.

In this study, we introduced an innovative framework for population spatialization to 

address the identified challenges, designed to produce comprehensive, large-scale, time-

series gridded population maps. We implemented this framework in a case study in China, 

demonstrating its capacity to accurately depict the spatial dynamics of population at both 

monthly and hourly scales. This research aims to explore three critical questions: (1) 

How can we merge the strengths of various machine learning models with a geographical-

sensitive ensemble approach to maximize benefits across different geographical contexts? 

(2) How can we mitigate the effects of magnitude fluctuations in digital footprint data 

to enhance the framework’s temporal generalization, thereby facilitating the generation 

of dynamic population maps with finer temporal resolution? (3) What insights can the 

generated maps provide into population distribution dynamics across varied spatial–temporal 

scales?

2. Materials

We constructed a library of spatial data layers for population spatialization. This library 

comprises twelve categories of datasets. With 2016 as the reference year, we collected the 

available data closest to 2016. Table 1 presents an overview of the data sources for these 

datasets and their utilization in Section 3.
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Specifically, county-level census data from the 1 % population sample survey in 2015 

published in the China Statistical Yearbook 2016 (National Bureau of Statistics of China, 

2016) were used as ground truth data. A total of 2851 counties were included in this study, 

with the exception of Hong Kong, Macau, Taiwan, and islands in the South China Sea (Fig. 

S1 in Supplementary Material).

Tencent LBS data is a pivotal data source that offers insights into human spatial behavior 

and dynamics. The data record the real-time locations of active users utilizing Tencent’s 

location-based services (Gong et al., 2020; Song et al., 2018). As one of China’s largest 

internet service providers, Tencent recorded an average of 38 billion LBS requests per day 

from its 450 million active users worldwide in 2016, with 90 % of those requests generated 

in mainland China (Song et al., 2018). Tencent LBS has been demonstrated to effectively 

characterize population distribution and has been widely utilized in various fields such 

as population prediction (Xu et al., 2021), land cover/use mapping (Gong et al., 2020), 

environmental and ecology research (Song et al., 2021) and population migration modeling 

(Zhu et al., 2018). In this study, we collected data generated in 2016 via the method outlined 

in Song et al. (2018). The raw data is tabulated as the count of LBS requests within each 

30 arc-second spatial interval released every 5 min. We aggregated and converted the tabular 

data into hourly raster data for 2016.

Due to the limited length of the article, we provide detailed information about the other 

datasets in the Supplementary Material. To ensure spatial correspondence between different 

raster layers, all raster data were resampled to 1-km resolution using either the nearest 

neighbor approach (for categorical data) or bilinear interpolation (for continuous data), and 

projected to the Albers Conical Equal Area projection.

3. Methodology

Several fundamental principles outlined in the literature (Gaughan et al., 2016; Wang et 

al., 2018) inform the population spatialization framework proposed in this study. These 

principles are: (1) population distribution should be spatially linked to areas with human 

activity; (2) every designated area should have a non-negative population count; (3) 

prediction models need to address spatial non-stationarity; and (4) inherent estimation 

errors should be managed using a pycnophylactic constraint. Following these principles, 

our proposed framework consists of the three steps shown in Fig. 1: (i) delineation of 

human footprint zones, (ii) construction of muliti-scale population prediction models, and 

(iii) hierarchical population spatial disaggregation.

3.1. Human footprint zone delineation

As population is not distributed over every inch of the earth’s surface, we delineate 

human footprint zones to identify the potential spatial extent of population distribution, 

utilizing various layers of human activity-related factors. These layers include human digital 

footprint, human settlement footprint, artificial impervious area, road density, and POI 

density, as listed in the first five rows of Table 1. By overlaying these layers (Step-i in Fig. 

1), we defined the human footprint zones as grids covered by at least one non-zero human 
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activity-related factor. As a result, a total of 4.6 million grids (1*1 km) were identified as 

human footprint zones, covering roughly 49 % of the study area.

3.2. Multi-scale population prediction models constrcution

The core component of a population spatialization framework is applying a spatial 

disaggregation method to transform large-scale census data into a detailed grid format. In 

this study, spatial disaggregation started with predicting multi-scale population density using 

regression models with a bunch of ancillary variables. We constructed two regression models 

using an automated machine learning (AutoML) framework and different ensemble learning 

strategies. The first model is an ensemble model used for grid-scale predicting (hereafter 

Grid-Model), and the second model is a geographical ensemble model used for county-scale 

predicting (hereafter County-Model). These two models were later used for the hierarchical 

population spatial disaggregation in Section 3.3.

3.2.1. Grid-Model construction—We first constructed an ensemble model, the Grid-

Model, using AutoGluon, a new AutoML framework that automates data preprocessing, 

feature engineering, model selection, and tuning (Erickson et al., 2020). Its novel multi-layer 

stacking strategy (Step-ii in Fig. 1) consists of a base layer with diverse models and 

several subsequent layers. To save on computing, stackers in each layer reuse identical 

hyper-parameters. This approach can be considered deep learning with layer-wise training 

using arbitrary machine learning models. Stacker models in higher layers use previous 

predictions and original input features during training. The final stacking layer combines 

predictions using ensemble selection and aggregation methods to improve accuracy and 

reduce errors (Caruana et al., 2004).

We selected and extracted fourteen distinct ancillary variables with potential explanatory 

relationships with the target variable of population density, and extracted area-averaged 

features at the county scale (see Table 2 and Table S1). The reason why we use 

area-averaged features as both target variable and ancillary variables is to satisfy modal 

consistency to bolster the scale transferability (from county to grid scales) of the constructed 

nonlinear regression. Given that the official introduction of the census data emphasizes that 

the standard time for the demographic status it represents is 1st November (National Bureau 

of Statistics of China, 2016), for the Tencent LBS data, we trained the model using only 

the average hourly data in November to ensure temporal matching, which is different from 

earlier works that utilized annual average LBS data (Cheng et al., 2022; Tu et al., 2022). 

LBS data from other specific hours were utilized for population density prediction at the 

corresponding times.

We used automatic multi-layer stacking and 5-fold cross-validation as the parameters for 

model training. The 2851 county-scale samples were split into 2281 (80 %) for training and 

570 (20 %) for validation. The model was trained using all the variable listed in Table 2. The 

variable Pop_den was transformed to ln(Pop_den) and served as the target variable to ensure 

the predicted population density greater than zero. The customized base models used by 

AutoGluon for regression model construction include Random Forest algorithms, Extreme 
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Random Tree algorithms, K-Nearest Neighbor algorithms, Boosting Tree algorithms, and 

Neural Network algorithms.

3.2.2. County-Model construction—We constructed the County-Model based on the 

trained ensemble model (i.e., Grid-Model) by intorducing a geographical ensemble learning 

strategy. Specifically, due to the existence of positive spatial autocorrelation of county-scale 

population density in the study area (Moran’ I = 0.576, p < 0.01), aggregation methods used 

in AutoGluon (e.g., Bayesian Model Averaging, Coopetitive Soft Gating Ensemble) do not 

fully utilize the strengths of base models across different geographic regions to address the 

potential spatial non-stationarity. To tackle this problem, we refined the aggregation method 

by incorporating the principles of GWR to assign different geographical weights to the 

predictions of various base models for more effective aggregation (Step-ii in Fig. 1). The 

final predicted population density of a county was received via Eq. (1):

P i = β0 ui, vi + ∑
j

Mijβj ui, vi + εi

(1)

where (ui, vi) denotes the coordinates of the geometric center of the county i, β0(ui, vi) is the 

intercept value, εi is a random error term, Mij is the prediction of base models j, and βj(ui, vi) 

represents a set of weights to be assigned to Mij. The estimation of weights βj(ui, vi) is given 

by Eq.(2):

β ui, vi = MTW ui, vi M −1MTW ui, vi P

(2)

where M is a matrix of the base models’ predictions, P is a vector of the ground truth 

value of counties, and W (ui, vi) is the spatial weight matrix generated from the adaptive 

Gaussian kernel function. The optimal number of county neighbors was chosen by using a 

cross-validation method (CV) (Bowman, 1984).

Notably, we chose not to use this geographical ensemble learning strategy for Grid-Model 

construction, recognizing that the spatial non-stationarity relationships built at the county 

level might not effectively translate to grid-scale predictions due to scale variations, which is 

also supported by the observations detailed in Section 4.2.

3.3. Hierarchical population spatial disaggregation

Based on the constructed County-Model and Grid-Model, we proposed a hierarchical 

population spatial disaggregation approach for the hourly population mapping (Step-iii 

in Fig. 1). For a given hour, the approach begins with county-scale population density 

prediction using the County-Model. For the prediction, all ancillary variables remain 

constant as model training, except Tencent LBS data, which were updated to align with 

the corresponding hour. Prior to prediction, we employed a correction method based 

on pycnophylactic constraints (hereafter pycnophylactic correction) to ensure that the 
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magnitude of LBS count in any given hour is consistent with the hourly average count 

in November. The correction procedure is outlined in Eq. (3):

lbsit
′ = lbsit × LBS11

LBSt

(3)

where lbsit and lbsit’ represent the raw and corrected LBS count of county/grid i at hour 

t, respectively. LBS11 and LBSt denote the LBS count across the entire study area in 

November (hourly average) and at hour t, respectively.

Following the county-scale prediction, a pycnophylactic correction was implemented on the 

predicted county-scale population density, as specified by Eq. (4):

Pci = Pci × ∑i
n TPci

∑i
n Pci × Areai

(4)

where Pci and PCi represents the corrected and the originally predicted population density of 

county i, respectively; TPci and Areai refer to the population in census data and the area of 

county i, respectively.

We then performed grid-scale prediction using the Grid-Model with all the ancillary 

variables at grid-scale (1*1 km) as well as the corrected LBS data of the corresponding hour. 

Notably, predictions were confined to grids within the human footprint zone as delineated in 

Section 3.1, and grids outside this zone were assigned a population density of zero.

Last, we applied pycnophylactic correction again to the predicted grid-scale population 

density based on the corrected county-scale prediction, as specified in Eq. (5):

Pgij = Pgij × Pci × Areai

∑j
n Pgij

(5)

where Pgij and Pgij represent the corrected and original predicted population densities of grid 

j in county i, respectively; Pci and Areai maintain the same definitions as in Eq. (4).

3.4. Accuracy validation

Four distinct metrics were used for accuracy validation and comparative analysis, including 

root mean square deviation (RMSD, Eq.6), relative root mean square deviation (%RMSD, 

Eq.7), mean absolute error (MAE, Eq.8), and the coefficient of determination (R2).

RMSD =
∑i = 1

n pi − pi
2

n

(6)
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%RMSD = RMSD
1
n ∑i = 1

n pi

(7)

MAE = ∑i = 1
n pi − pi

n

(8)

where pi and pi is the prediction and ground truth of county i, respectively.

The final generated hourly gridded population maps in 2016 were aggregated to county-level 

annual averages and validated for accuracy based on census data. Additionally, we compared 

the recieved annual average map with four established population datasets, including 

WorldPop, LandScan, GPW, and GHSL.

4. Results

4.1. Model performance and feature importance

An ensemble model with a two-layer stacking structure and eleven base models was 

generated using AutoGluon framework (Table S2). This ensemble model was then used 

as Grid-Model as well as the basis for constructing the County-Model. For the selected base 

models, the topperforming ones measured by RMSD and R2 are CatBoost, LightGBM, 

and XGBoost in both training and testing procedures (Fig. 2a–b, Table S2), yet the 

KNeighborsDist and KNeighborsUnif models perform relatively poorly but have the shortest 

training time. The ensemble model (WE) has the best performance, achieving an RMSD 

of 0.27 and R2 of 0.981 in testing. The performance measured by %RMSD and MAE 

(Fig. 2c, Table S2) is consistent with those by RMSD and R2. As an automatic multi-layer 

stacking strategy was used for the model training, the generated two-layer stacking structure 

shows that increasing the number of layers does not substantially improve the prediction 

performance of the model.

We used permutation importance to evaluate the contributions of different features (i.e., 

ancillary variables) to the model’s predictive accuracy, as measured by RMSD. A higher 

score indicates a more siginificant impact on accuracy, while a negative score suggests the 

feature may detract from model performance, implying that removing such features could 

enhance predictions (Erickson et al., 2020). Fig. 2d displays the importance scores of the 

used fourteen features. The result shows that the LBS data has the highest importance score 

of 1.592, highlighting its critical role in population density prediction, followed by urban 

coverage (0.258) and cropland coverage (0.172). Additionally, all the fourteen selected 

features have positive importance scores (p < 0.01, Table S3), suggesting they are unlikely to 

affect the prediction results adversely.
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4.2. Performance in multi-scale population density prediction

Based on their pre-corrected prediction in November, we compared the constructed County-

Model and Grid-Model performance at different scales. For grid-scale assessment, we 

averaged grid values to match corresponding county scales.

For county-scale prediction, the Grid-Model obtained satisfactory accuracy with an R2 

of 0.977 and RMSD of 480 (Fig. 3a), while the accuracy of the County-Model further 

improved with an R2 of 0.999 and RMSD of 279 (Fig. 3b). The better accuracy of the 

County-Model indicates that this geographical ensemble learning-based model had solved 

the spatial non-stationary issue in county-scale prediction to certain extent.

For grid-scale prediction, the Grid-Model exhibited notable performance (Fig. 3c), achieving 

an R2 of 0.926 and an RMSD of 857. Given that the Grid-Model was trained using census 

data at the county scale, such high accuracy highlights the fine-scale transferability of 

the Grid-Model. In using the County-Model for grid-scale prediction, we used Kriging 

interpolation to transform geographical weights at the county scale to the grid scale, thus 

enabling the geographical ensemble learning strategy. However, the County-Model does not 

exhibit superior performance in grid-scale prediction (Fig. 3d), with an R2 of 0.748 and an 

RMSD of 1558. This outcome suggests that the spatial non-stationary relationship initially 

formulated for county-scale prediction could not directly translate to grid-scale prediction. 

Therefore, the strong predictive performance of the County-Model used for county-scale 

population density prediction, together with the effectiveness of the Grid-Model used for 

grid-scale population density prediction, underscores the rationale behind the hierarchical 

population spatial disaggregation framework we proposed in Section 3.3.

Fig. 3e–h and 3i–l show the relationships between residuals, relative residuals (calculated 

as residuals divided by population density), and population density across models. In 

general, we observe that residuals show limited variation as population density increases. 

Specifically, in county-scale population density predictions, when using the Grid-Model 

(Fig. 3e and i), a slight negative association is observed between residuals (or relative 

residuals) and population density. This suggests a higher likelihood of underestimation in 

counties with high population density. However, when using the County-Model (Fig. 3f 

and j), the residuals are predominantly zero, with larger relative residuals only noticeable 

in counties with low population density. This implies that the County-Model performs sub-

optimally in estimating populations in areas with low population density, but this limitation 

has minimal impact on the overall population estimation.

Turning to grid-scale population density prediction, the Grid-Model outperforms the 

County-Model in both residual measures (Fig. 3g–h) and relative residual measures (Fig. 

3k–l). Furthermore, when using the Grid-Model, the negative relationship previously 

identified between residuals and population density in county-scale prediction becomes less 

pronounced in grid-scale prediction. Moreover, the near-zero correlation between relative 

residuals and population density creates favorable conditions for applying a pycnophylactic 

correction to the predictions.
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4.3. Dynamic population distribution in China

We generated hourly population distribution maps for China in 2016 at a spatial resolution 

of 1 km utilizing the proposed population spatialization framework. Fig. 4a illustrates the 

annual average population distribution across China, revealing a notable concentration of 

population in the eastern and coastal regions, moderate density in central areas, and sparse 

population in the western and remote parts of mainland China. This observed pattern 

is primarily influenced by a combination of factors, including economic development, 

geography, climate, and natural resources. Fig. 4b–d present the population distribution 

within three major urban agglomerations in China: Beijing-Tianjin-Hebei (Fig. 4b), Yangtze 

River Delta (Fig. 4c), and Pearl River Delta (Fig. 4d), highlighting the general differences in 

population distribution between urban and rural areas, as well as the gradient of population 

density from urban to rural regions. They distinctly depict high population density in core 

urban areas, a slightly reduced density in surrounding satellite cities, and a lower density in 

rural areas.

The generated hourly population maps reveal the spatial distribution changes resulting 

from human activities throughout the day. Fig. 5a displays the hourly correlation matrix 

of population density for Monday, November 7, across China. Several relatively stable 

periods emerge from these patterns, each displaying high correlations in hourly population 

distribution within that phase. The first phase, spanning from 9:00 to 17:00, corresponds to 

people’s commute to work and school. A slight fluctuation around noon suggests midday 

movements for dining and other non-work activities. The second phase, from 18:00 to 

22:00, represents a shift in population due to post-work and post-school activities. The third 

period, from 23:00 to 4:00, captures when most residents are at home. A notable change in 

distribution occurs from 5:00 to 8:00 as people move from their homes to various activity 

areas. Distinct daily population density shifts can be observed in regions based on their 

primary functions. For instance, commercial areas like Zhucheng, a County in Weifang City 

(C1 in Fig. S2a), see higher population densities during the day, whereas residential zones 

like Liangqing, a district in Nanning City (C2 in Fig. S2a), experience increased densities in 

the evening. Some areas, like Shuangfeng, a County in Loudi City of Hunan Province (C3 in 

Fig. S2a), undergo relatively minor population shifts throughout the day.

Beyond the hourly dynamics, there are also variations in population distribution across 

different months. Fig. 5d displays the correlation matrix of monthly population density 

throughout 2016. The population distribution typically shows higher similarities between 

adjacent months, with differences increasing as the time gap widens. For instance, the most 

significant difference is seen between February and November. However, for the country 

as a whole, there have not been drastic changes in population distribution throughout the 

year. The variations in monthly population distribution reveal movements due to factors 

such as holidays, economic activities, the education system, climate, and seasonal work, 

manifesting in different temporal patterns across regions. For instance, economically active 

urban areas such as Qingzhen County in Guiyang City (C1 in Fig. S2b) usually attract 

labor, leading to higher population densities throughout most of the year, but experience a 

significant decrease in January-February as the labor force returns home for the Chinese 

New Year. In contrast, areas with lower economic activity or rural regions see an influx 
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of returning labor in January-February, causing a temporary population surge, such as in 

Yanting County of Mianyang City (C2 in Fig. S2b). On the other hand, some areas like 

Chibi County in Xianning City (C3 in Fig. S2b) maintain a consistent density, attributable to 

limited population movements.

Moreover, population distribution changes display distinct spatial characteristics across 

different temporal scales. For example, the variation in population distribution within a 

day primarily reflects transient shifts due to daily work and life-related activities. Fig. 

5b–c compares the population distribution between 8:00 and 14:00 on Monday, November 

7, 2016, in and around Shanghai and Shenzhen. By 14:00, only regions in the cities’ 

cores with a high concentration of commercial activities show a heightened population 

density (indicated by the blue areas) compared to 8:00 in the morning. In contrast, monthly 

variations in population distribution are more indicative of urban inflows or outflows 

driven by seasonal factors. As depicted in Fig. 5e–f, there is a noticeable decrease in the 

whole urban areas of Shanghai and Shenzhen (indicated by the dark blue areas) during 

February, likely attributed to labor and students returning home for the Chinese New Year. 

Concurrently, there is an increase in the less economically developed peri-urban and rural 

areas with lower population density (indicated by the orange areas) compared to November.

We averaged the hourly gridded population map for November for temporal consistency 

with census data, and conducted a comparative analysis with four established population 

datasets. Regardless of the validation parameter used, such as RMSD, %RMSD, MAE, or 

R2, our results consistently demonstrated superior accuracy when compared to the other 

datasets (Table S4). Our map achieved an RMSD of 324.9, outperforming LandScan, 

WorldPop, GPW, and GHSL, which reported larger RMSD values of 705.4, 817.1, 1079.8, 

and 775.3, respectively.

5. Discussion

The study presents a novel framework for dynamic population spatialization. The framework 

was applied to generate hourly gridded population distribution maps for China in 2016. The 

results show that it can accurately map population distribution with high temporal resolution.

5.1. Effects of incorporating human footprint zones

The usage of human footprint zones significantly improves the accuracy of population 

spatialization, especially for sparsely populated areas, such as desert areas and mountainous 

regions. Fig. 6 compares the effects of using and neglecting human footprint zones in 

Alxa Left Banner, Inner Mongolia, a low-density area (about 171,200 residents spanning 

79,813 km2 as of 2015). Populations are largely confined to small regions within the county 

boundary (red boundary in Fig. 6a), while expansive desert areas likely have minimal human 

activity. Without incorporating human footprint zones and scattering populations across all 

county grids, a significant population count could be mistakenly assigned to desert areas, 

resulting in a 38 % underestimation within the actual habitation zones in this region (Fig. 

6b–c).
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5.2. Scale transferability and variables extraction

In our proposed population spatialization framework, scale transferability is enhanced by 

using area-averaged features for both target and ancillary variables (e.g., population density, 

LBS density, mean of NDVI, urban coverage), instead of area-aggregated features (e.g., 

total population, total urban area) used in some previous studies (Cheng et al., 2022; Tu 

et al., 2022). We employ area-averaged features to maintain consistency and reduce scale 

dependence, which is critical when a model trained on large-scale (e.g., county-scale) data 

is applied to small-scale (e.g., grid-scale) predictions, especially in the presence of nonlinear 

relationships. Specifically, area-averaged features normalize data across spatial extents, 

representing average conditions per unit area, which minimizes the impact of scale changes 

and increases robustness in scale transfer, thus improving the model’s scale transferability.

Additionally, the value range of the target variable (i.e., population density) should also 

be considered carefully during the variable extraction. For example, when target variables 

are extracted only within the human footprint area rather than within the administrative 

boundary, the performance of grid-scale prediction decreases with an R2 value of 0.67 and 

RMSD of 3978 (Table S5). This degradation can be attributed to the higher population 

density within human footprint zones (Table S6), which leads to sample selection bias and 

ultimately results in the model’s poor predictive performance in low-density areas at the grid 

scale. Therefore, incorporating samples with a wide value range of the target variable during 

the feature extraction is also critical to ensure robust scale transferability.

5.3. Trade-off of prediction accuracy and temporal generalization

In County-Model development, estimating geographic weights necessitates a balance 

between fitting accuracy and temporal generalization. In previous studies, alternative 

approaches were also used to estimate geographic weights, for example, using Pop_den 

transformed from the predicted ln(Pop_den) (Tu et al., 2022), rather than directly using 

the predicted ln(Pop_den) as in this study. Such strategy yields notable fitting accuracy 

(R2 = 0.999, RMSD = 40, see Fig. S3a–c) in the model construction. However, the model 

was making unreasonable predictions when applied to other periods, evident in numerous 

negative values and unrealistic population density fluctuations (see Fig. S3d–f). For instance, 

a 51.5 % average change in county-scale population density occurs between February and 

November. Therefore, in the geographic weight estimation, we prioritized the temporal 

generalization of the County-Model while preserving a satisfactory fitting accuracy.

5.4. Enhancing performance with hierarchical spatial disaggregation

The hierarchical spatial disaggregation strategy with pycnophylactic correction enhances 

the spatial and temporal performance of the population spatialization framework. The 

spatial performance enhancement is in dealing the boundary effect, an inherent drawback 

effect of top-down population spatialization that previous studies have often tackled 

through complex interpolation methods (Cheng et al., 2022; Liu et al., 2008). Our 

method efficiently addressed this issue through input and output corrections before and 

during hierarchical spatialization, achieving continuous and reasonable spatial variation 

in population distribution. The temporal performance enhancement lies in promoting the 

limited temporal generalization capabilities of the framework, which refers to the prediction 
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bias caused by the variation in the magnitude of LBS data over time (Fig. 7a–b). Fig. 

7c–e shows the comparison of the results obtained using different population spatialization 

strategies in and around Shenzhen city. Specifically, because November is associated with 

more LBS data records than February (Fig. 7a), population spatialization using the raw LBS 

data without any pycnophylactic correction results in a larger population in November than 

in February almost everywhere (Fig. 7c). When we completed the initial correction of the 

national LBS data through Eq. (3), the bias in the result was reduced, but it remains difficult 

to accurately identify the difference in population distribution between the two months (Fig. 

7d). With the hierarchical spatialization and correction, the bias is further reduced, and the 

general decrease in population density in Shenzhen in February compared to November due 

to the Chinese New Year is better characterized (Fig. 7e).

5.5. Framework adaptability and potential applications

The proposed population spatialization framework is based on a design principle of utilizing 

concise public data and provides a basis for reproducibility in different countries and 

regions. By replacing Tencent LBS data with comparable data sources that could capture 

the dynamics of population distribution, the framework can be effectively adapted to 

various geographical contexts. These alternative data sources may include cellular signaling 

data (Deville et al., 2014), social media checkin data from platforms such as Twitter/X 

(Longley & Adnan, 2016), Weibo (Song et al., 2019), and any other data that proves to 

accurately reflect the nature of population movements and distribution dynamics. The newly 

introduced regression model construction strategy integrates the strengths of established 

machine learning models while incorporating a geographical-sensitive ensemble approach. 

This innovative approach is tailored to recognize spatial non-stationarity and maximize the 

efficacy of various models over a range of geographical contexts.

6. Limitations

This study also faces certain limitations. The first limitation lies in the validation of the 

mapping results at grid scale, which is also a limitation faced by all similar works (Leyk 

et al., 2019). Due to the constraints in the availability of Chinese data, only county-scale 

demographic data are publicly accessible, hindering the direct validation of grid-scale 

outcomes. In previous studies, town-scale data have been utilized for validation purposes 

(Cheng et al., 2022). However, the accuracy of this data is uncertain as they were given that 

they were assembled from multiple data sources. Moreover, the lack of multi-temporal data 

also restricts the validation of accuracy at finer temporal scales. Thus, while our validation 

by aggregating grid-scale to county-scale provides promising evidence for the framework’s 

capability, the incorporation of higher spatial resolution and multi-temporal ground truth 

data is crucial for future enhancements. The second limitation concerns the representation of 

LBS data. The use of smartphones is comparatively lower among the elderly and children, 

leading to potential discrepancies in LBS data sampling across different age groups. Despite 

our results demonstrating satisfactory accuracy across all scales, the inherent sampling bias 

in LBS data will unavoidably impact the accuracy of these results. As such, the limitations 

of data availability, resolution, and potential sampling bias present avenues for further 

refinement in future research.
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7. Conclusions

This study introduced an innovative framework for high temporal-resolution grided 

population mapping, leveraging open-source geospatial data, automated machine learning, 

and geographical ensemble learning techniques. To adhere to the fundamental principles 

of population spatialization and address the shortcomings in previous studies, the 

framework comprised three main steps: (1) delineation of human footprint zones, (2) 

population prediction using AutoML framework and geographical ensemble learning, 

and (3) hierarchical spatial disaggregation, enhanced with pycnophylactic correction. The 

population maps of China in 2016 produced through the proposed framework showcased 

remarkable accuracy (RMSD = 325), outperforming existing datasets like LandScan, 

WorldPop, GPW, and GHSL. Beyond its enhanced accuracy, the generated hourly time-

series gridded population maps effectively capture the variations in population distribution 

due to human mobility across different temporal scales. This study underscores the value 

of incorporating machine learning, spatial statistics techniques, and geospatial big data for 

population spatialization, facilitating a nuanced understanding of population distribution and 

spatial heterogeneity, which is critical for urban planning, environmental management, and 

public health.
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Fig. 1. 
Flowchart of population spatialization framework. Step-i: Delineation of human footprint 

zones; Step-ii: Construction of muliti-scale population prediction models; Step-iii: 

Hierarchical population spatial disaggregation.
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Fig. 2. 
Model performance and feature importance: (a) Training performance measured by RMSD 

and training time; (b) Testing performance measured by RMSD and R2; (c) Testing 

performance measured by MAE and %RMSD; (d) Importance score of features. Models 

evaluated include Ensemble Model (WE), CatBoost (CB), LightGBM (LG), XGBoost 

(XB), LightGBMLarge (LL), ExtraTreesMSE (ET), LightGBMXT (LX), NeuralNetTorch 

(NT), RandomForestMSE (RF), NeuralNetFastAI (NF), KNeighborsDist (KD), and 

KNeighborsUnif (KU).
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Fig. 3. 
Comparison of the Grid-Model and County-Model in county-scale and grid-scale population 

density predictions: (a-d) Scatter plots of predicted population density versus actual 

population density; (e-h) Scatter plots of residuals versus population density; (i-l) Scatter 

plots of relative residuals versus population density.
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Fig. 4. 
Annual average population distribution in 2016 across (a) China, (b) the Beijing-Tianjin-

Hebei urban agglomeration, (c) the Yangtze River Delta urban agglomeration, and (d) the 

Pearl River Delta urban agglomerations.
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Fig. 5. 
Spatiotemporal dynamics of population distribution in China: (a) Correlation matrix of 

hourly population density at county scale for November 7 (Monday); (b-c) Variation in 

population distribution between 8:00 and 14:00 on November 7 (Monday) in and around 

Shanghai and Shenzhen, respectively; (d) Correlation matrix of monthly population density 

at county scale; (e-f) Variation in population distribution between November and February in 

and around Shanghai and Shenzhen, respectively.
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Fig. 6. 
Population spatialization adopting and neglecting human footprint zones in the county of 

Alxa Left Banner, Inner Mongolia: (a) True-color satellite imagery; Population spatialization 

(b) adopting and (c) neglecting human footprint zones.
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Fig. 7. 
Dynamics of LBS record magnitude: (a) Monthly variations throughout 2016; and (b) 

Average hourly variations in November 2016. Population distribution changes (November – 

February) in and around Shenzhen city obtained using different spatialization strategies: (c) 

Using raw LBS data; (d) Using corrected LBS data; and (e) Using hierarchical spatialization 

strategy with pycnophylactic correction.
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Table 1

List of datasets included in the spatial data layers library.

Step* Category Dataset & Source Format Spatial Resolution/
Scale

Temporal 
Resolution

Year

1 Human Settlement World Settlement Footprint 2015 Grid 10 m Annual 2015

1 Artificial impervious 
surface

Global Artificial Impervious Area Grid 30 m Annual 2015

1 Road network density OpenStreetMap Polyline N/A N/A 2018

1 POI density Amap point of interest (POI) Point N/A N/A 2018

1&2 Social sensing Tencent location-based service (LBS) 
data

Grid 30 arc-second 5 min 2016

2&3 Demographics Census data at county level (1 % 
population sample survey)

Polygon County level N/A 2015

2 Nighttime light data NPP-VIIRS nighttime light (NTL) data Grid 15 arc-second Annual 2016

2 SAR Sentinel-1 GRD Grid 10 m 6 days 2016

2 MR multispectral data Landsat-8 Operational Land Imager 
(OLT)

Grid 30 m 16 days 2016

2 Land-use Land-use Status Remote Sensing 
Monitoring Database of China

Grid 30 m Annual 2015

2 Topography SRTM V4 digital elevation data 
(DEM) and slope

Grid 1 arc-second N/A 2000

3 Gridded Population 
data

WorldPop Grid 100 m Annual 2015

3 LandScan Grid 30 arc-second Annual 2015

3 Gridded Population of the World 
(GPW)

Grid 30 arc-second Annual 2015

3 Global Human Settlement Layer 
(GHSL)

Grid 1 km Annual 2015

*
The step(s) in which the dataset is used in Section 3.
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Table 2

List of variables for regression model construction.

Data source Feature Variables

Census data Population density Pop_den

Tencent LBS data LBS density LBS

Landsat-8 OLT Mean of NDVI NDVI

Mean of NDWI NDWI

NPP-VIIRS NTL Mean of nighttime light NTL

Sentinel-1 GRD Mean of VV VV

Mean of VH VH

Land-cover data Urban coverage Urban

Rural coverage Rural

Water coverage Water

Forest coverage Forest

Grassland coverage Grassland

Cropland coverage Cropland

DEM Mean of elevation Elevation

Mean of slope Slope
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