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Abstract

Background: In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require
partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is
well established for phosphorylation of 59 or 29 OH of oligonucleotide substrates, phosphorylation of diffusible small
molecules has not been demonstrated.

Methodology/Principal Findings: This study demonstrates the ability of T4 DNA ligase to capture RNA strands in which a
tethered monodeoxynucleoside has acquired a 59 phosphate. The ligation reaction therefore mimics the partition step of a
selection for nucleoside kinase (deoxy)ribozymes. Ligation with tethered substrates was considerably slower than with
nicked, fully duplex DNA, even though the deoxynucleotides at the ligation junction were Watson-Crick base paired in the
tethered substrate. Ligation increased markedly when the bridging template strand contained unpaired spacer nucleotides
across from the flexible tether, according to the trends: A2.A1.A3.A4.A0.A6.A8.A10 and T2.T3.T4.T6<T1.T8.T10.
Bridging T’s generally gave higher yield of ligated product than bridging A’s. ATP concentrations above 33 mM accumulated
adenylated intermediate and decreased yields of the gap-sealed product, likely due to re-adenylation of dissociated
enzyme. Under optimized conditions, T4 DNA ligase efficiently (.90%) joined a correctly paired, or T:G wobble-paired,
substrate on the 39 side of the ligation junction while discriminating approximately 100-fold against most mispaired
substrates. Tethered dC and dG gave the highest ligation rates and yields, followed by tethered deoxyinosine (dI) and dT,
with the slowest reactions for tethered dA. The same kinetic trends were observed in ligase-mediated capture in complex
reaction mixtures with multiple substrates. The ‘‘universal’’ analog 5-nitroindole (dNI) did not support ligation when used as
the tethered nucleotide.

Conclusions/Significance: Our results reveal a novel activity for T4 DNA ligase (template-directed ligation of a tethered
mononucleotide) and establish this partition scheme as being suitable for the selection of ribozymes that phosphorylate
mononucleoside substrates.
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Introduction

Artificial ribozymes can be selected in vitro to catalyze diverse

chemical reactions [1,2,3,4]. As such, they provide unique

opportunities to engineer metabolic pathways, to expand the tool

kit of tailor-made devices for synthetic biology, and to test RNA

world theories of the earliest evolution of life. Ribozyme selection

usually involves either physical sequestration of rare active species

or their preferential amplification. One of the current fundamental

challenges for expanding the catalytic scope of nucleic acids is to

identify RNAs that act upon natural or engineered metabolites. A

strategy that has met with some success has been to tether the

targeted small-molecule substrate to an RNA library through a

flexible linker, then recover RNA species that convert the tethered

substrate into tethered product [5]. The tether ensures linkage

between the product and the ribozyme that produced it, while also

giving the substrate some freedom to explore the surface of the

folded RNA. If the linker is relatively inert, substrate retention in

the active site is enhanced if the evolving ribozyme provides at

least some of the interactions that would be required to bind free

(untethered) substrate. A second challenge that applies especially

to group transfer and condensation reactions is that selections
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often yield ribozymes that modify themselves within the RNA

chain rather than on the tethered substrate. This is likely due to

entropic barriers being lower for organizing the 29OH than the

quasi-diffusible tethered substrate [6,7]. New approaches and

technologies are needed to circumvent these problems. We

propose that when the intended substrate is a tethered mono-

nucleoside(tide), an enzymatic partition step can enforce selection

of the intended activity at the targeted site by exploiting the

activities of enzymes such as DNA ligase that normally act upon

polynucleotides. The present work establishes the proof-of-concept

for a strategy that enables the selection of nucleoside kinase

ribozymes.

Phosphorylation is among the most important group transfer

reactions in biology, and it is an especially attractive model

reaction for studying nucleic acid catalysis of metabolically

meaningful reactions. For RNA world biology, the ability to form

nucleotide monophosphates (NMPs) from nucleosides and a

suitable phosphoryl donor would have aided the synthesis of

activated monomers for nucleic acid synthesis. In the context of

synthetic biology, the growth and replication of artificial, cell-like

vesicles is stimulated by increasing the internal osmolarity [8,9];

thus, nucleoside phosphorylation within such vesicles should

decrease nucleoside diffusion across the membrane, drive NMP

accumulation within their interiors, and stimulate vesicle growth.

In medicine, many of the nucleoside analog prodrugs used in anti-

cancer and anti-viral therapies must be monophosphorylated upon

entering cells to avoid enzymatic degradation. While several

groups have described polynucleotide kinase ribozymes that

phosphorylate 59 or internal 29 OH groups [6,7,10–18], the

successful selection of kinase ribozymes for mononucleoside

phosphorylation would be a significant advance for RNA catalysis,

help to constrain RNA world ribozymology, generate new tools for

synthetic biology and enable new strategies for increasing the

therapeutic potency of nucleoside prodrugs.

Kinase ribozymes for polynucleotide substrates have been

selected in previous works by incubating random-sequence RNA

libraries with ATPcS and/or GTPcS. Species that acquired one or

more sulfurs through thio-phosphoryl transfer were then recovered

by taking advantage of the unique chemical properties of the

sulfur, such as capture on a polyacrylamide gel with an

organomercurial layer. When a similar strategy was applied to

RNA populations carrying tethered substrates, all of the ribozymes

from the final libraries phosphorylated internal 29 OHs, with a

non-random preference for phosphorylation on guanosine 29 OHs

[6,7]. While self-modifying kinase ribozymes present rich oppor-

tunities for understanding the structures and mechanisms of

nucleic acid catalysis, it is unlikely that their active sites can be

remodeled to accommodate mononucleosides or other metabolites

for phosphorylation. A different strategy was used by Li and

Breaker to identify self-kinasing DNAzymes: single-stranded DNA

molecules catalyzed autophosphorylation at the 59 position

converted themselves into substrates for ligation to an oligonucle-

otide, which then served as primer binding site for PCR

amplification [15]. Because enzymatic ligation by DNA ligases is

well known to require a 59 phosphate, this approach strictly

enforced that phosphorylation take place on the 59 terminal OH of

the polynucleotide chain. It should be possible to adapt a ligation-

based approach, such as the one outlined in Fig. 1, for the

selection of mononucleoside kinase ribozymes, provided that DNA

ligase can be made to accept a tethered mononucleotide (the

phosphorylated product of the RNA-catalyzed kinase reaction) as

a substrate for ligation.

The suitability of a ligation-based approach is governed by the

mechanism of ligase enzymes. DNA ligases from viruses,

bacteriophage, archaea and eukaryotes couple the strand-joining,

or ‘‘gap-sealing,’’ reaction to cleavage of the a2b phosphodiester

bond of ATP in a three-step mechanism (Fig. 2A) [19,20]. In the

first step (‘‘enzyme charging’’), an active site lysine attacks the a
phosphate of ATP, displacing pyrophosphate and forming a

metastable phosphoramidate linkage. Pyrophosphate addition can

reverse this step, while pyrophosphate hydrolysis makes it

effectively irreversible. NAD+ donates the adenylate in the first

step of the corresponding bacterial ligases [20]. In the second step

(‘‘adenylate formation’’), the 59 phosphate oxyanion from the

downstream fragment in the nicked DNA attacks the phosphor-

amidate a phosphate to regenerate the active site lysine and to

produce a 59,59-linked adenylate intermediate. In the third step

(‘‘gap-sealing’’), the 39 OH of the upstream fragment attacks the 59

phosphate of the downstream fragment, displacing AMP and

sealing the gap. A tethered mononucleotide produced by a kinase

ribozyme during selection is expected to be a suboptimal ligation

substrate for DNA ligase. Nevertheless, structural contexts other

than standard B-form DNA-DNA duplexes are known to be

compatible with enzymatic ligation. For example, two RNA

fragments annealed to a bridging oligodeoxynucleotide can be

ligated using bacteriophage T4 DNA ligase [21]. Mispaired DNA

junctions can be ligated under certain conditions [22], as can

junctions that contain nucleotide analogs [23].

The present work examines enzymatic ligation of an upstream

‘‘capture oligo’’ to a downstream monodeoxynucleotide that is

tethered to the 59 end of an 8-mer oligoribonucleotide. The

ligation junction is stabilized by annealing both fragments with a

complementary bridging oligo (Fig. 2B). The 59 monophosphate

on the tethered mononucleotide mimics the product of phosphor-

ylation by a kinase ribozyme, so that the subsequent ligase-

catalyzed reaction simulates the partition phase of a selection

scheme wherein active ribozymes are preferentially recovered. We

find that ligation can be driven to near completion for most

tethered mononucleotides under optimal conditions. Mismatches

and high concentrations of ATP drive accumulation of adenylated

intermediates, with only slow, partial conversion to ligated

product, likely limited by enzyme re-adenylation. We measured

rates of the individual steps in the ligation reaction (adenylation

and gap-sealing) under optimized conditions on a variety of

tethered monodeoxynucleotide substrates—including dC, dT, dA,

dG, dI, and deoxy 5-Nitroindole (dNI)—in combination with both

cognate and mismatched bridging templates. Our results reveal a

novel activity for T4 DNA ligase (template-directed ligation of a

tethered monodeoxynucleotide), and they highlight the suitability

of this partition scheme in the selection of ribozymes that

phosphorylate mononucleoside substrates.

Results

Minimal ligation complexes
To assess templated mononucleotide ligation, minimal sub-

strates were assembled from sets of upstream, downstream and

bridging oligonucleotides. The upstream ‘‘capture oligo’’ is an

arbitrary 12-nucleotide DNA sequence predicted to contain little

or no self-complementarity. The downstream oligonucleotides,

referred to collectively as ‘‘dXHr8,’’ carry a single monodeox-

ynucleoside (dX), such as dC, dT, dA, dG, dI or dNI (e.g., Fig. 2C
for dCHr8). The dX moiety was tethered through a flexible

diphospho-hexaethyleneglycol (HEG) linker to an 8-mer oligor-

ibonucleotide. The exposed 59 OH group of the tethered dX was

readily radiolabeled with 32P by polynucleotide kinase (PNK),

allowing the substrate to be followed during the course of ligation

reactions. Annealing the capture oligo and one of the radiolabeled

Mononucleotide Ligation
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dXHr8 oligos to any of several bridging oligonucleotides created a

minimal double-stranded ligation junction (Fig. 2B) that is

analogous to a ligation junction that we propose for capturing

kinase ribozymes, as in Fig. 1D. Several bridging oligos are

evaluated in this study, each of which is fully complementary to both

the 8-mer RNA segment of dXHr8 and the 12-mer capture oligo.

To accommodate the diphospho-HEG spacer within the dXHr8

substrate, these complementary segments are separated by three

different kinds of linkers: HEG, a polyA tract or a poly T tract. The

bridging templates are accordingly denoted as ‘‘HEG-Y,’’ ‘‘AnY’’ or

TnY,’’ with n denoting the number of unpaired adenosines or

thymidines (n = 1, 2, 3, 4, 6, 8, 10) and Y denoting the nucleotide in

position to pair with the tethered mononucleotide.

Optimization of ligation conditions
As a starting point for optimizing the ligations, reactions were

assembled containing equal amounts of the seven AnG bridge

oligonucleotides annealed to the capture oligo and to radiolabeled

dCHr8. After overnight incubation with T4 DNA ligase at 10, 20

or 30uC under standard ligation conditions, a small amount (0.4 to

5.6%) of potential full-length ligation product was observed at all

three temperatures (Fig. S1A). Side products from partial

degradation were more prevalent at 30uC, and only a trace

amount of ligated product was observed at 10uC. Additional

ligations were carried out at 20uC to optimize concentrations of

input oligonucleotides and DNA ligase (Figs. S1B and S1C), and

the resulting optimized conditions were used in all subsequent

reactions (detailed in Materials and Methods). Each ligation

reaction yielded a major product (Fig. 2D) that migrated just

above a 25 nt DNA marker (compare to later figures). The

adenylated mononucleotide intermediate migrated just above the

input dCHr8 substrate. An absolute requirement for a 59-

phosphoryl group on the tethered mononucleotide was demon-

strated using 39 radiolabeled dCHr8 with and without prior PNK

treatment (data not shown), as expected from the known behavior

of DNA ligases.

Identification of ligation product by RNase T1 analysis
To ensure against misinterpretation of spurious side products

that might form with this unnatural ligation substrate—such as

cyclization or dimerization of the dXHr8 oligos—we sought to

identify which bands correspond to the true ligation products.

Although dCHr8 contains a total of 9 nucleotides (8 contiguous

nucleotides plus the tethered dC), the added mass of the internal

phospho-HEG tether causes dCHr8 to migrate more slowly

(Fig. 2D, lanes 1 and 9), with an apparent size of approximately

11 nt (not shown). The intended ligation product is susceptible to

digestion by RNase T1 on the 39 sides of the two guanosines in the

8-mer oligoribonucleotide portion of dCHr8, while the capture

oligo is an oligodeoxyribonucleotide and should not be cleaved by

RNase T1. Radiolabeled dCHr8 and the putative ligation product

were each purified from polyacrylamide denaturing gels. Upon

Figure 1. Potential ligation-based selection strategy for identifying nucleoside kinase ribozymes. RNA library is first ligated to a
substrate-linked oligonucleotide (A) to generate a substrate-linked library (B). RNA molecules that phosphorylate the tethered mononucleoside
under suitable conditions (C) are identified by first annealing them to the bridging and capture oligos (D) and joining them via ligation (E). These last
two steps are the subject of the current study (shaded box).
doi:10.1371/journal.pone.0012368.g001

Mononucleotide Ligation
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Figure 2. Experimental system for evaluating minimal tethered junctions. A) Kinetic scheme for ligation showing the three group transfer
reactions in the ligation mechanism, as described in the text (bridging strand omitted for clarity). B) Minimal ligation junction including the annealed
dCHr8 : capture oligo : AnG bridge oligonucleotides, where n is the number of intervening nucleotides. HEG linker within dCHr8 is shown as an arc.
Shaded box, dC:dG base pair at the ligation junction. Analogous junctions using HEG-G, AnY or TnY bridges are described in the text. C) The dCHr8
oligoribonucleotide used as the downstream oligo of the ligation complexes. Other downstream oligoribonucleotides, referred to collectively as
dXHr8, are identical in structure except for the attached nucleobase. D) Identification of ligated product. Ligation product and control unligated
dCHr8 were gel purified and digested with T1 ribonuclease at increasing concentrations (wedge above lanes) using 0, 0.01, 0.1, and 1.0 U/mL enzyme.
Tethered mononucleotide is radiolabeled (asterisk). Compositions of the major products are shown to the left. Capture oligo strand is represented as
a filled rectangle and HEG as an arc; RNA sequences are shown explicitly.
doi:10.1371/journal.pone.0012368.g002

Mononucleotide Ligation
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digestion with RNase T1, the radiolabeled product from the

dCHr8 digestion migrates just above the dye front, as though with

an apparent size of a few (3 to 5) nt (Fig. 2D, lanes 2-4), consistent

with a product containing radiolabeled dC on one end of the

phospho-HEG tether and guanosine on the other end. The lowest

concentration of RNase T1 yielded a doublet (Fig. 2D, lane 2)

resulting from cleavage at position +2 and incomplete digestion

following the G at position +1. RNase T1 digestion of the expected

DNA/RNA hybrid product is expected to generate a product

containing 14 nucleotides (12 deoxynucleotides from the capture

oligo plus the radiolabeled [32P]-dC and one additional guanosine)

in addition to the internal phospho-HEG tether. Indeed, digestion

of the putative ligation product yielded a single major band

migrating below the undigested ligation product and a few

nucleotides above the radiolabeled dCHr8 (Fig. 2D, lanes 7 and

8). These results strongly support the identity of the major band as

being the ligation product.

ATP stimulates dCHr8 adenylation but lowers overall
ligation rate and yield

When ATP concentration was varied, both the fraction of

substrate converted into ligated product and the rate of this

conversion were greatest at the lowest concentrations of ATP

(Fig. 3, top). At 0, 10 or 33 mM ATP, over 80% of the input

dCHr8 oligonucleotide is converted to ligated product within

6 hours. With increasing concentration of ATP, a side product

consistently accumulated (Fig. 3, bottom). Assignment of this

side product as being the adenylated form of dCHr8 is based on

the fact that it migrates approximately one nucleotide above the

input substrate, that its formation is sensitive to ATP concentra-

tion, and that it chases into ligated product. Note that commercial

T4 DNA ligase is purified in a preadenylated form [24]. Thus,

while the complete reaction cycle requires ATP, the enzyme

(4 mM) is in molar excess over the substrate (3.3 mM), and these

reactions proceed under stoichiometric rather than multiple-

turnover conditions.

A two-nucleotide spacer optimally accommodates the
phospho-HEG tether

The number of unpaired nucleotides in the bridging oligonu-

cleotide is expected to be a critical determinant of ligation

efficiency. A bridging oligonucleotide with too many unpaired

nucleotides in a single-stranded stack would place the 39 OH

beyond the reach of the HEG tether, while a bridge with too few

nucleotides would invite steric and electrostatic clash between the

two phosphates flanking the HEG moiety. To test the influence of

spacer length and composition, separate reactions were assembled

using 59 radiolabeled dCHr8 substrate in combination with all

sixteen bridge oligonucleotides: HEG-G, AnG and TnG (n = 0, 1,

2, 3, 4, 6, 8, and 10). Within each series, the fastest rate and

highest product yields were obtained with bridges containing two

unpaired nucleotides (A2G and T2G bridges) across from the

phospho-HEG tether, with over 80% and 90% conversion to

products at 6h, respectively (Table 1, Fig. S2 and data not

shown). Yields decreased according to the trends: A2.A1.(A3<
HEG).A4.A0.A6&A8<A10 and T2.T3.T4.(T6<T1).

(HEG<T8)&T10. Unpaired thymidines across from the HEG

tether consistently resulted in significantly higher ligation yields

than unpaired adenosines at these positions. Placing a HEG linker

in the bridge across from the HEG linker in the dXHr8

oligonucleotide gave ligation yields that were comparable to the

A3G bridge and that were slightly above those of the T8G bridge.

For bridges T2G, T3G, A2G and (to a lesser extend) T4G,

reactions were nearing completion at 6 h. However, the other data

sets required 20 h or longer to plateau (Table 1). Thus, these

reactions are considerably slower than reactions involving ligases

with nicked DNA substrates, even though both sides of the

ligation junctions are Watson-Crick base paired deoxynucleotides

(dC/dG).

Specificity of ligation at the minimal junction
Ligation fidelity was first examined by comparing yields for

radiolabeled dCHr8 annealed to bridging oligonucleotides with

matched (A2G) or mismatched (A2A, A2C and A2T) junction

nucleotides. The matched combination yielded over 70% ligated

product, while the mismatched combinations yielded 0.5 to 0.9%,

for a discrimination of approximately 100-fold (Fig. 4A). This

analysis was then expanded to include all combinations of junction

nucleotides dX/(A2Y), where dX = dC, dT, dA, dG, dI or dNI in

the tethered mononucleotide, and Y = dA, dC, dG or dT in the

bridging oligonucleotide. The ligation complexes were assembled

by annealing the capture oligo with each of the dXHr8 substrates

and with all four A2Y bridge oligonucleotides in separate

reactions. Tethered dNI mononucleotide was included in the set

because it is reported to pair promiscuously when used in PCR

primers [25,26,27,28]. Two additional bridging oligonucleotides—

HEG-G or T2G—were included that carried a dG in the pairing

position with either HEG or a T2 spacer, respectively, across from

the HEG tether to determine the effect of spacer composition on

the fidelity.

Figure 3. ATP titration. Ligation reactions were carried out with
radiolabeled dCHr8 and non-labeled A2G bridge in the presence of ATP
at concentrations of 0 (asterisks), 10 (open circles), 33 (diamonds), 100
(filled circles), 333 (triangles) or 1000 (squares) mM. Top, plot of the
fraction of dCHr8 converted to full-length ligation product vs. time at
the ATP concentrations indicated next to each curve in micromolar
units. Reactions were carried out at 20uC with T4 DNA ligase
concentration fixed at 3.7 mM. Samples were taken at 0, 1, 2, 4, 6, and
20 hours. Bottom, plot of the accumulation of adenylated intermedi-
ate in the same reactions shown in the top panel.
doi:10.1371/journal.pone.0012368.g003
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For combinations involving Watson-Crick base pairs at the

ligation junction, yields of full-length ligated product ranged from

13 to 89% following the 6 h reactions (Fig. 4B). Product yield was

greatest for tethered dG and decreased in the order

dG.dC.(dI<dT).dA&dNI, with almost no full-length product

for the tethered dNI. The identity of the spacer also influenced the

ligation. For tethered dC, product yield was greatest for the T2G

(96% conversion to product in this experiment) and A2G bridging

oligos (85%), followed by the HEG-G bridge (42%). Reactions

involving tethered dT were unusual, in that significantly more

ligated product was observed for a T:G wobble pair than for a

Watson-Crick T:A pair, and while the T2G bridge gave

significantly more ligated product (65%) than any other combi-

nation, yield for the A2G bridge was barely above background. All

other mismatched pairs had significantly lower yields of ligated

product (,3% yield) and greater accumulation of adenylate

intermediate in comparison with the matched pairs. Thus, while

the tethered, mismatched mononucleotide can participate in the

second step of the ligation reaction (substrate adenylation) under

appropriate conditions, fidelity appears to be enforced by partial

or complete blockage in the third step (nick sealing).

Kinetic rate constants for Watson-Crick paired substrates
To dissect quantitatively the effects of tethered mononucleotide

identity on the rates of adenylate formation and gap-sealing,

ligation complexes were assembled with each radiolabeled dXHr8

substrate using the corresponding Watson-Crick paired A2

bridges, and samples were collected every 15 to 30 minutes for

6 h. Product yields were again greatest for tethered dG (96%) and

dC (92%) and lowest for tethered dA (24%) and dT (18%), while

tethered dI gave an intermediate yield (66%). Fitting the data to

kinetic equations for a two-step sequential reaction revealed that

adenylation (k2) is faster than gap-sealing (k3) for each of the

ligation substrates (Fig. 5A). With the exception of dTHr8, all k2

values are greater than 1.0 h21. For the gap-sealing step, reactions

with tethered dC (0.80 h21) and dG (0.62 h21) were the fastest,

and the reactions were the slowest with tethered dA (0.075 h21)

and dT (0.06 h21). The value of the gap-sealing rate for tethered

dI (0.21 h21) was again intermediate. Reactions involving tethered

dNI formed little or no ligated product, irrespective of the bridging

oligo used (all k3 values,0.05 h21, and all ligation yields ,10%),

although adenylation was rapid for all bridge combinations (k2

ranging from 0.6 h21 to .10 h21) (Fig. 5B). Thus, the data for

both the Watson-Crick combinations and the tethered dNI

establish that the gap-sealing step largely determines the yield of

ligated product.

Multiplexed ligations
In principle, mononucleoside kinase ribozyme discovery could

be accelerated though a multiplexed platform in which multiple

dXHr8 oligos are attached to the evolving library and all products

of RNA-catalyzed phosphoryl transfer are captured in a single

ligation. To explore this possibility, oligonucleotide mixtures were

evaluated in three formats, designated Mock1, Mock2 and Mock3

(detailed in Materials and Methods). In each format, the six

dXHr8 oligos, only one of which was radiolabeled, were annealed

with various combinations of A2Y bridging oligos. The Mock1

reaction utilized only the bridge that was complementary to the

radiolabeled species. Both the bridge and capture oligos were in

slight excess of the labeled substrate (oligo ratio of 1:1.25:1.25

relative to the labeled dXHr8 substrate). Reactions that included

labeled dCHr8 or dGHr8 were the most efficient (.60% yield

after 20 h), while the other three were much less efficient

(Table 2), probably as a result of faster gap-sealing kinetics of

these two substrates relative to the others (see above). The Mock2

reactions removed potential competition with the bridging oligo by

Table 1. Effect of spacer length in the DNA bridge on the ligation efficiency.a

Yield (%)

2h 6h 20h

BRIDGE OLIGO LIGATION ADENYLATE LIGATION ADENYLATE LIGATION ADENYLATE

A0G 0.4 12 5.8 17 19 9.9

A1G 15 36 69 12 87 3.6

A2G 31 37 84 7.3 91 2.9

A3G 11 14 39 7.6 63 6.8

A4G 2.8 13 20 11 48 4.6

A6G 0.7 6.7 1.4 8.5 9.1 10

A8G 0.0 6.0 0.0 6.6 0.8 6.8

A10G 0.0 5.9 0.0 6.9 0.1 11

T1G 9.9 66 51 41 87 6.0

T2G 86 8.5 93 3.7 94 3.2

T3G 31 32 84 7.0 92 2.6

T4G 20 48 79 14 92 2.7

T6G 10 44 59 24 88 3.6

T8G 1.6 21 8.1 37 43 20

T10G 0.0 10 0.6 19 6.0 30

HEG-G 11 37 42 35 69 29

aReactions using dCHr8 were performed at 20uC using 3.3 mM [32P]-labeled dCHr8, 4.1 mM of capture oligo and 4.1 mM of the indicated bridging template. All bridging
oligos contained dG in the pairing position across from the tethered dC.

doi:10.1371/journal.pone.0012368.t001

Mononucleotide Ligation
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Figure 4. Ligation fidelity. A) Representative phosphorimage of ligation reactions using radiolabeled dCHr8 and bridging oligos with each of the
four potential templating nucleotide across from the tethered dC. Lane 1, 25 nt DNA size marker. Lanes 2–5, products of 24 h ligation reactions under
optimized conditions using the A2Y bridge template strand indicated above the lanes. Lane 6, unreacted input dCHr8 substrate. The percent of dCHr8
converted to full-length ligation product for each reaction is shown above the gel. B) Yields of adenylates (open bars) and ligated products (filled
bars) at 0, 2, and 6 h ligation in the presence of different matching and mismatching A2Y bridge templates (indicated below the plots) in separate
reactions with each dXHr8 oligo (indicated within each panel).
doi:10.1371/journal.pone.0012368.g004

Mononucleotide Ligation
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raising the concentrations of the bridge and capture oligos to be in

stoichiometric excess of all dXHr8 present in the reaction (oligo

ratio of 1:1.25:1.25 relative to g(dXHr8)i). Under these condi-

tions, nearly all of labeled dGHr8 and .50% of labeled dIHr8

became ligated, but only about one-third of labeled dCHr8

became ligated and less still for tethered dA and dT substrates

(Table 3). To determine whether all phosphorylated products

could be captured in a single ligation, a Mock3 series was carried

out in which each reaction included a mixture of all four A2Y

Bridge oligonucleotides (A2G, A2C, A2T, and A2A), and five of the

tethered oligo substrates (dCHr8, dGHr8, dIHr8, dAHr8 and

dTHr8—only one of which at a time was radiolabeled) at a ratio of

1:1.25:1.25. As observed above for the Mock1 reactions, the

greatest conversion to ligated product was observed for labeled

substrates carrying tethered dC or dG. Reactions wherein the dT

oligo was labeled were substantially improved relative to Mock1 or

Mock2 conditions, while those carrying labeled dA or dI were

equivalent or poorer in comparison to Mock1 or Mock2

conditions (Table 4). Lack of strong inhibition by the misannealed

substrates may indicate that the ligation complexes are in dynamic

exchange, and that proper annealing strongly favors product

formation. In sum, each of the three simulated multiplexed

reactions allows the recovery of more than one phosphorylated

product and could, in principle, be used to recover multiple

families of kinase ribozymes from a single multiplexed selection.

However, even under the best conditions, the 4-fold difference

Figure 5. Ligation kinetics. A) Ligation reactions were performed at 20uC using 3.3 mM 32P-labeled dXHr8, 4.1 mM capture oligo and 4.1 mM of the
Watson-Crick-matched DNA bridging template strands. Squares, ligated product; triangles, adenylated intermediate. Identities of the tethered
nucleotide (asterisks) and bridges (in parentheses) are indicated. Values of kinetic rate constants k2 (59 DNA adenylation) and k3 (gap-sealing) are given in
the bottom right panel. B) Ligation reactions for tethered ‘‘universal’’ nucleoside, 5-nitroindole (dNI), were performed under the same conditions as in (A)
using 32P-labeled dNIHr8 in the presence of the indicated bridging template. Filled symbols, adenylate; open symbols, ligated product.
doi:10.1371/journal.pone.0012368.g005
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between the most (dC or dG) and the least (dT) efficiently ligated

product could bias the selection outcome.

Discussion

The present study demonstrates that bacteriophage T4 DNA

ligase can join tethered monodeoxynucleotides to the 39 end of a

‘‘capture’’ oligo in a template-directed fashion, in analogy with a

proposed partition step for in vitro selection of kinase ribozymes

that phosphorylate tethered monodeoxynucleosides. Optimal

joining at 20uC was achieved in low ATP concentrations

(#33 mM), high ligase (0.67 U/mL) concentrations, and at a ratio

of 1:1.25:1.25 for the three nucleic acid strands (dXHr8: capture

oligo: bridging strand). DNA ligases often act as repair enzymes to

seal nicks in long duplex DNA. The tethered mononucleotide

junctions are sub-optimal substrates for the enzyme; thus, the

observed requirements can be understood in terms of preventing

re-adenylation of enzyme that dissociates from an adenylated

intermediate before sealing the nick. Although the overall ligase

reaction cycle requires ATP, the enzyme is purified in adenylated

form and does not require recharging for the single-turnover

reactions (enzyme in excess) described here and in several of these

prior works. The relative rates of gap-sealing, enzyme dissociation

and re-adenylation control product distribution for other subop-

timal ligation junctions, such as Chlorella virus DNA ligase at

gapped [29] or nicked [30] substrates, T4 DNA ligase at

mismatched or blunt-ended junctions or in the absence of an

upstream fragment [31,32,33], RNA-templated DNA ligations

[34], and mammalian DNA ligase I with a 59-p(rA) ribonucleotide

on the downstream fragment [35].

The identity of the tethered mononucleotide and its pairing

partner in the bridging oligo strongly affected kinetic rate constants

for adenylate formation (k2) and gap-sealing (k3), and thereby

determined the overall efficiency and fidelity of the ligation reaction.

Gap-sealing was fastest for tethered dC and dG, followed by

tethered dI, and it was considerably slower for tethered dT and dA.

Similar trends in product yields were evident in the multiplexed

reactions and can be understood in terms of the relative kinetic rate

constants for the individual reactions. For tethered dT, a higher

ligation yield was obtained using the T2G bridge than any of the

other bridges. Ligations involving tethered mononucleotides

exhibited approximately 100-fold preference for most Watson-

Crick paired substrates over mispaired substrates (Fig. 6A and 6B).

Table 2. Simulated Multiplex Ligations: Mock1.a

2 h 4h 6h 8h 20h

LIG ADEN LIG ADEN LIG ADEN LIG ADEN LIG ADEN

32P-dCHr8 5 36 14 41 26 35 40 31 76 9

32P-dTHr8 0.03 13 0.16 17 0.37 21 1 26 6 36

32P-dAHr8 0.07 22 0.45 35 1 45 2 52 14 53

32P-dGHr8 5 74 12 77 18 69 28 60 61 23

32P-dIHr8 0.36 35 2 49 4 57 7 60 26 46

aCapture oligo and complementary bridging template were in slight excess of
the radiolabeled strand. The species that carried the radiolabel is indicated in
the first column.

doi:10.1371/journal.pone.0012368.t002

Table 3. Simulated Multiplex Ligations: Mock2.a

2 h 4h 6h 8h 20h

LIG ADEN LIG ADEN LIG ADEN LIG ADEN LIG ADEN

32P-dCHr8 9 19 16 13 22 10 28 9 35 6

32P-dTHr8 0.25 13 1 16 2 16 2 18 7 15

32P-dAHr8 1 34 3 41 6 41 10 38 20 27

32P-dGHr8 32 53 57 31 71 18 80 10 90 4

32P-dIHr8 5 50 12 51 20 46 29 38 55 14

aCapture oligo and complementary bridging oligo were in slight excess of all
dXHr8 species present in the reaction.

The species that carried the radiolabel is indicated in the first column.
doi:10.1371/journal.pone.0012368.t003

Table 4. Simulated Multiplex Ligations: Mock3.a

2 h 4h 6h 8h 20h

LIG ADEN LIG ADEN LIG ADEN LIG ADEN LIG ADEN

32P-dCHr8 15 19 35 18 52 14 63 10 83 5

32P-dTHr8 0.3 31 1 43 3 53 4 60 21 59

32P-dAHr8 0.6 38 2 55 4 60 6 64 22 59

32P-dGHr8 2 68 6 79 14 75 27 63 61 31

32P-dIHr8 1 30 2 47 5 68 10 68 29 48

aAll five dXHr8 species were present in each reaction. The species that carried
the radiolabel is indicated in the first column. All bridging oligos were also
present (A2C, A2G, A2T, and A2A). Each matching bridge was in slight excess of
the corresponding dXHr8 species.

doi:10.1371/journal.pone.0012368.t004

Figure 6. Matched and mismatched ligation junctions. A) Minimal
ligation junction with Watson-Crick paired tethered mononucleotide
using the A2Y or T2Y bridge. B) Single nucleotide mismatch in the
minimal ligation junction such as those in lanes 3–5 of Figure 4A, C)
Single nucleotide mismatch on the upstream side of the ligation junction
(not efficiently ligated by T4 DNA ligase), and D) Up to 5 nt DNA
mismatches on the downstream side of the ligation junction (ligated at
moderate efficiency by T4 DNA ligase at low ATP concentrations).
doi:10.1371/journal.pone.0012368.g006
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These differences may be understood in terms of helical geometry

within the active site of the enzyme. For example, mismatched pairs

often protrude into the minor groove, and fidelity of the Tth ligase

from Thermus thermophilus HB8 is enforced by interactions of the

protein with the minor groove of the DNA duplex [23]. The

‘‘universal’’ base dNI, which has found utility within PCR primers

[25,26,27,28], was efficiently adenylated but did not support gap-

sealing under these conditions, perhaps due to distortions of local

helical structure.

T4 DNA ligase is especially sensitive to mismatches on the

upstream side of the ligation junction (Fig. 6C), and this sensitivity

provides the basis for diagnostic tests for single nucleotide

polymorphisms [31,36,37]. The human DNA ligase IV/XRCC4

complex shows a similar sensitivity to upstream mismatches [38].

Sensitivity to covalent nucleotide modifications has also been

developed into an assay for detecting modified cellular RNA [39].

In contrast, mismatches on the downstream side of a ligation

junction in duplex DNA (Fig. 6D) are more readily tolerated

[31,34]. In a previous study, nearly all possible combinations of

downstream single-nucleotide mismatches yielded .80% ligated

product under conditions of low ATP concentrations even with

multiple consecutive mismatches [22,31]. This tolerance for

mismatches on the downstream side is sharply contrasted by the

results obtained in the present study, where a single tethered

nucleotide provides the interaction energy on the downstream

side. The tethered mononucleotide ligation reaction therefore

displays greater overall fidelity than reactions with conventional

mismatched nicked-DNA substrates [22,31,36].

Ligation of the tethered mononucleotides was optimal when the

bridge oligo contained two adenosines or thymidines across from

the HEG tether. The calculated P-to-P distance for two base pairs

along a B-form helix is very similar to the calculated ‘‘average’’ P-to-

P distance in the HEG (,19Å) if the tether is assumed to be fully

flexible (see Materials and Methods), suggesting that the trajectory

of the non-templating spacer nucleotides in the bridging strand

approximates a normal B-form helix, as in a single-strand stack

(Fig. 7). A HEG spacer in the bridge (‘‘HEG-G’’) was slightly less

favorable, giving product yields comparable to an A3G bridge.

Product yields were invariably higher when unpaired thymidines,

rather than adenosines were in the bridge across from the HEG-

tether. For bridge oligonucleotides with large spacers (e.g. A6 or T6

and larger), the polyA or poly T regions are too large to continue a

B-form trajectory. The low yield for the larger AnX bridges suggest

that the poly A tracts resist looping out, instead forming a single-

stranded stack of adenosines. In contrast, the poly T tracts appear to

be more flexible, as some ligation product is detected even with

T10G bridge oligonucleotide at long incubation times.

The high yields observed here and T4 DNA ligase’s strict

requirement for a 59 phosphate satisfy the necessary criteria for a

ligation-based selection of kinase ribozymes that phosphorylate a

tethered DNA nucleoside. It should be possible to generalize this

strategy to capture phosphorylated RNA nucleosides and even

Figure 7. Model of 1nt ligation junctions. Structural model of tethered mononucleotide ligation junction, color coded as in Figures 1 and 6. Arc,
HEG linker; arrow, ligation junction. Non-templating spacer nucleotides are shown as standard B-form DNA. Helical axis is horizontal; flanking
nucleotides are omitted for clarity.
doi:10.1371/journal.pone.0012368.g007
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prodrug analog nucleosides. Knowledge of relative kinetics will aid

appropriate selection design to avoid excessive recovery biases. We

therefore anticipate that further improvements in library design

and selection methodology will yield ribozymes for nucleoside

phosphorylation and for other metabolic reactions of interest to

synthetic biology.

Materials and Methods

Oligonucleotides, enzymes and reagents
DNA oligos were purchased from Integrated DNA Technolo-

gies (Coralville, IA). The dXHr8 RNA oligonucleotides were

purchased from Integrated DNA Technologies, except for dCHr8,

which was purchased from Dharmacon, Inc. (Lafayette, CO).

Matrix-assisted laser desorption/ionization-time of flight (MALDI-

TOF) mass spectrometry analysis of dCHr8, performed at the

mass spectrometry core facilities in the Department of Chemistry,

Indiana University, identified a single product at the expected m/z

ratio of 3149. T4 DNA ligase and T4 polynucleotide kinase were

purchased from Epicentre (Madison, WI) and RNasin from

Takara International (Madison, WI).

Polynucleotide kinase labeling
dXHr8 oligos were radiolabeled on the tethered mononucloside

with 0.05 to 0.10 U/mL T4 PNK in 16PNK buffer (50 mM Tris

pH 7.6, 66.7 mM KCl, 10 mM MgCl2, 1 mM dithiothreitol) at

37uC with 2.4 mM [c-32P] ATP (3000 or 7000 Ci/mmol). After

15 min, non-radioactive ATP was added to 2.5 mM final

concentration and reactions were continued for an additional

15 minutes to ensure complete 59-phosphorylation. Labeled

products were purified from denaturing (8M urea) polyacrylamide

gels (12–15%), precipitated and resuspended in water. Specific

activities were adjusted to approximately 1–26105 cpm/pmol

with non-radioactive, 59-phosphorylated oligonucleotides.

Optimization of ligation conditions
Reactions were optimized progressively with respect to

temperature and to the concentrations of ligase, ATP and

oligonucleotide substrates. Temperature: Initial pilot reactions

contained 17.5 mM radiolabeled dCHr8, 17.5 mM unlabeled

capture oligo and 2.5 mM of each of seven bridging oligos (A0G,

A1G, A2G, A4G, A6G, A8G, A10G). Oligo mixtures were

denatured in water at 75uC for 3 min, then cooled on ice to

anneal ligation complexes. Buffer was added to yield final

concentrations of 1 mM ATP, 0.02 U/mL RNasin, 50 mM Tris

pH 7.6, 66.7 mM KCl, 10 mM MgCl2 and 1 mM dithiothreitol.

Ligation was initiated by addition of T4 DNA ligase to a final

concentration of 6 mM ( = 0.33 mg/mL = 1U/mL) on ice, followed

by overnight incubation at 10, 20 or 30uC. Reactions were

stopped by adding an equal volume of gel-loading buffer (92%

formamide, 20 mM EDTA, 0.01% bromophenol blue and 0.01%

Xylene cyanol). Samples were separated on 10% denaturing

polyacrylamide gels, which were dried and exposed to phosphor-

imager plates. Gel data were analyzed with ImageQuant software

(Molecular Dynamics) by dividing the signal in each band (ligated

product, adenylate, unreacted) by the total signal for all bands

within the lane. Temperature was held at 20uC for all subsequent

reactions. Ligation complex concentration: dCHr8, capture oligo and

the A2G bridging oligo were mixed at ratio of 1:1.25:1.25, and

assayed as above for ligation. Ligated product improved markedly

at dCHr8 concentrations between 0.1 mM and 1.0 mM, with little

further increase between 1.0 mM and 10 mM (Fig. S1B).

Concentration of dXHr8 was held constant at 3.3 mM for

subsequent reactions. Ligase concentration: Reactions were assembled

for dCHr8/capture oligo/A2G bridge and incubated overnight

(20 h) in various concentrations of T4 DNA ligase. The fraction

ligated increased as enzyme concentration was increased from

0.06 to 6 mM (Fig. S1C). Yield approached saturation at 4 mM,

which is the lowest concentration at which enzyme was in

stoichiometric excess of dCHr8 (see Discussion). This concentra-

tion was used in subsequent reactions. ATP concentration: Finally,

reactions were assembled for dCHr8/capture oligo/A2G bridge

with added ATP concentrations ranging from 0 mM to 1000 mM,

as detailed above (Fig. 3). For reactions carried out at 20uC,

optimal joining was achieved with two non-annealed nucleotides

separating the tethered mononucleotide from the annealed 8-mer,

at low ATP concentrations (#33 mM, to avoid enzyme re-

adenylation) and high ligase concentrations (0.67 U/mL, in molar

excess of annealed complexes), and at a ratio of 1:1.25:1.25 for the

three nucleic acid strands (dXHr8: capture oligo: bridging strand).

Identification of ligation product by RNase T1 analysis
Samples of dCHr8 or full-length ligation products were diluted

to 1.25 mM into aliquots of 16T1 RNase buffer (20 mM sodium

citrate, 1 mM EDTA, 7M urea, 180 mg/mL tRNA) that

contained 0, 0.01, 0.1 or 1.0 U/mL RNase T1 (Boehringer

Mannheim). Samples were incubated at 37uC for 30 minutes and

analyzed by denaturing gel electrophoresis and phosphorimaging

as described above.

Rate and kinetics of ligation of different
mononucleotides

To derive the rate constants for the adenylation and gap-sealing

reactions, aliquots were withdrawn from ligation reactions every

15 min until 3 h and every 30 min between 3 h and 6 h. The

fraction converted to adenylate and to ligated product were fit to

standard kinetic equations for consecutive reactions of the form

ARBRC by manually adjusting the values of k2 (ARB, adenylate

formation) and k3 (BRC, gap-sealing reaction):

A(t)~½Ao� . exp({k2t) ð1Þ

B(t)~½(k2½Ao�)=(k3{k2)� . ½exp({k2t){exp({k3t)� ð2Þ

C(t)~½Ao� . (1{f½k3=k3{k2)�exp({k2t)gz

½(k2=k3{k2)exp({k3t)�)
ð3Þ

Enzyme charging was not considered, since pre-charged ligase was

used in stoichiometric excess in single-turnover reactions. Low-

level degradation of input substrate and the ligated product led to

undersampling at long time points in some reactions, making the

curve-fitting most reliable at early times.

Multiplexed ligations
For the Mock1 experiments, one radiolabeled and five non-

labeled dXHr8 oligos were included at 3.3 mM each (19.8 mM

total final concentration); capture and complementary bridge

oligos were included at 4.1 mM each. For the Mock2 experiments,

capture and bridging oligos were each raised to 24.6 mM to ensure

annealing to all six dXHr8 species. For the Mock3 experiments,

one radiolabeled and five non-labeled dXHr8 oligos were included

at a final concentration of 0.55 mM each (total 3.3 mM) and

capture oligo at 4.1 mM, in addition to one matched and three

mismatched A2Y bridges (A2C, A2G, A2T and A2A), each at a
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final concentration of 1.025 mM (4.1 mM total) thus maintaining

the net oligo ratio of 1:1.25:1.25 relative to total dXHr8.

Concentrations of enzyme and other components were held

constant for all three formats.

Conformational modeling
HEG tether was modeled using the spatial reference frame of

the P atom on G+1 (Fig. S3A). The set of all points that can be

occupied by the P atom at the other end of the HEG linker

describes a sphere (‘‘S’’) of radius ‘‘R,’’ where R is the P-to-P

distance for the fully extended HEG (approximately 24.5Å).

Assuming the chain to be sufficiently flexible that every volume

element within the sphere is equally likely to be occupied, the

average inter-phosphate distance is defined by a smaller sphere

(‘‘s’’) whose volume is half that of sphere ‘‘S.’’ The radius of

this inner sphere is thus r~
ffiffiffiffiffiffiffi

0:53
p

|24:5A
0
&19:4A

0
. For a B-form

DNA duplex, the through-space, P-to-P distances (d) between

two phosphates can be calculated from a simple geometric

depiction of the cylindrical spiral (Fig. S3B) using the relation

d2~½(nz1) . h�2z½2r . sin(h=2)�2; where n is the number of

inter-

vening base pairs (irrespective of sequence), h is the rise per base

pair (3.3Å for B-form DNA), r is the helical radius (10Å for B-form

DNA), and h is the net rotation around the helical axis (34.6u per

base pair rise). For phosphates separated by 0, 1, 2, or 3

intervening base pairs, inter-phosphate distance is calculated to be

6.8, 13.1, 18.6 and 22.8 Å, respectively.

Supporting Information

Figure S1 Optimization of ligation conditions. A) Temperature

effects. Products of ligation using mixed AnG bridges/capture

oligo/dCHr8. Reactions were incubated overnight at 10u, 20u, or

30uC, as indicated above the lane. B) Effect of substrate

concentration. Labeled dCHr8 and unlabeled capture and

bridging oligos were used in 1:1.25:1.25 ratio, with total dCHr8

concentration ranging from 0.1 to 10 mM, as indicated above the

sets of lanes. Samples were taken at 0, 1, 2, 4, 6 and 20 hours. Size

markers are radiolabeled 29nt DNA (left) and dCHr8 oligo, (right).

C) Ligase titration. T4 DNA ligase was used at various input

concentrations (indicated above the lane) in reactions with 3.3 mM

dCHr8 and other oligos at 1:1.25:1.25 ratio. An enzyme

concentration of 0.67 U/mL corresponds to approximately

4 mM. Samples were taken at 0, 1, 2, 4, 6 and 20 hrs.

Found at: doi:10.1371/journal.pone.0012368.s001 (6.32 MB TIF)

Figure S2 Evaluation of spacer length in AnG bridging oligos.

Example of an early evaluation of the effect of spacer length. Each

ligation used radiolabeled dCHr8 and the bridging oligo indicated

above the lanes. Reactions proceeded for 2 or 20 hours.

Found at: doi:10.1371/journal.pone.0012368.s002 (0.52 MB TIF)

Figure S3 Modeling of 1nt ligation junctions. A. Schematic of B-

form DNA helix modeled as a cylindrical spiral. Spheres,

backbone phosphorous atoms; h, net rotation about the helix; h,

net rise; r, radius. Inter-phosphate distance (yellow line) is given by

d‘2 = [(n+1)h]‘2 + [2rsin(h/2)]‘2, as detailed in Materials and

Methods. B. Schematic of HEG linker, modeled as fully flexible

chain. Purple spheres, phosphorous atoms at each end of the HEG

unit (blue squiggle); R, radius of maximal sphere that could be

occupied by fully-extended HEG; r, radius of sphere with HEG

unit extended to an average distance. Relationship between the

two spheres is (r/R)‘3 = 0.5, as detailed in Materials and Methods.

Found at: doi:10.1371/journal.pone.0012368.s003 (0.40 MB TIF)
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