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Simple Summary: B cells are an essential component of the immune system and develop in the bone
marrow microenvironment. B-cell development is tightly regulated by the stromal cells, fat cells and
bone cells in this microenvironment. However, when B-cell malignancies arise, leukemic cells can
alter normal microenvironment functioning to aid their growth, survival and resistance to cytotoxic
therapies. This review summarizes the role of the bone marrow microenvironment in regulating
healthy B-cell development and B-cell acute lymphoblastic leukemia (B-ALL). Understanding of
how the microenvironment contributes to B-ALL pathogenesis and treatment failure will allow us to
devise microenvironment-targeted therapies for B-ALL in the future.

Abstract: B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoi-
etic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral
response of the adaptive immune system. This process is tightly regulated by spatially distinct bone
marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells,
osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation
and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell
precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell
niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular
components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in
disease development, treatment resistance and relapse. Further understanding of the crosstalk be-
tween leukemic cells and bone marrow niche cells will enable development of additional therapeutic
strategies that target the niches in order to hinder leukemia progression.

Keywords: B-cell development; B-cell acute lymphoblastic leukemia (B-ALL); bone marrow microen-
vironment (BMM); B-cell niche; bone marrow (BM); leukemia

1. Introduction

Hematopoiesis is a process whereby multipotent and self-renewing hematopoietic
stem cells (HSCs) progress to become mature lymphoid and myeloid blood cells in the bone
marrow (BM) through differentiation in a hierarchically-organized and tightly-regulated
manner. This process is sustained throughout life by a pool of quiescent and self-renewing
HSCs, which act as a reservoir for actively proliferating and differentiating cells [1]. B lym-
phopoiesis is characterized by progressive loss of multipotent potential in HSCs, followed
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by commitment to differentiate and form B cells, a group of antibody-producing cells
specialized in mediating the humoral response of the adaptive immune system. While
the exact stepwise process of hematopoiesis remains under debate, in summary, B lym-
phopoiesis begins with differentiation of HSCs into multipotent progenitors (MPPs), which
then give rise to lymphoid primed MPPs [2] and, subsequently, to common lymphoid
progenitors (CLPs) [3,4]. The commitment of CLPs towards B-cell lineage is designated by
expression of Ly6D, a surface marker that identifies the first stage of B-cell lineage-specific
development [5]. This is then followed by sequential differentiation of CLPs into pre-pro-B
cells, pro-B cells, large pre-B cells, small pre-B cells and immature B cells in the BM. These
populations are characterized by their expression of stage-specific surface receptors, adhe-
sion molecules and sequential recombination events, which lead to formation of the B-cell
receptor [6–8].

The BM microenvironment (BMM) plays a vital role in hematopoiesis and B-cell
development. It is a region enriched with arterioles, sinusoidal blood vessels, sympathetic
nerve fibers, and a myriad of BMM-derived regulatory signals, which control and define the
fate of the hematopoietic and mesenchymal cell lineages that reside within [1]. Importantly,
BM niches have been implicated in driving hematological malignancies, with essential
roles in disease development, progression and treatment resistance [9]. Thus, development
of therapeutic strategies that disrupt malignant cell-BM niche interactions is of significant
interest to scientists and clinicians. In this review, we discuss the cellular constituents of
these BM niches and their involvement in B lymphopoiesis. We also outline the role of these
niche cells in B-cell acute lymphoblastic leukemia (B-ALL) and the regulatory mechanisms
involved.

2. The Bone Marrow Microenvironment in B-Cell Development

B-cell development is regulated by spatially distinct BM niches. The current HSC
niche model consists of two distinct niches; endosteal and central, which are discernible by
their location and cellular composition. The endosteal niche is enriched with osteoblasts
and osteoclasts, and has recently been identified to contain transition zone blood vessels
composed of endothelial cells and surrounded by perivascular mesenchymal stem and
progenitor cells (MSPCs) [10]. In contrast, the central niche contains perisinusoidal and
periarteriolar blood vessels made up of endothelial cells and surrounded by perivascu-
lar MSPCs [10]. The endosteal and central niche both have roles in B-cell development.
(Figure 1)

2.1. The Endosteal B-Cell Niche

Using rat and mouse models, studies have provided anatomical evidence of a preferen-
tial localization of early B-cell precursors in the subendosteal region of the BM [11–14]. This
implies existence of an endosteal niche, where bone remodeling cells such as bone-forming
osteoblasts and bone-resorbing osteoclasts are localized, in addition to recently discovered
transition zone vessels. Interestingly, other studies have contradicted these findings, noting
that greater than 80% of CLPs were positioned >30 µm away from the endosteum [15].
While the importance of the endosteal niche in B lymphopoiesis remains under debate,
current findings suggest that several cell types in the endosteal niche have a specific role in
B-cell development (Figure 1).
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Figure 1. The progression of B-cell development within the bone marrow microenvironment.
Cells within the bone marrow microenvironment drive B lymphopoiesis by providing lineage instruc-
tive cues to B-cell progenitor populations. These cues are integrated at distinct developmental stages
as B-cell progenitors move between bone marrow niches. Abbreviations: C-X-C motif chemokine
ligand 12 (CXCL12); interleukin-7 (IL-7); stem cell factor (SCF); insulin-like growth factor-1 (IGF-1);
delta-like 4 (Dll4); Wnt Family Member 5A (Wnt5A); mesenchymal stem and progenitor cell (MSPC);
leptin receptor (LepR); CXCL12 abundant reticular (CAR); hematopoietic stem cell (HSC); common
lymphoid progenitor (CLP).

2.1.1. Osteoblasts

In recent years, the role of osteoblasts in B lymphopoiesis has been intensively investi-
gated. For instance, a study found that osteoblasts were able to induce lineage commitment
of primitive HSCs into IgM+ immature B cells during in vitro co-culture, providing evidence
of the supportive role of osteoblasts in B lymphopoiesis [16]. Furthermore, in vivo ablation
of both Col1α1-2.3kb (Col2.3)-targeted mature osteoblasts [16,17] and osterix (Osx)-targeted
pre-osteoblasts [18,19] was found to impede B lymphopoiesis. Reduced B lymphopoiesis
was observed along with minimal perturbation to hematopoietic stem and progenitor cell
(HSPC) numbers, indicating a distinct regulatory influence on B-cell progenitor subsets
rather than HSPCs [16,18,19]. To gain further insight into the contribution of osteolineage
cells to B lymphopoiesis, various studies have conditionally attenuated expression of es-
sential B-cell niche factors, including CXC chemokine ligand 12 (CXCL12), interleukin-7
(IL-7), insulin-like growth factor-1 (IGF-1) and Wnt Family Member 5A (WNT5A), in osteo-
lineage cells.

CXCL12 has been identified as a major factor for B-cell development and is expressed
in osteolineage populations [11,20,21]. A profound impact on B lymphopoiesis was ob-
served with conditional deletion of Cxcl12 in pre-osteoblasts, mediated by the Osx-Cre
transgene, resulting in reduction of B lineage progenitors from the pre-pro-B differentia-
tion stage onwards [22]. However, this study noted that in Osx-Cre targeted mice, Cxcl12
expression was also reduced in the CXCL12 abundant reticular (CAR) cell population;
thus, the observed impact on B-lymphopoiesis could not be attributed to osteolineage cells
alone. Another study found that attenuating expression of Cxcl12 in mature osteoblasts
using Col2.3-Cre induced modest but significant reductions in early lymphoid committed
progenitor populations, but not in downstream B-cell progenitors [11]. In contrast, dele-
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tion of Cxcl12 in mineralizing mature osteoblasts, mediated by the osteocalcin (Ocn)-Cre
transgene, had no effect on the frequency of lymphoid progenitors [22]. These confounding
findings may be a result of the different transgenic models used to target mature osteoblasts
and, hence, recombination occurring in different populations of osteolineage cells. Overall,
while current evidence suggests that CXCL12 produced by early osteoprogenitors and,
to a lesser extent, COL2.3+ mature osteoblasts may be important for B lymphopoiesis,
transgenic mouse models with the ability to target more specific osteolineage populations
will be essential for confirmation of these findings.

IL-7 is another important B-cell growth factor that is indispensable for differentia-
tion and maturation of B lymphocytes [23]. While mature osteoblasts do not appear to
provide an essential source of IL-7 to the B-cell niche [15], reduction of Il7 expression in
the Osx-cre-targeted pre-osteoblastic population significantly impaired B lymphopoiesis at
multiple developmental stages in several studies [18,24–27]. Another cytokine, IGF-1, was
identified as a potential B-cell niche factor when it was observed to support the develop-
ment of pro-B cells from HSPCs in vitro [28]. The endosteal niche has been identified as
a potential source of this cytokine, with pre-osteoblasts [19] and COL2.3+ osteoblasts [29]
both found to express IGF-1. Deletion of IGF-1 in OSX+ cells was found to inhibit the pro-B
to pre-B transition, which suggests that pre-osteoblast-derived IGF-1 is indispensable for B
lymphopoiesis [19].

Wnt signaling has also been implicated in regulating hematopoiesis and B lym-
phopoiesis in the BM [30,31]. WNT5A is known to be expressed in the endosteal niche by
COL2.3+ osteoblasts [29]. Furthermore, the osteoblast-specific impairment of Wnt protein
secretion, mediated by Wntless deficiency in Col1-Cre transgenic mice, resulted in impaired
pro-B, pre-B and immature B cell numbers within the BM, and reduced IL-7 levels [31].
Although Wnt signaling is an important mediator of B lymphopoiesis in the endosteal niche,
it remains unclear whether Wnt proteins regulate B lymphopoiesis directly or indirectly
via modulation of other B-cell niche factors, and further research is required to address this
question. For example, Wnt is known to be a critical regulator of osteoblast formation [32];
therefore, impaired Wnt protein secretion may disrupt BM osteoblasts, thus altering the
endosteal B-cell niche and exerting an indirect impact on B lymphopoiesis.

Overall, whilst osteoprogenitors and osteoblasts are vitally important in B-cell de-
velopment through their production of lymphoid niche factors, their roles in this process
appear to be highly dependent on the stage of osteogenesis.

2.1.2. Osteocytes

Osteocytes are terminally-differentiated osteolineage cells that reside within the lacu-
nae of mineralized bone matrix. They comprise between 90–95% of all bone cells and con-
tribute to maintenance of bone homeostasis via interactions with osteoclasts and osteoblasts.
It has been reported that osteocytes are capable of modulating osteoclast differentiation
indirectly by influencing the expression of receptor activator of NF-kB ligand (Rankl) in
osteoblasts [33]. Furthermore, osteocytes can directly inhibit osteolineage differentiation
of mesenchymal progenitors and indirectly promote bone resorption via secretion of scle-
rostin [34]. Intriguingly, mice harboring a global deletion of sclerostin showed increased
osteoblast activity [35] and an osteopetrotic phenotype [36], which was accompanied by
decreased expression of Cxcl12 in BM stromal cells and elevated apoptosis of B-cell progeni-
tors in the BM [36]. It is worth noting that the same study also demonstrated that sclerostin
is primarily expressed in osteocytes and not in hematopoietic lineage cells, implicating a
non-cell autonomous impairment of B-cell differentiation by osteocytes. Similarly, condi-
tional ablation of the osteocyte population using transgenic mice engineered to express the
diphtheria toxin receptor under the dentin matrix protein 1 (Dmp1) promoter indirectly
induced lymphopenia by depleting lymphoid-supportive stroma in the BM [37]. Therefore,
it is plausible to conclude that osteocytes play a critical role in the regulation of B-cell niche
populations. Whether osteocytes can directly stimulate B-cell lymphopoiesis through direct
intercellular crosstalk remains to be investigated.
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2.1.3. Osteoclasts

Osteoclasts are large multinucleated cells that are responsible for breaking down bone
tissue during bone remodeling and repair. The differentiation and maturation of osteoclasts
is mediated largely by binding of RANKL to the receptor activator of NF-kB (RANK),
which is expressed on osteoclast precursors [38]. It has been reported that depletion of
osteoclasts within the BM via knock-out of RANKL [39] or its receptor RANK [40] can lead
to severe osteopetrosis, which is also accompanied by defects in B lymphopoiesis. In other
studies where osteoclast-mediated bone resorption was inhibited either through genetic
or pharmacological approaches, impairment to B lymphopoiesis was also detected [41,42].
This effect appeared to be caused by CXCL12 and IL-7 depletion in the B-cell niche, possibly
due to a reciprocal decrease in osteoblast differentiation as a result of abrogated osteoclastic
activity [42]. While it remains unclear whether osteoclasts can directly affect B-cell develop-
ment, several important matrix-derived B-cell niche factors such as IGF-1 [43] are known to
be activated and released into the BMM during bone resorption. The role that this process
plays in B lymphopoiesis is worthy of further investigation. Overall, current evidence of a
direct crosstalk mechanism between osteoclasts and B cells is lacking; however, the indirect
impact of osteoclastic activity on B lymphopoiesis through regulation of other B-cell niche
populations remains plausible.

2.2. The Central B-Cell Niche

The central BM niche comprises 90% of total BM volume and contains an extensive
vascular network, which is composed of a central artery and vein, as well as arterioles that
connect to a network of sinusoidal vessels via transition zone vessels at the endosteum [10].
These blood vessels are made up of endothelial cells, which are in contact with perivascular
MSPCs and sympathetic nerve fibers. Perivascular MSPCs are overlapping cell populations
that include CAR cells [21], leptin receptor (LepR+) MSPCs [44], nestin+ MSPCs [45], neural
glial antigen 2 (NG2+) MSPCs [46] and PDGFR-α+ Sca1+ (PαS) MSCs [47]. Additionally,
galectin-1+ stromal cells [48] and adipocytes [49] are considered essential components of
this system. Collectively, these cells make up the central hematopoietic niche (Figure 1).

2.2.1. Perivascular MSPCs

Mesenchymal stem cells (MSCs) are known to possess tri-lineage differentiation po-
tential and are capable of giving rise to osteoblastic, adipocytic and chondrogenic cell
lineages in the BM. As these stem cells undergo differentiation, they transition into early
mesenchymal progenitor populations, which are capable of committing to a single lin-
eage, dictated by lineage-specific internal/external stimuli. The supportive role of these
MSPCs in hematopoiesis was illustrated over a decade ago by mouse studies, wherein sub-
cutaneous or sub-renal injection of MSPCs generated an ectopic BMM that supported host
hematopoiesis [50,51]. Furthermore, analysis of BM sections by microscopy has identified
that B-cell progenitors, at multiple developmental stages, are in contact with CAR cells [52],
LepR+ MSPCs [53] and IL-7/CXCL12 expressing MSPCs [54], suggesting that these stromal
cells form an important niche that is supportive of B-cell development.

Identification of perivascular MSPC populations commonly relies on their close prox-
imity to the BM vasculature and expression of factors/markers such as LepR, nestin,
CXCL12, IL-7, stem cell factor (SCF), NG2 and paired-related homeobox 1 (PRX1) [8]. Trans-
genic reporters or conditional knockout mouse models that target promoter sequences of
MSPC-related genes enable these populations to be identified, ablated or their production
of certain niche factors silenced, thus allowing functional assessment of their roles in B
lymphopoiesis. A summary of these markers and cre-recombinase mouse strains has been
documented [8]. The conditional ablation of the CAR cell population through diphtheria
toxin receptor knock-in at the Cxcl12 locus resulted in significantly reduced CXCL12 and
SCF levels in the BM, reduced numbers of CLPs and pro-B cells, and increased apoptosis
and quiescence in the pro-B cell population [55]. These results demonstrated an essential
role for the CAR cell population in B lymphopoiesis.
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In the BMM, cytokines produced by perivascular MSPCs are indispensable for nor-
mal B-cell development. For instance, deletion of Cxcl12 in Prx1-Cre expressing stromal
cells, a cell population which includes LepR+ MSPCs [56], CAR cells and osteoblasts [22],
significantly impaired B lymphopoiesis, as shown by reductions in B-cell progenitor popu-
lations in the BM [11,22]. Furthermore, conditional knock-out of Cxcl12 in a subset of the
LepR/CAR population using an Il7-Cre transgenic mouse model induced reductions in
HSCs and MPPs within the BM [15]. Similar findings were observed in a LepR-Cre mouse
model, with conditional deletion of Cxcl12 in LepR+ perivascular MSPCs impairing HSC
retention in the BM [11]. In contrast, Nestin-Cre mediated Cxcl12 deletion did not induce
any hematopoietic defects, indicating that the nestin+ MSPC population does not provide
an essential source of this cytokine for hematopoiesis [11]. However, discrepancies between
the expression of nestin transgenes have been observed, with Nestin-GFP appearing to be
expressed in a different subpopulation of MSPCs compared to other nestin transgenes [44].
Therefore, the effect of Nestin-Cre-directed Cxcl12 deletion may not be representative of the
entire nestin+ MSPC population. Interestingly, LepR+ MSPCs have been reported to be a
major source of IL-7 in the BMM [15]. Deletion of Il7 in a LepR-Cre transgenic model has
been shown to reduce the number of Ly6D+ CLPs, leading to markedly-reduced lymphoid
progenitors in the BM and subsequent development of B lymphopenia [15]. In addition,
Prx1-Cre targeted deletion of Il7 was also shown to affect B-cell development at the pro-B
stage [15]. Wnt ligand secretion by MSPCs has also been identified as an important factor
in the perivascular B-cell niche. Wntless ablation in a Nestin-Cre mouse model identified
that Wnt ligand production by nestin+ MSPCs is important for B lymphopoiesis from the
pro-B stage of development onwards [31]. Another niche factor, connective tissue growth
factor (CTGF), was shown to be important for hematopoiesis, with Ctgf knock-out mice
exhibiting deficiencies in B lymphopoiesis [57]. Further investigation in vitro found that
in the presence of IL-7, CTGF facilitated the pro-B to pre-B transition and proliferation of
both progenitor populations. CTGF is expressed by BM stromal cells including MSCs and
CAR cells; thus, is likely to play an important role in the central B-cell niche [57]. However,
further work delineating stromal subtype-specific effects of CTGF on B lymphopoiesis is
needed. Finally, LepR-Cre specific deletion of Scf in LepR+ cells reduced HSC, MPP and CLP
numbers, while downstream progenitors remained unaffected [58]. Similarly, Cre-induced
knockout of Scf in IL-7+ cells led to a reduction in HSC and MPP populations; however,
downstream progenitor numbers were not assessed [15]. Overall, these results suggest that
LepR+ MSPCs, PRX1+ MSPCs and CAR cells are important sources of CXCL12 and IL-7 for
B lymphopoiesis, while their production of SCF appears to be critical at earlier stages of B
lymphopoiesis.

It is important to note that earlier studies utilized markers for perivascular MSPC
populations that have since been found to encompass a heterogenous stromal cell popula-
tion. Through single cell RNA sequencing technologies and advances in microscopy, these
populations have been found to vary in their gene expression, cytokine expression, lineage
priming and location within the BMM. As such, an important distinction has been drawn
between perisinusoidal and periarteriolar niches. LepR+, Nestin-GFPdim MSPCs and CAR
cells appear to be overlapping perivascular stromal populations [56], but can be further
classified into perivascular subpopulations depending on their BM anatomical location
around sinusoids or arterioles, which exhibit adipogenic or osteogenic lineage priming,
respectively [12,29,59,60]. In addition, the Nestin-GFPbright, NG2+ MSPC population, which
localizes around arterioles [46], is distinct from LepR+ and CAR populations and is thought
to sit at the top of the MSPC differentiation hierarchy [60]. This NG2+ MSPC population has
also been identified in the proximity of type H/transition zone vessels [61]. Interestingly,
recent investigations have found that periarteriolar MSPCs may provide a niche for a
quiescent population of lymphoid-biased HSCs, with NG2+ cell depletion reducing this
HSC population by half [62]. Finally, osteolectin has recently been identified as a surface
marker specific for arteriolar LepR+ MSPCs [12]. This population forms an important
lymphoid niche, with 35% of CLPs localized within 5 µm of osteolectin+ LepR+ cells. SCF
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production by this niche population is essential, as its deletion led to a drastically-reduced
frequency of CLPs, pre-pro-B cells and pre-B cells in the BM [12]. Taken together, current
data suggests that periarteriolar NG2+ nestin-GFPbright MSPCs support lymphoid-biased
HSCs, while periarteriolar LepR+ osteolectin+ MSPCs contribute to a SCF-rich niche for the
earliest lymphoid progenitors.

In contrast to periarteriolar MSPCs, perisinusoidal MSPCs have not been well studied,
and their importance in B lymphopoiesis has only recently been appreciated. In the BM,
adipocytic-primed LepR+ cells associated with sinusoidal capillaries (as opposed to peri-
arteriolar, osteogenic-primed LepR+ cells) [12] are highly enriched for pro-hematopoietic
factors such as CXCL12, SCF and IL-7 [29]. Pro-B cells have been shown to localize around
IL-7high perisinusoidal LepR+ cells, away from the endosteum [53]. This indicates that
the perisinusoidal niche may be required for committed B-cell progenitors. Therefore,
it is plausible that progression of B-cell development requires trafficking of early B-cell
progenitors to the perisinusoidal niche. Future studies delineating the potential differential
contributions of arteriolar/sinusoidal MSPCs to B lymphopoiesis within the central niche
will be worthwhile.

2.2.2. Galectin-1+ Stromal Cells

Research has identified stromal cells that express galectin-1, a pre-B-cell receptor
ligand essential for proliferation and differentiation of large pre-B cells [63]. Interestingly,
galectin-1+ has also been identified in a stromal cell subset lacking IL-7 expression [48].
This population was distributed evenly throughout the BM with no apparent association
with vascular structures and could therefore represent a distinct B-cell niche for large pre-B
cells as they transition to small pre-B cells.

2.2.3. Endothelial Cells

Blood vessels are composed of endothelial cells, which form a critical cellular compo-
nent of the BMM and regulate the exchange of cells, nutrients, soluble factors, oxygen and
waste between the BMM and peripheral blood. BM vasculature can be classified based on
surface marker expression levels of endomucin and CD31 on endothelial cells. Research
has identified type H transition zone vessels (endomucinhigh, CD31high), which are fed
directly by arterioles in the metaphysis and endosteum, and type L (endomucinlo, CD31lo)
sinusoidal vessels predominantly associated with central BM [64]. Similarly, single cell
RNA sequencing has identified two BM VE-Cadherin+ endothelial cell clusters that differ-
entially profile based on their sinusoidal or arterial gene signatures [29]. Sinusoidal and
arteriolar endothelial cells not only differ in properties such as permeability and surface
marker expression [65], but also in their supportive abilities for hematopoiesis.

Endothelial cells are known to contribute hematopoietic cytokines such as
CXCL12 [11,20,22,66], IL-7 [15], SCF [44] and CTGF [57] to perivascular BM regions. For in-
stance, several studies have shown that deletion of Cxcl12 [11,22] and Scf [44,58] from
endothelial populations using the Tie2-Cre transgene could impair HSPC maintenance to
a certain extent without significantly affecting B lymphopoiesis. In contrast, Il7 deletion
driven by the Tie2-Cre transgene reduced pro-B and pre-B cell populations, suggesting
that endothelial cell-derived IL-7 is important for B lymphopoiesis [15]. However, the use
of Tie2 as an endothelial-specific promoter in driving gene deletions cannot conclusively
distinguish contributions by different subtypes of endothelial cells. To overcome this,
a recent study differentiated arteriolar endothelial cells from sinusoidal endothelial cells
based on their selective expression of Bmx and Epor, respectively [67]. The same study also
revealed that Cxcl12 and Scf expression was significantly higher in arteriolar endothelial
cells compared to sinusoidal endothelial cells. While arteriolar endothelial cell-derived
SCF was required for HSC maintenance and regeneration, Scf deletion in either endothelial
subtype had no effect on CLP numbers, with impact on more committed B-cell progenitors
not assessed in this study [67]. Intriguingly, another subset of BM arteriolar endothelial
cells that uniquely express von Willebrand factor were recently characterized and found
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to express the highest levels of Scf compared to other endothelial subsets [59]. Whether
this new subset of arteriolar endothelial cells is important in regulating B-cell development
remains to be investigated.

Finally, endothelial cells are known to regulate B lymphopoiesis through the Notch sig-
naling pathway. The Notch signaling pathway is highly conserved and functions to regulate
cell fate during tissue development through interactions between the transmembrane Notch
receptor and Notch ligands Delta and Jagged [68]. In the BM, VE-Cadherin+ endothelial
cells express the highest levels of the delta-like Notch ligands Dll4 and Dll1, in comparison
with COL2.3+ osteoblasts and LepR+ MSPCs [29]. Deletion of Dll4 in endothelial cells
induced a myeloid bias in HSPCs, reducing CLP numbers and, ultimately, B220+ B cells
and CD3+ T cells [29]. This provides evidence for a role of endothelial cell-derived Dll4 in
directing lymphoid differentiation of HSPCs.

Overall, current data suggests that endothelial cells play a vital role in supporting
B lymphopoiesis, either directly through IL-7 secretion or indirectly via the production
of CXCL12/SCF to regulate the earliest hematopoietic progenitors and induce lymphoid
lineage commitment of HSPCs through Dll4.

2.2.4. Adipocytes

BM adipocytes differentiate from MSPCs in perivascular BM niches [56] and com-
prise 45% of total BM volume in regions where hematopoiesis and bone remodeling are
active [69]. Research into marrow adipose tissue has advanced significantly in recent
years and this tissue is now considered to be a complex endocrine organ that actively
participates in hematopoiesis instead of simply “filling” the marrow [70]. Interestingly,
contrasting evidence exists for the influence of adipocytes on B lymphopoiesis, which
is likely to result from the vast array of cytokines, termed adipokines, secreted by this
population. Over the years, evidence has pointed to the role of adipocytes as negative
regulators of hematopoiesis, with HSC frequency found to be lower in bones with high
marrow adipose tissue content, such as tail vertebrae in mice [71]. Similarly, mice receiving
a high-fat diet leading to increased marrow adiposity exhibited significantly-reduced B-cell
frequency and Il7 expression in the BM [72]. In vitro studies have also highlighted the neg-
ative impact of adipocytes on B lymphopoiesis, with adipocyte-derived factors capable of
blocking B-cell development at the CLP to pre-pro-B transition [73]. In addition, adipocytes
have been found to drive differentiation of myeloid-derived suppressor cells in vitro, with
pro-inflammatory factors secreted from this myeloid population (such as interleukin-1
(IL-1)) capable of suppressing B lymphopoiesis [74,75]. This phenomenon is also thought
to contribute to the reduction of B lymphopoiesis in aging, where a concomitant increase
in BM adipose tissue is observed [75]. Conversely, evidence from other studies suggests
that certain adipokines are beneficial to B lymphopoiesis. In particular, leptin has been
found to support B-cell development [76]. In a study of mice that lack functional leptin,
there was a 50% reduction in the lymphoid compartment of the BM and a block in the
differentiation of pro-B cells into more mature progenitors [77]. In these mice, normal
B-cell development could be partially restored by leptin injections, indicating the essential
role of this adipokine in B lymphopoiesis [77]. Therefore, current literature suggests that
adipocytes have a multifaceted role in B lymphopoiesis. Furthermore, it is plausible to
postulate that surrounding cells in the BMM could play a role in regulating adipokine
secretion by adipocytes, and thus, further research is needed to dissect this possibility.

3. The Bone Marrow Microenvironment in B-Cell Malignancy

B-ALL arises from the uncontrolled, clonal proliferation of a B-cell progenitor pop-
ulation in the BM. Several well-characterized chromosomal alterations, such as KMT2A
gene rearrangements or BCR-ABL1 translocations, are responsible for driving clonal pro-
liferation in leukemia initiating cells [78]. In addition, alterations in the transcriptome of
leukemic cells are often observed in genes encoding transcription factors (e.g., PAX5, IKZF1
(IKAROS), EBF1), surface receptors (e.g., IL7R and FLT3) and signal transduction proteins



Cancers 2022, 14, 2089 9 of 27

such as the Janus kinase (JAK) family that are known to regulate B lymphopoiesis [79–81].
While these intrinsic genetic aberrations can significantly impact a patient’s prognosis and
treatment outcomes, accumulating evidence also points to the role of extrinsic concomitant
alterations occurring in cellular constituents of the BMM that are capable of driving B
leukemogenesis.

Akin to normal hematopoiesis, BM niches can significantly influence the survival of
leukemic cells [10]. Over the years, the development of genetically-engineered mouse mod-
els has enabled manipulation of cell populations within BM niches, allowing researchers
to understand the role of the BMM in initiating hematological disease. In particular, such
alterations have been found capable of facilitating malignant transformation of hematopoi-
etic progenitors in the BM. Conversely, alterations to normal cells within BM niches can
arise as a consequence of leukemic disease in the BM. These changes are believed to hinder
hematopoiesis while also facilitating leukemia progression and treatment evasion. Thus, it
is believed that cell populations in the BMM likely influence multiple stages of leukemia,
both prior to and during overt disease [10,82,83]. While substantial progress has been made
in understanding the influence of the BMM in myeloid malignancies [84], the BMM of
B-lineage malignancies is less defined.

3.1. The Endosteal Niche in B-ALL

In B-ALL, the BMM is often characterized by extensive remodeling prior to the ini-
tiation of treatment [85,86], which is known to be osteotoxic [87,88]. In a recent study,
both osteoblasts and osteoclasts were found to be significantly reduced in BM trephines of
children with B-ALL at diagnosis [89]. This study indicates that alterations to these bone
cell populations, which are directly driven by the intercellular crosstalk between bone cells
and B-ALL cells, could underlie the observed skeletal abnormalities. As such, leukemia-
induced bone defects are increasingly being recognized, not only for their negative impact
on a patient’s quality of life, but also for their importance in disease progression (Figure 2).
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factors include basic fibroblast growth factor, hepatocyte growth factor and tumor necrosis factor-
α(TNF-α). Pro-inflammatory cytokines include TNF-α, interleukin-6, interleukin-8, interleukin-
10, interleukin-12, interferon-γ and CC chemokine ligand 2 (CCL2). Trans-endothelial migration
(TEM) promoting factors include cortactin, mDia1 and vascular endothelial growth factor (VEGF).
Abbreviations: receptor activator of nuclear factor kappa-B ligand (RANKL); C-X-C motif chemokine
ligand 12 (CXCL12); matrix metalloproteinase-9 (MMP-9); osteopontin (OPN); granulocyte colony-
stimulating factor (G-CSF); interleukin-7 (IL-7); bone morphogenic protein (BMP4); very late antigen-
4 (VLA-4); annexin II (ANX2); growth arrest-specific 6 (GAS6); vascular cell adhesion molecule-1
(VCAM-1); mesenchymal stem cell (MSC); mesenchymal stem and progenitor cell (MSPC).

3.1.1. Osteoblasts

While the role of osteoblasts in myeloid malignancies have been extensively char-
acterized, their role in the B-ALL niche has only recently been appreciated [90]. The es-
tablishment of an immunocompetent syngeneic BCR-ABL1+ B-ALL mouse model that
replicates bone loss in patients provides a useful tool for comprehensive investigation
of the B-ALL microenvironment [91]. During leukemia development, reduction in the
osteoblastic population and decreased serum levels of osteocalcin were observed [91].
Interestingly, direct impairment of osteogenesis by leukemic cells has been demonstrated
by an in vitro study, which showed that B-ALL could inhibit the osteogenic differentiation
of MSCs [92]. Furthermore, it is also possible that B-ALL could affect the apoptotic and/or
cell cycle pathways of osteoprogenitors and osteoblasts. Thus, these potential mechanisms
of B-ALL-mediated bone loss present a significant area of interest for future exploration
using preclinical mouse models.

Interestingly, alterations to the composition of the endosteal niche may also benefit
leukemic cell survival and progression of disease. For instance, increased dormancy has
been observed in B-ALL cells residing in the endosteal/osteoblastic niche of xenograft
mouse models [93]. This was also confirmed using a microfluidics-based microphysio-
logical culture system which recreated the B-ALL microenvironment in vitro [94]. A key
mechanism facilitating B-ALL-endosteal niche interactions is via secretory factors. Os-
teoblasts are known to secrete osteopontin (OPN), an extracellular matrix (ECM) protein
and endosteal adhesion molecule. OPN can bind to B-ALL cells through interaction with
very late antigen-4 (VLA-4), resulting in their binding and anchoring to the endosteal
niche [93]. This process leads to further upregulation of B-ALL and osteoblast-derived
OPN, thus reinforcing endosteal adhesion and promoting leukemic cell dormancy [93].
The same study also showed that an OPN neutralizing antibody could block B-ALL-
osteoblast interactions, resulting in an increase in proliferating blasts and rapid disease
onset in vivo [93]. These results support the notion that the endosteal niche plays a role in
modulating leukemogenesis, likely via hindering the proliferation and spread of B-ALL
cells through induction of dormancy.

In B-ALL, incomplete clearance of dormant leukemic cells by chemotherapy often
leads to the persistence of minimal residual disease (MRD), which can subsequently lead
to chemoresistance and relapse. Accumulating evidence points to the role of the endosteal
niche in supporting B-ALL chemoresistance. Recent in vitro modeling showed that B-ALL
cells localized near osteoblasts of the endosteal niche were more resistant to the cytotox-
icities of prednisone, vincristine and nilotinib [94]. A key mechanism of leukemic cell
resistance is through cell–cell adhesion contact between osteoblasts and B-ALL cells. For in-
stance, osteoblasts express annexin II (ANX2), which forms a heterotetramer complex with
p11, a surface protein that is highly upregulated in B-ALL cells of patients with relapsed
disease [95]. Disruption of the ANX2/p11 complex with inhibitors in vitro abrogated
osteoblast-mediated adhesion, thus sensitizing B-ALL to chemotherapy [95]. Interestingly,
a subtype-specific mechanism of osteoblast-mediated chemoresistance via the growth
arrest-specific 6 (GAS6)/Mer interaction has also been delineated in B-ALL expressing
the E2A-PBX1 translocation. GAS6 is an osteoblast-secreted ligand for receptor tyrosine
kinase Mer, which is highly expressed in E2A-PBX1+ B-ALL cells [96]. Coculture of os-
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teoblasts with a E2A-PBX1+ B-ALL cell line induced upregulation of GAS6 secretion by
osteoblasts. The addition of GAS6 to cell culture media induced B-ALL cell chemotaxis via
GAS6/Mer binding, which resulted in B-ALL quiescence and expression of anti-apoptotic
factors, leading to chemoresistance [96]. Furthermore, another study has characterized a
subpopulation of B-ALL cells that can migrate under the adherent osteoblastic cell layer and
exhibit a dormant, chemotherapy-resistant phenotype [97]. This dormancy was found to be
induced by downregulation of miR-221 and miR-222 in B-ALL cells, resulting in increased
translation of their target gene p27, a cyclin dependent kinase inhibitor that blocks cell cycle
progression at the G0/G1 transition [98]. Furthermore, the same group implicated the role
of BCL-6, a cytokine signaling regulator, in B-ALL cell–osteoblast interactions. They noted
a decrease in BCL-6 abundance in B-ALL cells co-cultured with osteoblasts, which conse-
quently reduced B-ALL cell proliferation [99]. Forced expression of BCL-6 in B-ALL cells
sensitized leukemic cells to chemotherapy, suggesting that disrupting B-ALL-osteoblast
interaction by targeting BCL-6 could represent a viable treatment strategy [99].

3.1.2. Osteoclasts

In an immunocompetent syngeneic mouse model of BCR-ABL1+ B-ALL, increased
osteoclast activity was observed in the BM, coupled with increased bone resorption and
progressive bone loss over disease development [91]. Notably, RANKL in B-ALL cells
was 50–100-fold higher compared to non-malignant B cells and was shown to induce
differentiation of osteoclasts in vitro. This indicates that the RANKL signaling pathway
is a key mechanism through which B-ALL cells promote osteoclast activity and bone
resorption in vivo. This finding was also confirmed by others, who showed that RANKL
was detected in samples from patients with primary B-ALL and played a critical role
in RANKL-dependent bone destruction in patient-derived xenograft (PDX) models of
B-ALL [100]. Pharmacological inhibition of osteoclastic bone resorption with zoledronic
acid [91], a bisphosphonate used for the treatment of osteoporosis, or with recombinant
osteoprotegerin-Fc [100], an antagonist of RANKL, successfully prevented B-ALL-mediated
bone loss in mouse models of B-ALL. Taken together, these results indicate that osteoclasts
and the RANK-RANKL signaling axis are novel, promising targets for the treatment of
B-ALL.

3.1.3. Endosteal Transition Zone Vessels

Leukemic cells are known to evade therapy by seeking “refuge” in the protective BM
perivascular niche, where the vasculature often plays a role in facilitating crosstalk with
leukemic cells. The recent discovery of transition zone/type H vessels that are located close
to the endosteal surface and surrounded by osteoprogenitors have shed new light on the
composition of this BM region [101]. Further research to elucidate the particular role that
transition zone vessels and type H endothelial cells may play in the B-ALL endosteal niche
is warranted. The role of endothelial cells in the modulation of B-ALL is discussed further
below.

3.2. The Central Niche in B-ALL

It is well established that cells constituting the central BM not only create an essential
niche for normal B lymphopoiesis, but are also important for the growth, survival and
chemoprotection of malignant B cells. Evidence regarding the importance of MSPCs in
supporting the progression of B-cell malignancies has come from studies showing that
MSCs [102] and BM stromal cells [103] are capable of preventing apoptosis and improving
the long-term proliferation of primary B-ALL cells in culture. Indeed, the survival ability of
patient-derived primary B-ALL cells on BM-derived stromal cells in vitro has been shown
to be a reliable predictor of disease aggressiveness and a patient’s clinical outcome [104].
This indicates that the crosstalk between B-ALL cells and BM stromal cells, such as MSPCs,
is an important factor in disease progression and treatment response. Here, we discuss the
signaling pathways and the soluble factors in the central niche of B-ALL (Figure 2).
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3.2.1. CXCR4/CXCL12 and VLA-4/5-Mediated Mechanisms and Signaling Pathways

The initial homing of B-ALL cells to the central niche is known to be mediated by
interactions between CXC chemokine receptor 4 (CXCR4)-expressing B-ALL cells and
CXCL12-expressing MSPCs, thus implicating the critical role of the CXCR4/CXCL12 path-
way in leukemogenesis. For instance, B-ALL cells are capable of dislodging HSPCs from the
niche and disrupting normal hematopoiesis by mediating downregulation of niche-derived
CXCL12 [94,105,106], while simultaneously increasing granulocyte colony-stimulating fac-
tor expression in MSCs [105,106]. The indispensable role of CXCR4/CXCL12 in B-ALL
development is further evidenced by a study that found that expression of phosphory-
lated CXCR4 in the BM correlated with poorer treatment response and shorter overall
survival in adults with B-ALL [107]. In fact, the CXCR4/CXCL12 axis also promotes the
survival [108], proliferation [109,110] and dissemination of leukemic cells to peripheral sites
around the body [111]. CXCL12 has been found to mediate protection of B-ALL cells from
chemotherapeutic agents, with B-ALL cells upregulating CXCR4 expression in response
to chemotherapy [112]. Thus, the multifaceted role of the CXCR4/CXCL12 axis in B-ALL
renders this pathway an attractive therapeutic target.

Adhesion of B-ALL cells to MSPCs is further reinforced by the upregulation of cell
surface adhesion molecules. For example, a study has observed a reciprocal increase in VLA-
4 on the surface of ALL cells, and vascular cell adhesion molecule-1 (VCAM-1), intercellular
adhesion molecule-1 and VLA-5 on MSCs following coculture, which also coincided with
increasing cell–cell adherence between leukemic cells and MSCs over time [113]. Crucially,
high VLA-4 expression in samples from patients with relapsed B-ALL has been associated
with poor overall and event-free survival, thus making VLA-4 a leading target for novel
leukemia therapy [114]. Indeed, VLA-4-targeted antibodies such as natalizumab have been
shown to significantly impair stromal adhesion in primary B-ALL cells, sensitizing them
to chemotherapy and significantly extending the survival of B-ALL-bearing mice [115].
Similarly, it has been reported that disruption of VLA-5 function in BCR-ABL1+ leukemic
cells using anti-VLA-5 inhibitory antibodies could significantly delay B-ALL engraftment
in a xenograft mouse model and act synergistically with imatinib to induce malignant
cell apoptosis in vitro [116]. Despite promising preclinical data, little clinical success has
been gained with VLA-5 targeted therapies thus far. Various VLA-5 blocking antibodies
and small peptides have been developed and tested in multiple cancer subtypes, but have
failed to progress beyond phase 3 clinical trials [117]. However, few studies have tested
the efficacy of VLA-5 as a therapeutic target in hematological malignancies, which may
therefore warrant further investigation.

3.2.2. MSPC-Derived Secretory Factors

Many studies provide compelling evidence that B-ALL cells are able to manufacture
and exploit alternative homing pathways to remain in close proximity to MSPCs. This is
evidenced in a mouse model of BCR-ABL1+ B-ALL, where leukemic cells have been shown
to reduce secretion of normal B-cell niche factors (e.g., IL-7 and CXCL12) by mesenchy-
mal progenitors, thus contributing to the disruption of hematopoiesis and the favoring
of leukemogenesis [118]. For example, B-ALL cells can induce MSCs to upregulate Ac-
tivinA, a transforming growth factor-β family cytokine and a leukemia-promoting factor
that mediates both spontaneous and CXCL12-directed migration of B-ALL cells, even in
microenvironments with low CXCL12 concentrations [119].

The crosstalk between B-ALL cells and BM stromal cells forms the fundamental provi-
sion of chemoprotection to B-ALL cells. For instance, BM MSCs harvested from patients
with B-ALL have been found to secrete vascular endothelial growth factor (VEGF), driven
by the overexpression of heme oxygenase-1 [120]. The same study revealed that VEGF
could directly arrest B-ALL cells in the G0/G1 phase of the cell cycle, thus protecting them
from cytotoxic drugs that target proliferating cells. Furthermore, BM MSCs from patients
with B-ALL exhibit elevated levels of bone morphogenic protein 4 (BMP4) [121]. Of note,
this protein has been implicated in the maintenance of acute myeloid leukemia (AML)
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stem cells and chemoresistance [122]. However, it is currently unclear whether BMP4
plays a similar role in supporting B-ALL cell biology, thus requiring further experimental
evaluation. BM stromal cells have also been implicated in mediating ALL cell resistance
to cytarabine in vitro via activation of the canonical Wnt signaling pathway within ALL
cells [123]. The canonical Wnt signaling pathway is mediated by the accumulation of
β-catenin within the cytoplasm, followed by translocation of this protein into the nucleus,
where it modulates gene transcription. The addition of a β-catenin inhibitor in combina-
tion with cytarabine significantly impaired MSC-mediated cytarabine resistance in ALL
cells and significantly increased survival in a xenograft ALL mouse model. This study
highlights β-catenin and the Wnt signaling pathway as potential targets for overcoming
MSC-mediated chemoresistance [123]. Additionally, galectin-3 has been implicated as a
potential chemoprotective factor in B-ALL through its stabilization of β-catenin and activa-
tion of Wnt signaling in blast cells [124]. In the BM of patients with B-ALL, expression of
galectin-3 was found to be elevated, particularly in relapsed or refractory disease [124]. Fur-
thermore, the induction of galectin-3 upregulation in B-ALL cells in vitro was dependent on
MSCs being present in culture, indicating that this protective mechanism is mediated by the
BMM [124]. Increased expression of galectin-3 by B-ALL cells has been shown to mediate
resistance to both tyrosine kinase inhibitors and vincristine, indicating that therapeutic
targeting of this lectin-mediated intercellular communication, in conjunction with standard
therapy, could potentially confer advantageous treatment outcomes [125].

Insulin-like growth factor binding protein 7 (IGFBP7) has been proposed as a key
mediator of treatment resistance to L-asparaginase. In B-ALL, resistance to L-asparaginase
is known to be mediated by BM MSCs via upregulation of asparaginase synthetase [126].
In the presence of BM stromal cells, B-ALL cells upregulate IGFBP7 to promote the growth
of both B-ALL and stromal cells, as well as to induce the expression of asparaginase
synthetase in stromal cells to mitigate L-asparaginase cytotoxicity [127]. Clinical relevance
of IGFBP7 expression has also been confirmed by its identification as a negative prognostic
indicator associated with poorer leukemia-free survival rates in patients with non-BCR-
ABL1+ B-ALL [127].

Taken together, discovery of these chemoprotective mechanisms is imperative for a
better understanding as to why current treatment options do not always lead to an im-
provement in survival outcomes, particularly for certain subtypes of B-ALL. It is plausible
that preventing niche protection of leukemic cells by targeting the secretory pathways of
B-ALL-associated MSCs could provide a novel avenue for therapeutic intervention.

3.2.3. Stromal-Derived Extracellular Matrix Proteins

Numerous studies clearly indicate that the BMM is functionally altered by B-ALL cells
and exhibits abnormal secretion of a myriad of ECM proteins. One such protein is periostin,
which was observed at significantly higher levels in the BM of patients with B-ALL [128].
Periostin was originally identified as an osteoblast-derived adhesion molecule, but is now
known to be secreted by a number of BM cell populations to facilitate ECM organization
in normal BM [129]. However, over the last decade, deregulated expression of periostin
has been recognized as a common feature of many cancers and is believed to contribute
to the tumor supportive niche [129]. Notably, a study has demonstrated that B-ALL cells
were capable of upregulating periostin expression in BM MSCs, which in turn promoted
B-ALL proliferation, adhesion and CC chemokine ligand 2 (CCL2) expression [130]. B-ALL-
derived CCL2 could further reinforce periostin expression in MSCs cells, thus establishing
a self-reinforcing loop [130]. Periostin disruption in BM MSCs could significantly impair
B-ALL development in vivo, demonstrating the potential of periostin as a therapeutic
target [130].

Matrix metalloproteinase-9 (MMP-9), another key ECM protein in the BM, has also
been implicated in B-ALL regulation. BCR-ABL1+ B-ALL cells have been reported to
induce MMP-9 upregulation in MSCs, resulting in ECM degradation and dissemination of
leukemic cells [131]. MMP-9 inhibition in combination with chemotherapy was an effective
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strategy to increase survival and reduce MRD in a murine model of B-ALL [131]. Lastly,
B-ALL cells have been reported to induce MSC upregulation of OPN, which facilitated
B-ALL adhesion [94]. Interestingly, the OPN-mediated adhesion mechanism appears to be
B-ALL subtype-specific; while the SUP B-15 B-ALL cell line upregulated OPN following
interaction with MSCs, REH B-ALL cells did not [94]. Of note, SUP and REH B-ALL cell
lines possess different disease-initiating genetic aberrations (expressing BCR-ABL1 and
ETV6-RUNX1, respectively), indicating that genetic features may influence the disease
microenvironment and thus, the efficacy of microenvironment-targeted therapies. Follow
up investigation of OPN in vivo will be worthwhile to elucidate the potential of this protein
as a therapeutic target.

In summary, despite promising preclinical data, there is a lack of clinically-approved,
ECM protein-targeted treatments for B-ALL and cancers in general. However, a number
of clinical trials evaluating the efficacy of various ECM targeted therapies in solid tumors
are currently underway [132]. Future work examining whether any of these targets are
applicable to B-ALL will be worthwhile.

3.2.4. Pro-Inflammatory Cytokines

Another prominent feature of the malignant central niche is its deregulated inflam-
matory state. Clinically, serum and plasma samples from patients with B-ALL exhibit
increased levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10, interleukin-12, interferon-γ (IFN-γ)
and CCL2 [133,134]. This was further confirmed at a cellular level, where pro-inflammatory
cytokines were found to be upregulated in both B-ALL cells [135] and B-ALL-associated
MSCs [106,134]. Specifically, pro-inflammatory cytokines elevated in BM MSCs from chil-
dren with B-ALL included IL-1α, IL-6, interleukin-12p70 and TNF-α [106]. Additionally,
coculture of patient derived B-ALL cells and BM MSCs induced IL-8 and CCL2 upregulation
in MSCs [134].These cytokines play an instrumental role in maintaining an inflammatory
microenvironment that favors leukemogenesis and supports B-ALL malignancy in the
central BM niche. For example, a study has demonstrated that CCL2 and IL-8 can increase
B-ALL adhesion to MSCs and improve MSC survival in vitro [134]. In addition, a recent
study has provided evidence of IL-6 as a therapeutic vulnerability for B-ALL character-
ized by the PAX5 mutation [136]. In a native, non-transplant Pax5 mutant mouse model
where B-ALL arises naturally, inhibition of IL-6 with a neutralizing antibody was shown to
significantly reduce disease progression [136]. Pro-inflammatory cytokines such as IFN-γ,
TNF, IL-1α and IL-1β are also known to enhance MSC-mediated immunomodulation in
the BMM [137]. In AML, MSCs in the BMM are known to induce immunosuppression by
arresting T cells in G0/G1 phases of the cell cycle, altering T-cell cytokine secretion and
enhancing the immunosuppressive capability of regulatory T cells [138]. However, the role
of inflammatory-mediated T-cell modulation in B-ALL has not been thoroughly elucidated.
A review of the current literature identified a theme of increased regulatory T-cell numbers
in patients with B-ALL that, in some cases, possess enhanced immunosuppressive capabil-
ities [139]. While further research is needed, this may indicate that immunosuppression
in the central niche may be aiding B-ALL cells to evade detection by the body’s immune
system.

3.2.5. Hypoxia and Hypoxia-Related Mechanisms

Hypoxia is a prominent characteristic in some areas of the central BM and is known to
confer a survival advantage to leukemic cells. While the endosteum was once thought to be
the most hypoxic region of the BM, accumulating evidence suggests that in fact, the deep
perisinusoidal vascular regions contain the lowest oxygen concentrations [140]. Intriguingly,
vast expansion of hypoxic BM regions has been observed with B-ALL progression, and
hypoxia-inducible factor 1-α (HIF-1α) was upregulated in both B-ALL and stromal cells
extracted from BM biopsies of patients with B-ALL [141]. Interactions between MSCs and
B-ALL were shown to be capable of promoting HIF-1α activation in B-ALL cells [142]. This
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resulted in activation of the AKT/mTOR pathway and a metabolic switch to glycolysis,
conferring chemoprotection to leukemic cells [142]. Thus, inhibition of HIF-1α may present
a viable strategy to perturb disease progression and induce leukemia chemosensitivity.
Alternatively, others have proposed that harnessing the hypoxic quality of the malignant
central niche by using hypoxia-activated cytotoxic drugs may allow more targeted delivery
of therapeutics to leukemic cells [141].

3.2.6. Tunneling Nanotubes and Extracellular Vesicles

Recent advances in leukemia research have discovered new and exciting crosstalk
mechanisms that are utilized by B-ALL cells to alter BM niche cells and establish a disease
permissive microenvironment. Polak et al. were the first to identify the presence of tun-
neling nanotubes, mediating intercellular communication between B-ALL cells and BM
MSCs [143]. This cellular interaction induced MSC secretion of pro-inflammatory cytokines
and imparted chemoprotection to B-ALL cells in the presence of prednisolone [143]. Sub-
sequent studies have further delineated these tunneling nanotubes to be instrumental in
the intercellular transfer of mitochondria, autophagosomes and adhesion molecules, as
well as driving secretion of pro-survival cytokines from MSCs [144]. In addition, primary
B-ALL cells and B-ALL cell lines have been observed to release extracellular vesicles that
are internalized by BM stromal cells [145]. The nature of these extracellular vesicles is
still largely unknown, but they appear to be anucleate and contain intact organelles (e.g.,
mitochondria and lysosomes) and an organized cytoskeleton [145]. Internalization of these
vesicles appears to provoke a glycolytic metabolic shift in stromal cells, resulting in the
induction of extracellular lactate release, which may support leukemic cell survival and
chemoresistance under oxidative or cytotoxic stress [146]. Collectively, these new intercel-
lular communication mechanisms are worthy of investigation for their potential as novel
therapeutic targets in B-ALL.

3.2.7. Endothelial Cells

Angiogenesis has long been known to promote the growth and survival of solid
tumors; however, its significance in the progression of hematological malignancies has
become increasingly appreciated in recent years [147]. The importance of the vascular
endothelium in B-ALL begins at disease engraftment, when B-ALL cells migrate to the
endothelium via E-selectin and CXCL12 interactions [148,149]. Following adhesion of
B-ALL cells to endothelial cells in vitro, endothelial cells were found to upregulate their ex-
pression of VCAM-1 and engage with B-ALL cells through activation of VCAM-1 signaling
pathways [94]. Further in vitro data indicates that these endothelial interactions promote
B-ALL cell survival by stimulating expression of the antiapoptotic factor BCL-2 [150].

Following localization within the perivascular niche, leukemic cells can further re-
model the vasculature into a leukemia-supportive network to promote leukemogenesis in
the BM. In fact, increased microvessel density and complexity has been observed in the
BM of patients with B-ALL compared to healthy controls [151,152]. In corroboration with
these findings, a study has detected an increase in CD31+ endothelial cell frequency in
the BM of a mouse model of B-ALL [153]. Notably, pro-angiogenic factors including basic
fibroblast growth factor [150,151,154,155], hepatocyte growth factor and TNF-α [155] are
heightened in urine and plasma samples of patients with ALL. Furthermore, addition of
plasma from patients with ALL to endothelial cells in Matrigel stimulated proliferation,
migration and capillary-like structure formation, thus confirming the functional capability
of proangiogenic factors in the B-ALL BM [150].

A major function of the BM vasculature is trans-endothelial migration (TEM), which
controls the transit of cells (e.g., immature and mature lymphocytes) from the BMM to the
periphery and vice versa through the sinusoids [156]. TEM is also an important mechanism
for dissemination and infiltration of B-ALL cells to peripheral organs in later stages of
disease. Factors essential for TEM include cortactin [157], the formin mDia1 [158] and
VEGF [159]. Upregulation of cortactin has been observed in B-ALL cells, with greater
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expression correlated with disease infiltration into peripheral organs in PDX models [157].
Additionally, samples from patients with relapsed B-ALL exhibited threefold greater ex-
pression of cortactin than newly diagnosed patients, highlighting the clinical relevance of
this factor [157]. VEGF upregulation was also associated with central nervous system infil-
tration in PDX models of ALL [159]. This has led to the hypothesis that pharmacologically
reducing the levels of these factors may be an effective method to reduce the invasiveness
and spread of B-ALL. Indeed, knock-down of cortactin in B-ALL cells has been shown to
inhibit disease establishment and infiltration of blast cells in peripheral organs in mice [157].
Similarly, knock-down of mDia1 in B-ALL cells significantly reduced leukemia progression
in vivo and prolonged survival [158]. While these preclinical results appear promising, the
efficacy of pharmacologically manipulating TEM factors is yet to be clinically tested.

3.2.8. Adipocytes

In recent years, the role of adipocytes in the pathogenesis of acute leukemias has been
characterized [160,161]. In particular, adipocytes have been implicated in the regulation
of B-ALL. For example, an in vivo study observed CXCL12-mediated homing of B-ALL
cells to visceral fat from early stages of disease, which was significantly amplified in
obese mice [162]. In line with these findings, it has been reported that extramedullary
BM, derived from CTGF-deficient MSCs that exhibit a differentiation bias towards the
adipogenic lineage, could generate an adipocyte-rich niche that facilitates B-ALL cell
homing and engraftment [163]. This adipocyte-driven leukemic cell homing was also
postulated to be driven by CXCL12 and leptin in the niche environment [163]. Of note,
upregulation of CTGF has actually been observed in the BM and peripheral blood of
patients with B-ALL [164] and CTGF is highly expressed by B-ALL cells [165]. Thus, while
CTGF deficiency in MSCs was useful for generating an adipo-lineage bias in this model, a
reduction in CTGF levels does not recapitulate the B-ALL BMM. Nevertheless, these results
signify that an important regulatory communication exists between adipocytes and B-ALL
during leukemogenesis; however, the precise mechanisms have yet to be clearly defined.
Interestingly, one of the purported mechanisms with which adipocytes support B-ALL cells
is through provision of free fatty acid release via lipolysis [166]. However, others have
suggested that human BM adipocytes possess altered lipolytic activity, thus raising the
possibility that in humans, other non-free fatty acid mechanisms between BM adipocytes
and B-ALL may be at play [167].

Another key mechanism by which adipocytes can significantly modulate B-ALL cells
in the BMM is via release of secretory factors. Adipocytes secrete a myriad of adipokines,
such as IL-6, IGF-1, TNF-α, adiponectin, leptin and resistin [168]. Leptin and resistin levels
are elevated in children with B-ALL at diagnosis, while adiponectin levels are found to
be reduced [169]. Leptin is known to promote the growth of myeloid leukemic cells [170],
but its role in B-ALL is less clear. A recent report shed light on the role of leptin and LepR
signaling in adipocyte-B-ALL crosstalk, where adipocyte-rich niches, which are abundant
in leptin, could attenuate the expression of LepR on the surface of B-ALL cells [171]. This
was hypothesized to lead to a reduction in LepR-activated signaling cascades that would
normally drive the terminal differentiation of B-cell progenitors, and instead favor the
maintenance of the malignant blast population. While strong LepR expression on leukemic
cells is a good prognostic indicator in patients with B-ALL, it is important to note that
B-ALL cells generally express LepR at lower levels than normal lymphocytes [171]. Thus
far, the clinical use of LepR or its signaling-related genes as reliable prognostic indicators
remains to be evaluated.

Intermittent fasting, which is a dietary-based treatment approach that has garnered
some preclinical success in the solid tumor field [172], was recently demonstrated to be
a novel treatment method capable of disrupting leptin-mediated support of B-ALL in
mice [171]. Analysis of a fasting regimen, which consisted of alternate feeding and fasting
days in a mouse model of B-ALL, exhibited striking inhibition of leukemia development
and even induced reversal of mid-late-stage disease [171]. While fasting has been reported
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to increase marrow adipose tissue [173], this method also contributes to reduced leptin
levels in the BM [171]. Mechanistically, fasting-induced depletion of leptin is hypothesized
to cause a compensatory increase in B-ALL LepR surface expression and activation of LepR-
signaling pathways, leading to increased terminal differentiation of B-cell progenitors and
subsequently diminishing the malignant blast population [171]. This treatment, termed
‘differentiation therapy’, could potentially be used as a novel treatment approach for B-ALL.

Interestingly, a comprehensive set of functional studies have also highlighted the
powerful chemoprotective role of adipocytes in B-ALL. In children with B-ALL, obesity is
known to be associated with an increased risk of persistent MRD and an inferior event-free
survival [174]. In support of this, obesity in murine models was found to significantly
decrease the efficacy of chemotherapeutic agents, with B-ALL cells observed to take refuge
in adipose tissue both in vitro and in vivo [162,175,176]. Several studies have delineated
the chemoprotective mechanisms conferred by adipocytes on B-ALL cells. For instance,
adipocytes have been shown to prevent chemotherapy-induced apoptosis in B-ALL cells
by upregulating anti-apoptotic factors, BCL-2 and PIM-2 [175]. In addition, accumulating
evidence suggests that B-ALL cells can induce an adipocyte oxidative stress response,
which facilitates the protection of B-ALL cells from daunorubicin-induced cytotoxicity
through secretion of protective factors [177]. Further investigation also uncovered the
capability of adipose tissue to absorb and metabolize daunorubicin, effectively decreasing
cytotoxicity in the leukemia microenvironment [178]. Finally, expansion of the adipocyte
population and upregulation of glutamine synthetase in adipocytes was noted in patients
with high-risk ALL following induction chemotherapy [176]. Increased production of
glutamine synthetase is suspected to reduce the efficacy of L-asparaginase, which is a
chemotherapeutic agent that depletes glutamine and asparaginase, amino acids that are
essential for leukemic cell survival, from the leukemia niche. In vitro investigation found
that dexamethasone, a glucocorticoid given during induction chemotherapy, was able to
induce glutamine synthetase upregulation in adipocytes, which may explain findings in
humans [176]. The higher frequency of adipose tissue resulting from obesity may therefore
magnify this chemoprotective effect. In support of this theory, obese mice responded worse
to treatment with L-asparaginase following implantation with B-ALL cells, compared to
lean mice [176].

Collectively, these studies suggest that B-ALL cell migration to adipocyte-rich niches
imparts chemoprotection and therefore may contribute to MRD and relapse. Mitigating
these disease supportive mechanisms and the expansion of the BM adipocyte population
following current treatment regimens may improve outcomes for patients with this disease.

4. Emerging Techniques and Technologies

While the field of BMM research has made substantial progress in recent decades,
developing novel and innovative experimental techniques capable of capturing the tremen-
dous complexity in this biological system is critical to our understanding of leukemia
progression. For instance, previously developed 2D and 3D in vitro models have failed to
comprehensively recapitulate the vast complexity of interactions occurring in BM niches.
However, the recent development of a microfluidic system termed “leukemia-on-a-chip”
has been described as a “game changer” solution to this problem. The sequential loading
of BM cells into different compartments in this system recapitulates the spatial relationship
between cells in the BMM. Furthermore, this model is capable of mimicking normal and
leukemic BMMs by creating a dynamic environment that contains concentration gradients,
fluid sheer stress and mechanical stress [94]. This biomimetic system has many advantages
and could provide a high-throughput platform for the investigation of BM and leukemic
cell interactions and niche-targeted therapies prior to testing in vivo. As highlighted by the
authors, this has the potential to reduce inter-sample variability in biological parameters
that cannot be controlled when using animal models, and allow easy, real-time visualization
of spatiotemporal relationships between BMM components via microscopy. Additionally,
this methodology could potentially be used for the application of personalized medicine,
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allowing optimization of selective niche-targeted therapies using cells derived from pa-
tients.

Over the years, emerging imaging [179] and sequencing technologies [180] have shown
immense promise in being able to capture processes occurring in the B-ALL BMM at a finer
spatial and temporal resolution, allowing substantial improvement in our understanding
of B-ALL niche biology. For example, intravital microscopy allows real-time analysis of the
BMM with the ability to capture cellular processes such as cellular engraftment, adhesion,
migration and apoptosis in vivo. Additionally, more recently developed techniques such
as imaging mass cytometry will further increase the detail that can be resolved, with vast
panels of markers capable of being detected in a single tissue section [181]. The increasing
availability and feasibility of single cell RNA sequencing [182] and spatial transcriptomics
will also enable a better understanding of changes occurring at the molecular level of
individual BM niche populations at multiple stages of disease.

It is also important to acknowledge that precise elucidation of B-cell niche populations
has been hampered by the lack of specificity in promoters used to drive recombination in
transgenic mouse models, where current reporter and conditional knockout strains target a
heterogeneous population of BM niche cells. For example, the Ocn-Cre, Dmp1-Cre [183] and
Osx-Cre [22] models target CAR cells in addition to targeting osteolineage cells. In fact, 70%
of CAR cells and arteriolar pericytes are targeted by Ocn-Cre transgenes [183]. Current mod-
els targeting osteolineage populations also fail to recapitulate their complexity. For example,
single cell RNA sequencing has identified that the COL2.3+ osteoblast population actually
consists of three transcriptionally distinct populations [29]. Therefore, the development of
models with enhanced genetic manipulation capability that can specifically target more
homogenous niche populations is necessary. In the central niche, many common MSPC
markers are also detected in differentiated stromal populations. For example, the Prx1-Cre
transgene has also been found to target osteolineage cells including osteocytes and mature
osteoblasts [22]. Similarly, the Tie2-Cre model, while used to target endothelial cell pop-
ulations, has been observed to also target hematopoietic populations [184]. Thus, these
findings caution against the classification of results obtained using these models as strictly
confined to a single endosteal or central niche cell population. Ultimately, enhancing the
specificity of current gene manipulation in mouse models will be important for future
research. For instance, use of the relatively new CRISPR/Cas9 system to engineer new
transgenic mouse models may provide one solution to this problem, as it allows precise
targeted modifications to the genome, thus improving the efficiency and simplicity with
which transgenic models can be engineered [185].

5. Conclusions

Recent decades have seen a vast expansion in our understanding of the role that BM
niche cells play in hematopoiesis and hematological malignancies. At the expense of B
lymphopoiesis, B-ALL cells exploit niche-supportive signaling and remodel the normal
B-cell niche to create a microenvironment that is supportive of leukemic cell expansion,
while also providing chemoprotective niches that foster MRD and subsequently disease
relapse. Advances in standard therapies used to treat B-ALL have seen five-year survival
rates improve to over 90%. However, patients with high-risk genetic subtypes, such as
the BCR-ABL1 translocation and KMT2A-rearrangements, and relapsed B-ALL have a
significantly inferior response to standard treatments [186,187]. In addition, increasing the
dose intensity of chemotherapy regimens does not necessarily impart a survival benefit to
these patients due to toxicity-associated deaths [188]. Previously, many leukemia therapies
were developed based on targeting leukemic cell-intrinsic attributes at the molecular level,
such as cell cycle regulatory proteins, constitutively activated tyrosine kinase or cytokine
receptor signaling, as well as genetic alterations that drive cell malignancy. In recent years,
accumulating evidence increasingly supports the concept of therapeutically targeting the
cell-extrinsic interactions between leukemic cells and BM niche cells within the BMM to
enhance conventional chemotherapy [189]. Agents which target leukemic cell engraftment
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and chemoresistance such as CXCR4/CXCL12 inhibitors, Wnt signaling inhibitors, Notch
inhibitors, as well as VLA-4 and E-selectin antagonists, have shown promising therapeutic
efficacy either in preclinical studies and/or clinical trials [189]. Despite this, there is
a lack of new, BMM-targeted therapeutic agents either being approved by the FDA or
currently undergoing clinical trials for the treatment of B-ALL. Therefore, devising and
testing therapeutics that target the BMM of B-ALL will be imperative for improving clinical
outcome for patients, particularly in those with poor prognoses.
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