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Abstract: In this review, we first provide a brief overview of the nitric oxide synthase (NOS) isoforms
and biochemistry. This is followed by describing what is known about NOS-mediated blood pressure
control during normal pregnancy. Circulating nitric oxide (NO) bioavailability has been assessed by
measuring its metabolites, nitrite (NO2) and/or nitrate (NO3), and shown to rise throughout normal
pregnancy in humans and rats and decline postpartum. In contrast, placental malperfusion/ischemia
leads to systemic reductions in NO bioavailability leading to maternal endothelial and vascular
dysfunction with subsequent development of hypertension in PE. We end this article by describing
emergent risk factors for placental malperfusion and ischemic disease and discussing strategies
to target the NOS system therapeutically to increase NO bioavailability in preeclamptic patients.
Throughout this discussion, we highlight the critical importance that experimental animal studies
have played in our current understanding of NOS biology in normal pregnancy and their use in
finding novel ways to preserve this signaling pathway to prevent the development, treat symptoms,
or reduce the severity of PE.

Keywords: intrauterine growth restriction; nitric oxide; nitric oxide synthases; potential therapies;
preeclampsia; pregnancy

1. Introduction

The number of hypertensive pregnancies has been on the rise over the past several
decades. Hypertension is a leading complication during pregnancy in the United States
and throughout the world. One particularly dangerous form is preeclampsia (PE), which
in addition to new-onset hypertension, is diagnosed alongside other co-morbidities in-
cluding proteinuria, oliguria, pulmonary edema, epigastric pain, impaired liver function,
thrombocytopenia, headaches, oligohydramnios, placental abruption, and/or fetal growth
restriction occurring during the latter half of pregnancy [1]. PE can be classified into two
subtypes of early- or late-onset, with a greater number of diagnostic co-morbidities being
an index of the severity of PE. More severe forms of PE are associated with maternal blood
pressure reaching >160/110 mmHg, and the rate of PE with severe features is rising [2]. PE
not only has immediate outcomes leading to maternal and/or fetal morbidity and mortality,
but also has long-term ramifications with increased risk for future cardiovascular disease in
formerly-preeclamptic women and their offspring [3,4]. Overall, the diverse features and
continued immediate and long-term impacts of PE highlight our lack of a full appreciation
of the organ systems and mechanisms involved in the development of hypertension in PE.

A pregnancy-specific organ implicated in the progression of PE is the diseased placenta.
The placenta is highly-vascularized and is the site where nutrient and waste exchange occur
to ensure proper fetal growth. Placentation involves invasion of fetal-derived trophoblast
cells that promote decidualization of the uterus with remodeling and widening of the
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maternal spiral arteries, as reviewed in [5]. Damage to the fetal-derived trophoblast cells
that reside in the placenta and decidualized uterus is thought to mediate and propagate
the maternal vascular dysfunction and hypertensive outcomes in PE, regardless of its ges-
tational age of presentation [6,7]. Such damage can result from multiple factors, including
malperfusion and resultant placental ischemia. A method by which this is measured is
Doppler ultrasound with the observation of dicrotic notches in the pulse wave signal of the
uterine artery during PE [8]. This notching is indicative of an increased uterine vascular
resistance index (UARI) [9]. Uteroplacental ischemia is detected in PE, especially with more
severe forms [10]. Placental ischemia/hypoxia elicits the release of factors that target the
endothelium and reduce the ability of maternal nitric oxide synthase (NOS) to modulate
vascular tone and blood pressure.

In this review, we first provide a brief overview of the NOS isoforms and biochemistry
of these enzymes. This is followed by describing what is known about NOS-mediated
blood pressure control during normal pregnancy. Indeed, circulating nitric oxide (NO)
bioavailability has been assessed by measuring its metabolites, nitrite (NO2), and/or nitrate
(NO3), and shown to rise throughout normal pregnancy in humans and rats [11–14] and
decline postpartum [15,16]. In contrast, placental ischemia leads to systemic reductions
in NO bioavailability leading to maternal endothelial and vascular dysfunction with
subsequent development of hypertension in PE [17]. We end this article by describing
emergent risk factors for placental malperfusion and ischemic disease and discuss strategies
to therapeutically target the NOS system to increase NO bioavailability in preeclamptic
patients. Throughout this discussion, we highlight the critical importance that experimental
animal studies have played in our current understanding of NOS biology in normal
pregnancy and their use in finding novel ways to preserve this signaling pathway to
prevent the development, treat symptoms, or reduce the severity of PE.

2. NOS Isoforms and Biochemistry

NO is a ubiquitous gaseous and lipophilic molecule involved in a variety of biological
processes. NO is generated from the conversion of L-arginine to L-citrulline. In mam-
mals, this reaction is catalyzed by three isoforms of the enzyme nitric oxide synthase:
neuronal (NOS1), inducible (NOS2), and endothelial (NOS3). An overview of the NOS
structure, regulation, and function have been reviewed in depth elsewhere [18–20]. But
briefly, each NOS enzyme is encoded by a different gene, with 51–57% homology between
the isoforms. They have different cell localization, regulation, catalytic properties, and
inhibitor sensitivity. NOS1 and NOS3 are constitutively expressed, usually producing low
concentrations of NO for paracrine signaling related mainly to neurotransmission and
cardiovascular homeostasis (control of vascular tone, cellular proliferation, leukocyte adhe-
sion, and platelet aggregation). Whereas, NOS2 expression is induced by cytokines and
typically generates high concentrations of NO for modulation of inflammatory responses,
host defense against pathogens, and airway epithelial formation. Yet, numerous other
stimuli may regulate NOS at the transcriptional, posttranscriptional, and posttranslational
levels. In this regard, variations in the nucleotide sequence of the NOS genes have been
reported to alter NOS synthesis and activity. Consequently, these genetic polymorphisms
may affect NO production. For instance, haplotypes formed by the combination of the
NOS3 polymorphisms T-786C in the promoter region, G894T in exon 7 (Glu298Asp), and a
27 bp variable number of tandem repeats (VNTRs) a/b in intron 4 have been associated
with susceptibility to the development of disease, decreased circulating NO levels, and
lack of response to antihypertensive treatment in PE [21].

In its active form, NOS is a homodimer where each subunit is composed of a C-
terminal reductase domain, which comprises the binding sites for nicotinamide adenine
dinucleotide phosphate (NADPH), flavin mononucleotide (FMN), and flavin adenine
dinucleotide (FAD), and by an N-terminal oxygenase domain, which contains binding sites
for heme, zinc, tetrahydrobiopterin (BH4), and L-arginine. Between the reductase and
oxygenase domains, there is a calmodulin-binding sequence. While the Ca2+-calmodulin
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complex is necessary to activate NOS1 and NOS3, NOS2 is already bound to calmodulin
and does not depend on Ca2+ to be fully active. In the final steps of NO formation,
NOS flavins transfer electrons from NADPH to the heme; molecular oxygen binds to
heme, and is then incorporated into L-arginine to form NO and L-citrulline. Binding of
NOS substrates and cofactors must be finely controlled in order for NO to be efficiently
produced. Disruption of this highly coordinated reaction impairs NOS activity. Indeed,
limited quantities of substrate and cofactors or excess amounts of endogenous inhibitors,
such as asymmetric dimethyl-L-arginine (ADMA) and monomethyl-L-arginine (L-NMMA),
may lead to a shift from the dimeric to monomeric form of the enzyme. When uncoupled,
NOS generates superoxide anion instead of NO. Furthermore, the interaction of NO with
superoxide anion yields peroxynitrite and this highly toxic compound reacts with DNA,
proteins, and lipids to cause oxidative stress. On the other hand, oxidative stress enhances
the expression of arginase, an enzyme that degrades L-arginine into ornithine and urea. In
PE, there is evidence of increased arginase activity, elevated ADMA and superoxide levels,
and post-translational modifications of NOS3 by lipid peroxidation aldehydes, all resulting
in impaired NOS activity and reduced NO bioavailability [22].

NO produced by endothelial cells diffuses to surrounding platelets and the vascular
smooth muscle cell (VSMC) layer where it binds to the heme moiety of soluble guanylate
cyclase (sGC). sGC serves as the receptor for NO (Figure 1). sGC is an enzyme that catalyzes
the conversion of guanosine triphosphate into cyclic guanosine monophosphate (cGMP).
While cGMP inhibits platelet reactivity, it triggers the phosphorylation of multiple cell
proteins and lower intracellular free calcium concentrations in VSMC, promoting vascular
relaxation. Downstream in the cascade of NO/cGMP pathway are phosphodiesterases
(PDE), a family of enzymes responsible for regulating the localization, duration, and
amplitude of cyclic nucleotide signaling within the cell. PDE-5 is of particular importance
for the degradation of cGMP in VSMC, thereby influencing vascular contractile tone [23].
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Figure 1. Schematic representation of the cascade of events leading from trophoblast dysfunction and
cellular stress to subsequent abnormalities in uteroplacental vascular remodeling, malperfusion, and
ischemia. These ischemia/hypoxic events elicit the release of anti-angiogenic and pro-hypertensive
factors, like soluble Fms-like tyrosine kinase (sFlt-1), into the maternal circulation. This factor can
feedback to reduce cellularity of the placenta, and reduce uteroplacental vascularity [24]. sFlt-
1 can also quench vasodilatory factors, like PlGF, which are important for maternal vascular health.
This ultimately leads to systemic reductions in nitric oxide (NO) bioavailability and endothelial
dysfunction. Reduced NO has less capacity to activate its receptor, soluble guanylate cyclase (sGC),
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and production of the second messenger cyclic guanosine monophosphate (cGMP) resulting in
maternal vascular dysfunction, hypertension, and intrauterine growth restriction (IUGR). In red font
is the proposal that administration of NOS substrates or cofactors; modulators of sGC; or blocking
the breakdown of cGMP with inhibitors of phosphodiesterase (PDE)-5 could be utilized to prevent
the development, treat symptoms, or reduce the severity of PE.

3. NOS-Mediated Control of Renal and Systemic Vascular Function and Blood
Pressure Regulation in Normal Pregnancy

There are dramatic hemodynamic changes that occur during normal pregnancy en-
compassing progressive vasodilation to allow for plasma volume expansion (PVE) and
blood flow of nutrients to the growing uteroplacental–fetal unit [25]. This is accompanied
by maintained or reduced maternal blood pressure by term [16]. NOS largely governs these
physiological adaptations [26,27], whereby PVE is mediated by distinct local changes in
renal NO signaling [28]. Urinary NOx, as a measure of renal NO production, progressively
rises during gestation in normal pregnant rats [16]. NOS mediates the increased renal
blood flow during pregnancy. This would typically promote sodium excretion but not
during pregnancy because of attenuated renal tubular NO signaling due to increased PDE-
5 activity to degrade the NO second messenger, cGMP [28]. Collectively, this attenuates the
natriuretic effects of NO to allow for continued sodium reabsorption and PVE in the face of
increased renal blood flow during normal pregnancy. This point has been demonstrated by
studies using chronic administration of non-selective NOS inhibitors, like N(gamma)-nitro-
L-arginine methyl ester (L-NAME). L-NAME dosing during early pregnancy attenuated
the elevations in glomerular filtration (GFR), renal plasma flow (RPF), and PVE towards
the end of pregnancy in rats [13,29].

L-NAME has multiple systemic effects during pregnancy. L-NAME administration in
rats prevents the fall in systemic vascular resistance by mid-gestation [13]. At that time
point, maternal blood pressure is not significantly different between non-pregnant, normal
pregnant, or pregnant + L-NAME groups. However, it was found in a separate study
that later administration of L-NAME from gestational days 13–19 produced a profound
hypertensive response by the end of pregnancy. In this study, the pregnant rats had a
greater degree of blood pressure elevation than did their non-pregnant counterparts [25]
(Figure 2). Similarly, NOS inhibition from gestational days 7–20 promoted hypertension
and reduced PVE in pregnant rats [29]. Recent data suggest that reduced PVE causes
the uterine circulation to compensate for uteroplacental malperfusion by increases in
NO-mediated vasodilation [30]. Nevertheless, this may not be sufficient to fully prevent
the placental apoptosis that accompanies NOS inhibition during pregnancy [31], as the
barotrauma of hypertension seems to feed forward to reduce uterine vascular blood flow
in L-NAME-hypertensive pregnant rats [32].
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The above studies utilized a pharmacological means to non-selectively inhibit the
NOS enzymes, with agents such as L-NAME, during pregnancy. However, differential
expression of the NOS isoforms has been reported during normal pregnancy. NOS3 protein
expression progressively declines but NOS1 and NOS2 increase in the kidney during
pregnancy in rats [16]. In order to define the specific role of individual NOS isoforms on
maternal vascular function and blood pressure regulation during pregnancy, knockout-
mouse experiments were required. Each NOS isoform has been knocked out and maternal
and fetal outcomes examined to some extent. NOS3-knockout pregnant mice have reduced
uterine blood flow toward the end of gestation [33] and elevated blood pressure measured
via telemetry [34]. However, differing results have been reached using tail-cuff plethys-
mography with no difference or elevated systolic blood pressure compared to wild-type
controls [35,36]. Results also indicate that NOS3-knockout mice had attenuated uterine
artery diameter, uterine blood flow, and spiral artery remodeling along with signs of pla-
cental ischemia and reduced fetal weight [33]. It was found that NOS3 is an important
signaling pathway whereby insulin-like growth factor 1 (IGF-1), which increases during
normal pregnancy [37], promotes fetal growth [38].

In consideration of the other NOS isoforms, a study examined the impact of singly
knocking out each and found no alteration in maternal blood pressure when measured by
tail-cuff [35]. Moreover, the number of viable offspring was not altered by single-knockout
of the individual NOS isoforms; but double-knockout of any two NOS genes reduced
offspring number to a similar extent; and the triple-knockouts had further reductions
in this pregnancy outcome [39]. Unfortunately, pregnancy was not a major focus of
that study, and thus, a more in-depth examination of placentation, trophoblast viability,
uteroplacental vascular outcomes, fetal growth restriction, and maternal blood pressure
were not examined following the different permutations of knocking out the NOS isoforms.

The earlier genetic strategies manipulating the expression of each NOS isoform have
a caveat due to the fact that there are splice variants of NOS1, including NOS1-α, -β,
and -γ [40]. The older NOS1 knockout studies only targeted NOS1-α expression [41].
Recent research has led to the development of NOS1-β knockouts that revealed impor-
tant mechanisms for intrarenal control of systemic blood pressure during pregnancy [42].
As mentioned, normal pregnancy is accompanied by tremendous vasodilation noted by
increases in GFR and RPF. Elevations in GFR during normal pregnancy are mediated by
attenuated tubuloglomerular feedback (TGF). This allows for glomerular hyperfiltration
even though there is lower chloride, which is owed to PVE, delivered to salt-sensing cells
in the distal nephron, called the macula densa [43,44]. This would typically activate a
negative-feedback loop to stabilize the tubular flow reaching the macula densa and allow
for proper sodium excretion. This process is mediated via increased NOS1-β signaling
in the macula densa, whereby in the non-pregnant state, macula densa-specific NOS1-β-
knockout mice have enhanced TGF and fail to increase GFR in response to acute volume
expansion producing a salt-sensitive hypertension phenotype [45]. During normal preg-
nancy, expression of NOS1-β in the macula densa increases in rodents and humans, and its
knockout leads to enhanced TGF, decreased GFR, and causes hypertension to mimic the
blood pressure phenotype in preeclamptic women [42].

It is not yet fully known what drives the increase in macula densa NOS1 during normal
pregnancy, but pregnancy-specific rises in hormones could be responsible. This includes
relaxin, which is produced from the ovaries and placenta. Relaxin administration increased
renal NO metabolite excretion, but this was examined only in male rats [46]. Relaxin is
reduced in preeclamptic women [47]. The impact of relaxin on blood pressure regulation
has been examined in a preclinical model of PE, namely the Reduced Uterine Perfusion
Pressure (RUPP) rat model. This model is produced by strategically placing silver clips
around blood vessels within the pregnant uterus, eliciting uteroplacental malperfusion and
placental ischemia-induced hypertension. RUPP rats have many similarities to women
with PE [48]. Administration of a recombinant form of human relaxin-2, named serelaxin,
increased plasma NOx and attenuated the development of hypertension in RUPP rats [49].
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However, it has not yet been examined how serelaxin impacts renal NOS expression or
NOx excretion, especially as RUPP rats have a downregulation of NOS1-β in the macula
densa [42]. As NOx is reduced in PE, the next section will explore evidence to support that
maternal NO bioavailability is attenuated by soluble placental ischemic factors to promote
hypertension in PE.

4. Soluble Placental Ischemic Factors and Reduced NO in PE

Studies conducted since the 1990s have shown that plasma and 24 h urinary NOx or
cGMP are reduced or do not rise in women with PE compared to normal pregnancy [50,51].
These metabolites are important to measure because they not only provide an indication
of NO bioavailability, but nitrite has a biological activity to promote vasorelaxation in
human placental vessels [52]. Within the past 5 years, the majority of studies have shown
that preeclamptic women and experimental animal models have reduced measures of
circulating NO bioavailability, like NOx, and lower levels of NOS3 (Table 1). Moreover,
in vivo techniques to assess vascular function have demonstrated that women with PE
have vascular dysfunction [53,54] and increased vascular resistance [55]. This vascular
dysfunction is associated with circulating levels of placental ischemic, hypertensive factors,
such as increased serum soluble fms-like tyrosine kinase (sFlt-1). Elevated sFlt-1 quenches
the vasodilatory capacity of vascular endothelial growth factor (VEGF) and placental
growth factor (PlGF). NOS largely contributes to this dilatory response in uterine arteries
isolated from late-pregnant rats [56]. An elevated sFlt-1:PlGF ratio is a biomarker for those
women that are more at risk for PE with severe features [54,57].

Table 1. PubMed search results for keywords “nitric oxide” AND “preeclampsia” form 2015-pr. Arrows represent the direction of
change (↑, increased; ↓, decreased), and equal signs (=) represent no change in NOS expression/NO biomarkers (NOx).

Species/Experimental Model Circulating Tissue

Human

Shaheen G. et al. [58] ↓ NOx
Possomato-Vieira J.S. et al. [59] ↓ NOx

Pereira D.A. et al. [60] ↓ NOx
McCann Haworth S.M. et al. [61] ↓ NOx

Tashie W. et al. [62] ↓ NOx
Kim S. et al. [63] ↑ NOx

Mazloomi S. et al. [64] ↓ NOS
Lai H. et al. [65] ↓ NOx

Ajadi I. et al. [66] ↓ NOx
Serrano-Berrones et al. [67] ↓ NOx

Deniz R. et al. [68] ↓ NOx
Bos M. et al. [69] ↓ NOx

ElMonier A.A. et al. [70] ↓ NOx
Hodzic J. et al. [71] ↓ NOx

Rocha-Penha L. et al. [72] ↓ NOx
Bambrana V. et al. [15] ↓ NOx

Lai H. et al. [65] ↓ NOx

Blood vessels:
Lorca R.A. et al. [73] ↓ NOS function

Primary HUVECs:
Chen J. et al. [74] ↓ NOS3

Salsoso R. et al. [75] ↓ NOS activity
Placenta:

Mishra J.S. et al. [76] ↓ NOS3
K.-Y. Jung et al. [77] ↑ NOS2

Kim S. et al. [63] ↑ NOS2, ↓ NOS3
Mukosera G.T. et al. [78] ↑ NOx
Shaheen G. et al. [79] ↓ NOS3
Guerby P. et al. [80] ↓ NOS3

Hitzerd E. et al. [81] ↑ maternal placenta NOS3,
↓maternal placental NOS2, = fetal placenta

NOS2, ↑ fetal placenta NOS2
Guerby P. et al. [82] ↓ NOS3

Li F.F. et al. [55] ↓ NOS2, NOS3
Motta-Mejia C. et al. [83] ↓ NOS3
Du L. et al. [84] ↑ NOS2, ↓ NOS3

Non-human
primate/EarlyPregnancy

Excess of Estradiol
Albrecht E.D. et al. [85] ↓ NOx Blood vessels:

Albrecht E.D. et al. [85] ↓ NOS3
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Table 1. Cont.

Species/Experimental Model Circulating Tissue

Rat/RUPP

Travis O.K. et al. [86] ↓ NOx
Palei A.C. et al. [17] ↓ NOx

Cottrell J.N. et al. [87] ↓ NOx
El-Saka M.H. et al. [88] ↓ NOx

Wang C. et al. [89] ↓ NOx
Amaral L.M. et al. [90] ↓ NOx

Jammalamadaga V.S. et al. [91] ↓ NOx
Santiago-Font J.A. et al. [49] ↓ NOx

Blood vessels:
Younes S.T. et al. [92] = NOS3

Ma S.L. et al. [93] ↓ NOS3, NOx
Zhu M. et al. [94] ↓ NOS3

Placenta:
Tengfei Z. et al. [95] ↓ NOS3, ↑ NOS2

Wang C. et al. [89] ↓ NOS3

Rat/DOCA-salt Wang G.-J. et al. [96] ↓ NOx
Placenta:

Chimini J.S. et al. [97] ↓ NOx
Tyurenkov I.N. et al. [74] ↓ NOS3, ↑ NOS2

Rat/Elevated Testosterone Mishra J.S. et al. [76] ↓ NOx Blood vessels:
Mishra JS et al. [76] ↓ NOS3

Rat/Lipopolysaccharide (LPS) Ou M. et al. [98] ↓ NOx
Hu J. et al. [99] ↑ NOx -

Mouse/AntiphospholipidSyndrome Lefkou E. et al. [100] ↓ NOx -

Mouse/Human PE Serum
Injection Purnamayanti N.M.D. et al. [101] ↓ NOx -

Mouse/Prolactin
Overexpression - Kidney:

Chang A.S. et al. [102] ↓ NOx, ↑ NOS2

Mouse/Progranulin
Deficiency - Placenta:

Xu B. et al. [103] ↓ NOS3

Mouse/Hypoxia Chamber - Blood vessels:
Lane S.L. et al. [104] ↓ NOS function

Mouse/sFlt-1 Adenovirus - Blood vessels:
Zhang S. et al. [105] ↓ NOS3

In the experimental animal setting, models generated by reducing uterine perfusion
or by producing chronic excess of exogenous placental ischemic factors, like sFlt-1, have
been used to probe the severe features of PE. Experimental animal models ranging from
nonhuman primates to rodents confirm that reductions in uteroplacental blood flow elicits
placental ischemia/hypoxia-induced release of soluble factors that promote endothelial and
vascular dysfunction and hypertension in PE [48,85,106,107]. Indeed, reducing sFlt-1 with
siRNA technology attenuated uteroplacental ischemia-induced hypertension and protein-
uria in pregnant baboons [108]. That study did not examine maternal NO bioavailability,
but this has been touched upon in rodent models of PE. The infusion of sFlt-1 into once
normotensive pregnant rats produced hypertension and reduced glomerular generation of
NO, as measured by DAF fluorescence [109]. The precise mechanisms whereby this occurs
are not fully clear, but sFlt-1 infusion into pregnant mice reduced systemic vascular mRNA
expression of endothelin type B (ETB) receptors [110]. This receptor serves to mediate the
vasodilatory action of the endothelium-derived vasoactive peptide, endothelin-1 (ET-1),
by stimulating NOS enzymatic activity [111]. It has begun to be examined if reductions
in ETB potentiate placental ischemia-induced hypertension. We have data to support that
ETB-deficient rats have increased blood pressure by the end of pregnancy and this response
is exaggerated in the face of the RUPP procedure [112].

Telemetric evidence supports the development of placental ischemia-induced hyper-
tension in RUPP rats [113], which is accompanied by reduced NOS-mediated buffering
of vascular tone and increased vasoconstriction [114]. Furthermore, we have shown that
RUPP-hypertensive rats have elevated circulating sFlt-1 and administration of recombi-
nant human PlGF prevented the development of their hypertension (Figure 3). This has
been supported by others [94]. However, it has not been examined whether this anti-
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hypertensive effect of PlGF is mediated by NOS, which could be studied by dosing with
L-NAME. It could be that RUPP rats with complete NOS inhibition with L-NAME would
present with more severe features of PE. Moreover, it is currently unknown whether a
deficiency in any specific NOS isoform impacts the response to placental ischemia-induced
hypertension. What is known is that NOS3-knockout mice have exaggerated hepatic
dysfunction, thrombocytopenia, renal injury, and hypertension in response elevated sFlt-
1 induced by adenoviral overexpression [115]. Together, these studies support that NOS
deficiency exaggerates placental ischemia-induced hypertension, but far less is understood
about whether this pathway is targeted to increase the risk for PE in the face of emerging
cardiovascular disease risk factors.
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Figure 3. Effects of treatment with recombinant human placental growth factor (rhPlGF) on blood
pressure responses in pregnant rats with reduced uterine perfusion pressure (RUPP). Rats were
subjected to the RUPP procedure on gestational day 14. Rats were administered rhPlGF (180 µg/kg
per day, I.P. osmotic minipump) from gestational day 14–19. Conscious mean arterial blood pressure
(MAP) was measured on day 19. p-Values appear in the above brackets. Mean ± SEM. Data adapted
from [116].

5. Pro-Inflammatory States as Risk Factors for Placental Ischemic Disease and PE

A major risk factor for PE is obesity [117]. Obesity is known as a pro-inflammatory
state [118]. Women with combined obesity and PE have greater blood pressure levels and
markers of increased inflammation measured by members of the tumor necrosis factor
(TNF) family of proteins [119]. Adverse diets are a cause of obesity. A pro-inflammatory
diet, in addition to perceived psychological stress, is associated with greater circulating
TNF-α in pregnant women [120]. High-fat diet feeding results in elevated TNF-α levels
and expression of the pro-inflammatory NOS isoform, NOS2, in placentas from pregnant
mice [121–123]. There is conflicting data about NOS2 expression in placentas isolated
from obese women [124,125]. However, maternal blood pressure is not always a focus of
such studies. It has been shown that administering the NOS2 inhibitor, 1400 W, prevented
RUPP-induced hypertension in rats [126]. NOS2 has been found to be increased in women
with PE (Table 1).

Another inflammatory pathway studied in PE is the complement system. This system
is important to “complement” the ability of antibodies and phagocytic cells to effectively
remove microbes and apoptotic debris before they are able to release pro-inflammatory
molecules. There are numerous small proteins involved in the complement signaling
cascade. Notably, one such protein is C1q, which is expressed by trophoblast cells [127].
Deficiency of C1q in mice resulted in attenuated placental development and vascular
remodeling. Further evidence that C1q expressed by trophoblast cells is important was
demonstrated by the finding that paternal deficiency alone, and not the maternal deficiency
of C1q, resulted in a PE-like phenotype in wild-type female mice presenting with increased
blood pressure, increased fetal demise, and systemic vascular dysfunction during late-
pregnancy [128,129]. Here, circulating sFlt-1 nor PlGF levels were altered at mid- or
late-pregnancy. However, it was found that sFlt-1 levels in serum were higher when
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both male and female breeders were deficient in C1q [129]. Circulating levels of C1q are
lower in women with PE [130]. C1q is involved in the classical pathway of complement
function, but overactivation of proteins associated with alternative, pro-inflammatory
complement signaling, including C3a, have been shown to mediate the development of
placental ischemia-induced hypertension in the RUPP rat [131].

Dysfunctional signaling within the complement cascade is associated with loss of self-
tolerance and autoimmunity [132]. The autoimmune disease, systemic lupus erythematosus
(SLE), has a propensity to affect women of reproductive age and increases the chance of
complications during pregnancy, like PE [133]. It has been found that there is an increased
sFlt-1:PlGF ratio during early pregnancy in women with SLE [134], which is indicative of
placental ischemic disease in the face of maternal inflammation.

There is more support that maternal infection increases the incidence of placental
ischemia and the onset of severe PE. One type of infection that is currently very promi-
nent is exposure to the SARS-CoV-2 coronavirus, the cause for COVID-19. It has been
linked to a greater risk for severe PE [135–138]. It was recently reviewed that almost
38% of pregnancies infected by COVID-19 have markers of uteroplacental malperfusion,
including fibrin deposition, infarction, decidual vasculopathy, accelerated villous hyper-
plasia, distal villous hypoplasia, and retroplacental hemorrhage, as well as placental
inflammation [139,140].

Placental malperfusion with ischemia/hypoxia not only elicits placental and maternal
pro-inflammatory factors like TNF-α and agonistic autoantibodies to vasoconstrictor sys-
tems, like the angiotensin II type 1 receptor (AT1-AA) and α-adrenergic receptor, but also
results in significant increases in placental and plasma levels of sFlt-1 [5]. TNF-α infusion
increases blood pressure and circulating levels of sFlt-1 and AT1-AA in rats [141]. However,
lacking is an optimal way to intervene in the signaling of these pro-inflammatory factors.
These factors are consistently associated with reduced maternal NO bioavailability. It has
not been thoroughly explored whether strategies to increase NOS coupling attenuates the
development of PE.

6. Potential Treatment Strategies Targeting to Increase NO Bioavailability in PE

Treatment strategies have been tested in the settings of PE, attempting to increase NO
bioavailability. In this section, we briefly summarize studies in humans and experimental
animals evaluating potential therapies targeting the NOS system for ameliorating placental
and/or vascular dysfunction in PE, with a focus on supplementation of NOS substrates
and/or cofactors, modulators of sGC, and inhibitors of PDE-5. The role of NO donors,
including organic nitrates and S-nitrosothiols, to attempt to prevent and ameliorate the
clinical manifestation of PE has been extensively reviewed elsewhere [142,143].

6.1. L-Arginine Supplementation

L-arginine levels determined by chromatographic methods have been found to be
reduced in maternal and umbilical cord plasma of preeclamptic women [144–147]. When
assessed in the first trimester of gestation, plasma L-arginine levels were decreased in those
women developing early-onset PE [148]. Promisingly, clinical studies demonstrated that
intravenous and/or oral treatment with L-arginine improves many features of PE, such
as hypertension, pre-term birth, and low birth weight [149–152]. In addition, L-arginine
supplementation initiated anytime from 14 to 32 weeks of gestation significantly prevented
the development of PE in patients deemed at risk for this syndrome [153,154]. However,
few placebo-controlled trials reported no beneficial effects of L-arginine supplementation
in PE [155,156], possibly due to differences in treatment initiation, dosage, and duration.
Nonetheless, meta-analyses including these and additional studies concluded that L-
arginine is superior to placebo in lowering blood pressure and prolonging pregnancy
in women with established PE as well as in reducing the incidence of PE in high-risk
women [157,158]. Studies in experimental animals also support the human data showing
that treatment with L-arginine ameliorates hypertension during pregnancy [109,159–161].
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For instance, 2% L-arginine added to the drinking water of RUPP rats or sFlt-1-infused
pregnant rats significantly decreased their blood pressure levels, likely by increasing NO
bioavailability and downregulating renal endothelin-1 expression [109,159]. These studies
provide evidence that L-arginine supplementation during pregnancy is safe and may be
used as a preventive and/or therapeutic tool in PE. As such, larger randomized double-
blinded trials examining L-arginine supplementation in PE should be encouraged.

6.2. BH4 Supplementation

Scarce studies have assessed BH4 in PE. Kukor et al. found that, although BH4 levels
were similar in placental tissue of PE and normal pregnant women, placental NOS3 activity
exhibited two distinct responses to BH4 in PE: in placental homogenates from few PE
patients (n = 3), the addition of physiological and higher concentrations of BH4 stimulated
NOS3 activity similar to that of normal placental homogenates, whereas for the majority of
PE placental homogenates (n = 7), only the addition of supraphysiological concentrations
of BH4 caused significant NOS3 stimulation [162]. Using an animal model PE induced by
injecting deoxycorticosterone acetate once a week and adding 0.9% saline to the drinking
water (DOCA-salt) of female Sprague–Dawley rats before mating and during pregnancy,
Mitchell et al. showed that ex vivo treatment with sepiapterin, a BH4 precursor, normalized
decreased endothelium-dependent relaxation responses of mesenteric arteries, reduced
NO, and increased superoxide and peroxynitrite levels of aortic tissue [163]. Similarly,
incubation of mesenteric arteries with sepiapterin restored the decreased endothelium-
dependent vasodilation of pregnant mice with deficiency of a copy of the cystathionine-beta
synthase gene [164]. These heterozygous mice develop moderate hyperhomocysteinemia, a
condition associated with PE and later cardiovascular disease [165–167]. Studies evaluating
the in vivo effects of BH4 supplementation in PE have yet to be conducted in humans and
experimental animals. However, clinical studies revealed that acute infusion of BH4 im-
proved the impaired endothelium-dependent vasodilation in hypertensive patients to
the level of normotensive counterparts [168]. Moreover, chronic oral treatment with 5 or
10 mg/kg/day of BH4 for 8 weeks, or 400 mg of BH4 in divided doses for 4 weeks, amelio-
rated endothelial function and blood pressure in human subjects with poorly controlled
hypertension [169]. Studies in different animal models of chronic hypertension, such
as those in spontaneously hypertensive rats, 5/6 nephrectomies rats, and angiotensin
II-infused rats, reinforce that BH4 supplementation is able to improve hemodynamics
and NO/cGMP signaling [170–175]. But, those studies did not focus on pregnancy hy-
pertension. Overall, these findings suggest that BH4 supplementation deserves further
consideration as a potential therapy for PE.

6.3. L-Citrulline Supplementation

Maternal and umbilical cord serum levels of L-citrulline have been reported to be
similar in PE and normal pregnancy [149,176]. However, there is evidence arguing that
circulating L-citrulline levels are reduced in women prone to develop recurrent PE [177] but
elevated in women presenting severe PE [178]. Notably, L-citrulline content is decreased in
human umbilical vein endothelial cells (HUVECs) isolated from late-onset preeclamptic
women [75]. Nonetheless, L-citrulline instead of L-arginine has been proposed as a better
supplementation strategy with regards to blood pressure and fetal growth because it by-
passes hepatic first-pass metabolism and is converted to L-arginine within tissues [179,180].
L-citrulline supplementation has been tested in pregnant mice with deficiency of a copy of
the complement component C1q gene, an animal model that exhibits pregnancy-specific
vascular dysfunction, hypertension, proteinuria, and impaired fetal growth. The addition
of 0.25% L-citrulline to the drinking water of these animals throughout gestation improved
blood pressure, endothelium-dependent and -independent relaxation of mesenteric arteries,
fetal weight, and placental efficiency [181]. L-citrulline supplementation in drinking water
(2 g/kg/day, from gestational day 7 to 21) also increased fetal weight in a rat model of
intrauterine growth restriction (IUGR) induced by maternal dietary protein restriction,
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probably via enhanced NO production and expression of genes related to placental angio-
genesis and survival [182,183]. Despite these preclinical studies showing that L-citrulline
supplementation improves pregnancy outcomes, there are no human studies to date exam-
ining the impact of L-citrulline treatment on PE. Pooling data from randomized clinical
trials, a recent meta-analysis performed by Barkhidarian et al. concluded that L-citrulline,
when supplemented at a dose ≥6 g/day, decreases both systolic and diastolic blood pres-
sures in non-pregnant subjects [184]. Thus, future clinical studies should evaluate the
effects of L-citrulline supplementation in PE.

6.4. Downstream Targets: sGC Stimulators, sGC Activators, and PDE-5 Inhibitors

Although the aforementioned studies investigating L-arginine, BH4, or L-citrulline as
a therapeutic intervention in PE are promising, drugs targeting downstream mechanisms
in the NO/cGMP pathway might be a better option for the treatment of preeclamptic
women carrying functional alterations in the NOS3 gene. Several clinical studies associated
NOS3 polymorphisms with increased risk of PE, which has been summarized by two
recent meta-analyses confirming that the presence of the polymorphic allele at the 894
(T instead of G) position in the NOS gene predisposes pregnant women, especially those
with Caucasian background, for the development of PE [185,186]. It has been previously
shown that the G894T polymorphism affects NOS3 activity and cellular localization, lead-
ing to decreased NO formation in carriers of the T allele [187,188]. Indeed, the T allele for
the G894T polymorphism has been associated with reduced circulating NO levels in both
normal pregnancy and PE [189,190]. Additional studies have found that other commonly
associated NOS3 polymorphisms with PE may also alter circulating NO levels [191,192].
Thus, in those situations where NOS activity is compromised by genetically driven de-
fects, supplementation with substrates and/or cofactors might not act as expected, and
alternative strategies should be explored.

Data regarding maternal blood/urine levels of cGMP in PE have been variable with
studies describing reduced [51,61,193,194], elevated [195–199], or statistically unchanged
levels [50,200–203]. Reduced cGMP levels are likely due to impaired NOS3 activity and
decreased NO levels [51,61,194], whereas elevated cGMP levels may result from increased
activation of sGC by atrial and/or brain natriuretic peptides in PE [196–199]. Nevertheless,
it seems that sGC expression and activity are decreased in decidual and placental tissues
collected from preeclamptic patients [204,205]. Studies in models of PE, including RUPP
rats, pregnant rats administered the sulfonic acid, suramin, and the Dahl salt-sensitive
rat model of superimposed PE corroborate findings in humans indicating that sGC ex-
pression, as well as cGMP levels, are reduced in blood vessels [206–208]. sGC stimulators
and activators are a novel class of drugs that modulate sGC to increase cGMP production
independently of NO. While sGC stimulators such as riociguat bind directly to the reduced,
heme-containing form of the enzyme, sGC activators like cinaciquat bind to its oxidized,
heme-free form [209]. Treatment of RUPP rats with an sGC activator added to the diet (BAY
60–2770, 16 ppm, ad libitum) from gestational day 14 to 19 restored their reduced cGMP
levels and endothelial function of uterine arteries, reflecting on the amelioration of blood
pressure [210]. Similar results were found along with improved uteroplacental blood flow,
placental remodeling, and fetal growth were obtained by treating RUPP rats with daily
subcutaneous injections of a sCG stimulator (riociguat, 10 mg/kg/day) from gestational
day 14 to 20. However, sham pregnant rats undergoing the same therapy regimen with
riociguat exhibited impaired uteroplacental blood flow and placental remodeling similar
to vehicle-treated RUPP rats [206]. Follow-up studies revealed that, despite the effect of
riociguat on prolonging pregnancy of RUPP rats, it worsened the probability of their babies
surviving at birth and postnatal day 2. Moreover, riociguat treatment during late pregnancy
did not mitigate RUPP-induced asymmetric IUGR and increased cardiovascular risk in
male offspring at 4 months of age [211]. Importantly, although the US Food and Drug
Administration (FDA) agency has approved riociguat (Adempas, Bayer) for the treatment
of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hyper-
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tension (CTEPH), it is highlighted in its prescribing information that this medication has
embryo-fetal toxicity and should not be administered to pregnant women. Thus, further
studies in preclinical models of PE should be carried out to directly compare the maternal
and fetal outcomes of sGC activators, stimulators, and PDE-5 inhibitors.

Reduced levels of cGMP in PE may also be due to increased PDE-5 activity. Indeed,
clinical studies evaluating this cGMP-degrading enzyme in PE reported enhanced cir-
culating PDE activity [212], with data in the rat RUPP model demonstrating increased
PDE-5 expression in renal medullary and placental tissue [213]. Sildenafil and tadalafil
have been tested clinically as PDE-5 inhibitors for the treatment of adverse pregnancy
outcomes in PE. Earlier randomized controlled trials with sildenafil were promising, indi-
cating beneficial effects on blood pressure, UARI, and duration of pregnancy in PE, with no
increase in maternal or fetal morbidity and mortality [214–216]. In contrast, the Sildenafil
Therapy in Dismal Prognosis Early Onset Fetal Growth Restriction (STRIDER) trial was
prematurely terminated due to concerns that sildenafil may cause neonatal pulmonary
hypertension, whereas benefit on perinatal mortality or major neonatal morbidity was
unlikely [217,218]. Ferreira and collaborators’ meta-analysis evaluating sildenafil for the
prevention or treatment of obstetric diseases concluded that it increases fetal weight at
birth in the settings of placental insufficiency; however, they queried randomized clini-
cal trials published up to September 2018, thereby not considering the results from the
STRIDER trial [219]. Furthermore, a multicenter phase II clinical trial concluded that
tadalafil, although safe, did not prolong pregnancy duration in PE [220]. A subsequent
clinical study with preeclamptic patients treated with tadalafil found a dose-dependent
increase in maternal mild adverse events (headache and palpitation), but all administered
dosages were deemed safe for both mother and fetus [221]. Hence, a new meta-analysis
should be performed, including the results of these recently published clinical trials on
PDE-5 inhibitors in PE.

Numerous preclinical studies in PE have been conducted with sildenafil and tadalafil.
Yet, most of these studies have utilized the mouse or rat L-NAME model. Although we
agree that this animal model is valid and reiterates the importance of NOS on regulating
placentation, vascular function, and blood pressure during pregnancy, it was already
expected that the treatment of these animals with drugs targeting the same pathway being
disturbed would lead to successful maternal and fetal outcomes [222–227]. Nonetheless,
studies with catechol-O-methyl transferase knockout pregnant mice, RUPP rats, Dahl-salt
sensitive rat model of PE agree with the findings in the mouse/rat L-NAME model,
showing that sildenafil improves endothelial function, blood pressure, UARI, and fetal
growth in PE [213,228,229]. Therefore, the use of PDE-5 inhibitors in PE is controversial
and future studies should distinguish their effects between early- versus late-onset PE.

7. Summary and Conclusions

The maternal vascular endothelium appears to be an important target for factors
involved in the pathophysiology of PE. The endothelium normally controls the balance
between competing factors that ultimately impact vascular tone, coagulation, platelet
function, and fibrinolysis. One endothelial factor that appears to play an important role in
PE is NO. Not only does NO play an important role in the regulation of renal function and
arterial pressure under various physiological and pathophysiological conditions, growing
evidence suggests that reduced NO synthesis plays a central role in the pathophysiology
of PE. In normal pregnancy, increased NO mediates renal vasodilation and decreases total
peripheral resistance and blood pressure. However, in women with PE and in various
animal models of PE, NO production is reduced, resulting in attenuated endothelium-
dependent dilation, and the vasculature is hyper-responsive to a myriad of vasoconstrictive
stimuli as a result of placental dysfunction. Some of these factors include sFlt-1, soluble
endoglin, AT1-AA, and inflammatory cytokines.

Although there has been progress in understanding the mechanisms responsible for
the pathogenesis of PE, effective therapeutic options for women that develop PE are still
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not available. This review highlights the concept that agents that improve NOS coupling
and signaling through sGC to directly target the endothelial dysfunction could serve as
potential therapies to alleviate the maternal symptoms of PE to prolong pregnancy in severe
PE (Figure 1). While preclinical studies in a number of animal models for studying PE have
demonstrated beneficial effects of agents that impact NOS signaling, further investigation
of the efficacy and safety of these agents is greatly needed.
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