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The fluctuation theorem (FT), which is a recent achieve-
ment in non-equilibrium statistical mechanics, has been
suggested to be useful for measuring the driving forces
of motor proteins. As an example of this application, we
performed single-molecule experiments on F

1
-ATPase,

which is a rotary motor protein, in which we measured
its rotary torque by taking advantage of FT. Because
fluctuation is inherent nature in biological small systems
and because FT is a non-destructive force measurement
method using fluctuation, it will be applied to a wide
range of biological small systems in future.
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Fluctuation Theorem (FT)

A macroscopic motor generates heat, Q, when energy to

move the motor is injected. Defining an entropy production,

σ, generated during a time interval, Δt, by σ= Q/kBT where

kB is the Boltzmann constant and T is the temperature of the

environment, we find that σ> 0. This empirical rule for a

macroscopic system is called the second law of thermody-

namics. However is σ> 0 always observed for small systems

such as motor proteins?

Before examining motor proteins, for simplicity, we con-

sidered a charged colloidal particle in water driven by an

electric field (Fig. 1a). While motor proteins use energy from

chemical reactions to move, the particle is driven by the

force, F, exerted by the electric field. The position of the

particle is denoted as X(t). Heat, Q, generated during a time

interval, Δt, is described by Q=FΔX, where ΔX=X(t+Δt)−

X(t). Because X(t) fluctuates in time due to thermal noise, Q

has a diffierent value for each measurement. Q>0 when the

particle moves in the same direction as that of the force

while Q<0 when the particle moves against the force by

being pushed by water molecules (which can happen if Δt is

small) (Fig. 1b). In the latter case σ< 0. This apparent viola-

tion of the second law of thermodynamics is expressed by

the fluctuation theorem (FT):

= eσ, (1)

where P(σ) is the probability distribution of σ. Because Eq.

(1) implies that the probability of σ> 0 exponentially in-

creases when the mean value of σ becomes large, which is

the case in a macroscopic system, Eq. (1) coincides with the

second law of thermodynamics. FT was first advocated by

Evans et al. in 19931, and it was experimentally verified in

a colloidal particle system in 20022. Theoretically, many

mathematical expressions of FT can be derived depending

on system conditions3. Among them, the Crooks fluctuation

theorem was experimentally verified in an RNA hairpin

system4.
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Theory and Simulation

To check Eq. (1), we performed a simulation of the col-

loidal particle system depicted in Figure 1a. Because the

effect of the inertia is small in our colloidal particle system,

the time evolution of X(t) is described by the overdamped

Langevin equation:

= F + ξ(t), (2)

where Γ is the friction coefficient of the particle, and ξ is

Gaussian noise of the intensity , which represents

the effect of thermal noise. Γ=6πηa (Stokes law) where η is

the viscosity of water, and a is the radius of the particle5. In

Figure 1c, a sample time course of X(t) is plotted for the

case a=1.5 μm, T=25°C, η=0.89×10−9 pNs/nm2, and F=

1 pN. From X(t), we calculated the probability distributions,

P(σ), of the entropy production, σ= FΔX/kBT (where ΔX=

X(t+Δt)−X(t)), for the cases Δt=0.02 ms and 0.04 ms (Fig.

1d, left). In Figure 1d (right), ln[P(σ)/P(−σ)] is plotted as a

function of σ. We can see that ln[P(σ)/P(−σ)]=σ.

Next, we theoretically derive Eq. (1) using the model (2).

Setting X(t)=X1 and X(t+Δt)=X2, the detailed balance con-

dition in equilibrium5 is written as

peq(X1)Tr(X1 → X2) = peq(X2)Tr(X2 → X1), (3)

where Tr(X1 → X2) (Tr(X2 → X1)) is the transition proba-

bility from X1 to X2 (from X2 to X1). peq(X) ∝  (the

Boltzmann distribution), where E represents the energy of

the system.Then, Eq. (3) can be rewritten as

where ΔE=E(X2)−E(X1). In non-equilibrium in which F≠0

(Fig. 1a), E(X) is modified into E(X)−FX considering the

energy injected into the system by the external driving

force, F. Eq. (4) is then written as

Eq. (5), which is the extended form in non-equilibrium of

the detailed balance condition (Eq. (3)), is called the local

detailed balance condition (LDB). See Hayashi and Sasa6

and Hayashi7 for more details on the LDB.

Because ΔE=0 in our model (Eq. (2)), Eq. (5) is further

rewritten as

When we consider the path [X ] = X1 → X2 → X3 → ... X
N
,

Eq. (6) is extended to

Figure 1 FT verified using simulation. (a) Schematic of a charged colloidal particle driven by an electric field. (b) Heat, Q, generated during
Δt. (c) A sample time course, X(t), obtained by the simulation. (d) (top) Probability distribution, P(σ), of the entropy production, σ, in the cases
Δt=0.02 ms (red) and Δt=0.04 ms (blue). (bottom) ln[P(σ)/P(−σ)] is plotted as a function of σ in the cases Δt=0.02 ms (red) and Δt=0.04 ms (blue).
It is seen that ln[P(σ)/P(−σ)]=σ.
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where [ ]=X
N
 → X

N−1 → ... → X1, ΔX=X
N
− X1,

TR([X ])=Tr(X1 → X2)Tr(X2 → X3) ... Tr(X
N−1 → X

N
) and

TR([ ])=Tr(X
N
 → X

N−1)Tr(X
N−1 → X

N−2) ... Tr(X2 → X1).

TR([X ]) and TR([ ]) are transition probabilities for the

paths [X ] and [ ], respectively. Then the probability distri-

bution of the entropy production, σ= FΔX/kBT, is defined by

P(σ) = d[X ]δ(σ− FΔX/kBT)TR([X ]). (8)

With Eq. (7), Eq. (8) is rewritten as

P(σ) = d[X ]δ(σ− FΔX/kBT) TR([ ])

= d[ ]δ(σ+ FΔ /kBT) TR([ ])

= d[X ]δ(S + FΔX/kBT) TR([X ])

= P(−σ)eσ, (9)

where Δ =−ΔX. Eq. (9) represents Eq. (1). Physical inter-

pretations of Eq. (9) seem difficult because Eq. (9) is

obtained formally from the mathematical identity transfor-

mation using the LDB (Eq. (5)). In this paper, we do not

consider the physical interpretations of Eq. (9), but consider

how to use Eq. (9) in single-molecule experiments. See

Hayashi and Sasa6 for details, and Hayashi7 for a brief sum-

mary on Eq. (9).

Using FT to Measure the Driving Forces of 
Bio-motors

In the case of a linear motor protein that moves in one

direction, the driving force, F, and thermal noise act on a

cargo (Fig. 2, left). For this model, we can derive the fol-

lowing expression of the fluctuation theorem:

ln[P(ΔX)/P(−ΔX)] = FΔX/kBT, (10)

where X(t) is the position of the cargo, ΔX=X(t+Δt)−X(t)

and, P(ΔX) is the probability distribution of ΔX. We use ΔX

instead of σ in Eq. (9) to derive Eq. (10). In the case of a

rotary motor protein that rotates in one direction, the rotary

torque, N, and thermal noise act on a bead (Fig. 2, right).

Similarly to Eq. (10), we obtain,

ln[P(Δθ)/P(−Δθ)] = NΔθ/kBT, (11)

where θ(t) is the rotary angle of the bead, Δθ=θ(t+Δt)−θ(t),

and P(Δθ) is the probability distribution of Δθ. In Eqs. (10)

and (11), we assume that F and N are constant. Such an

assumption is valid when the variations in a driving force

are much smaller than the mean value of the driving force.

We can obtain X(t) (θ(t)) from single-molecule experi-

ments. Measuring P(ΔX) (P(Δθ)), when we plot

ln[P(ΔX)/P(−ΔX)] (ln[P(Δθ)/P(−Δθ)]) as a function of

ΔX/kBT (Δθ/kBT), the slope of the graph corresponds to

F(N). See the next section for an example.

Application of Eq. (11) to F
1
-ATPase

F1 is a rotary motor protein and a part of FoF1-

ATPase/synthase8–14. The minimum complex that can act as

a motor is the α3β3γ subcomplex, in which the γ subunit

rotates in the α3β3 ring (Fig. 5a, top, left) upon ATP hydrol-

ysis. The three catalytic β subunits hydrolyze ATP sequen-

tially and cooperatively. Three ATP molecules are hydro-

lyzed per turn, or in other words, the free energy obtained

from the hydrolysis of a single ATP molecule is used for a

120° rotation. The conformations of the β subunits change

as the elementary chemical steps, such as the ATP binding,

the ATP hydrolysis (cleavage of the covalent bond), and

the product releases (ADP and inorganic phosphate) pro-

ceed (Fig. 3a). The coordinated push-pull motion of the C-

terminal domains of the β subunits produces torque for the γ

subunit to rotate9,10.

In our single-molecule assay (see Methods in Hayashi et

al.11), the rotation of the γ subunit was observed as the rota-

tion of a bead attached to it (Fig. 3b) because the size of the

γ subunit itself is too small (~2 nm) for its rotation to be

observed directly under an optical microscope. The rota-

tional angle, θ(t), was calculated from the recorded images

of the bead (Figs. 3c and 3d). In Figure 3c, θ(t) is plotted for

the cases of 1 mM ATP and 100 nM ATP. While the rota-

tion was continuous for 1 mM ATP, it became stepwise for

100 nM ATP, pausing every 120°. The ATP-binding dwell

(the time that a catalytic site waits for ATP binding) is very

short at high [ATP] (<0.1 ms at 1 mM), and the time con-

stants of the dwells for ATP hydrolysis and that for the

product releases are also short (about 1 ms independent of

[ATP] for the wild-type F1). The rotation appears continuous

when the response time of a bead is longer than these time

periods.

In previous studies12–15, the rotary torque, N, was esti-

mated using the equation

N=Γω, (12)

where ω and Γ are the mean angular velocity and friction

coefficient of a probe (e.g. a bead), respectively. From the

TR([X])
= , (7)

TR([ ])
e
FΔX k
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Figure 2 Driving forces of motor proteins. (left) Schematic of a
linear motor protein. A driving force, F, exerted by a motor and ther-
mal noise act on a cargo. (right) Schematic of a rotary motor protein. A
rotary torque, N, exerted by a motor and thermal noise act on a bead.
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calculation of fluid mechanics, the functional forms of Γ are

known as

Γs= 8πηa3+ 6πηa for an a single bead,

Γd= 16πηa3+ 6πηa + 6πηa for a duplex of beads,

(13)

where a and x
i
 (i=1, 2) are the radius and rotation radius of

each bead, and η is the viscosity of water (η=8.9×10−10

pNs/nm2 at 25°C). Note that Eq. (13) is derived under the

assumption that the rotation of a bead or a duplex of beads

occurs in bulk. This causes inaccuracy in estimating the fric-

tion coefficients of beads in the case of the single-molecule

experiment on F1
15. Because F1 attaches a glass slide and

rotates the beads near the glass surface (Fig. 2b), an inter-

action between the beads and the glass makes the estimation

using Eq. (13) diffierent from the real value. In fact, the real

value of Γ is larger than the value estimated by Eq. (13). In

single-molecule experiments in general, it is difficult to ob-

tain accurate values of the friction coefficients of probes,

because the probe sizes are distributed and their exact

shapes are unknown, and because the motion of probes is

often observed close to the surface of a glass slide, where

motor proteins attach, rather than in bulk. In fact, the diffi-

culty in estimating Γ is a common problem for force mea-

surements of biological motors such as a bacterial flagella16

which rotates a bead near the surface of a cell, and an RNA

polymerase17 which moves near the surface of a glass slide.

To overcome this problem, we use FT (Eqs. (10) and (11))

that can estimate driving forces without using the value of Γ.

For the continuous rotation of F1 probed by a bead (Fig.

4a, top), P(Δθ) and ln[P(Δθ)/P(−Δθ)] are plotted for the

cases Δt=2.5–10 ms (Fig. 4a, bottom). The slopes of the

graphs in Figure 4a (bottom, right) are almost the same for

all cases Δt=2.5–10 ms, and the value of the slope in the

case Δt=10 ms is 38 pNnm, which corresponds to N ac-

cording to Eq. (11). This value coincides with previous

observations12,13. See Hayashi et al.11 for details about the

application of Eq. (11), e.g., the recording rate dependence,

the bead-size dependence, Δt dependence and the compari-

son between Eqs. (11) and (12).

For the wild-type F1, the rotation became stepwise at

100 nM ATP (Figs. 3c and 4b, top). In this case, Δθ was

calculated using the 120° steps encircled in red (Fig. 4b,

top). In Figure 4b (bottom), P(Δθ) and ln[P(Δθ)/P(−Δθ)] are

plotted for the cases Δt=0.5–2.5 ms. From the slope of the

graph, we obtained 40 pNnm. Note that the values of Δt are

smaller than those used at 1 mM ATP because the P(Δθ) for

Δt larger than 2.5 ms was hard to measure precisely for the

stepping rotations due to a small number of samples. See

Hayashi et al.11 for the stepping rotations of the mutant F1

(βE190D), whose torque was also about 40 pNnm.

Application of (11) to V
1
-ATPase

We applied FT (Eq. (11)) to another rotary motor V1,

which is a part of VoV1-ATPase18 (see also Supplementary

Material of Hayashi et al.11 for the rotation assay of V1). In

V1, the D subunit rotates in the A3B3 ring and 120° steps are

observed at low [ATP] (in our case [ATP] = 10 μM). Using

Eq. (11), we obtained 33±2.2 pNnm as the rotary torque of

V1, which was smaller than the rotary torque of the wild-

type F1 (38±2.7 pNnm)11.

Figure 3 Rotary motor protein, F
1
. (a) Reaction scheme of F

1
. The green circles and the red arrow represent the β subunits and γ ubunit of F

1
,

respectively. F
1
 performs a 120° step rotation upon ATP hydrolysis consisting of 80° and 40° substeps. (b) Schematic diagrams of our experimental

system (not to scale). The rotation of F
1
 is probed by an irregularly shaped magnetic bead (see Methods in Hayashi et al.11 for this irregular shape).

The size of F
1
 is about 10 nm and the size of the bead is about 300–500 nm. (c) ATP-driven rotations of F

1
 probed by the magnetic beads at 1 mM

ATP (red) and 100 nM ATP (blue). The recording rate was 2000 fps. (d) The center of mass of the bead was calculated from the recorded images for
the case of 1 mM ATP (red) and 100 nM ATP (blue).
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Figure 4 FT applied to the wild-type F
1
. (a) (top) ATP-driven rotation of F

1
 at 1 mM ATP. (bottom, left) Probability distribution, P(Δθ), for the

cases Δt=2.5 ms (red), 5.0 ms (yellow), 7.5 ms (green) and 10 ms (blue) for the particular F
1
 probed by the magnetic bead. (bottom, right)

ln[P(Δθ)/P(−Δθ)] as a function of Δθ/k
B
T. The slope was 38 pNnm in the case Δt=10 ms. The recording rate was 2000 fps. (b) (top) ATP-driven

rotation of F
1
 at 100 nM ATP. We analyzed the θ(t) encircled in red (we used about 100–300 steps). The steps were determined by eye. (bottom,

left) Probability distributions, P(Δθ), for the cases Δt=0.5 ms (red), 1.0 ms (yellow), 1.5 ms (green), 2.0 ms (blue), and 2.5 ms (aqua) for the partic-
ular F

1
 probed by the magnetic bead. (bottom, right) ln[P(Δθ)/P(−Δθ)] as a function of Δθ/k

B
T. The slope was 40 pNnm in the case Δt=2.5 ms. The

recording rate was 2000 fps.

Figure 5 FT applied to mutants F
1
 and V

1
. (a) (top) The structures of α, β and γ subunits of the F

1
. Truncated sequences are shown in blue19.

(bottom) P(Δθ) for the wild-type F
1
 (blue) and the mutants (red) probed by 209-nm sized duplex beads in the case Δt=4-ms at [ATP]=2 mM.

Torque was calculated from P(Δθ) using Eq. (11). (b) (top) The structures of β and γ subunits of the F
1
. Residues replaced by glycine (Gly mutant)

and alanine (Ala mutant) are shown in blue and orange, respectively.(bottom) ln[P(Δθ)/P(−Δθ)] as a function of Δθ/k
B
T for the stepping rotations

probed by magnetic beads in the case Δt=5 ms at [ATPγS]=1 mM. The recording rate was 1000 fps. (c) (top) Comparison between V
1
 and a rotor-

modulated mutant of ln[P(Δθ)/P(−Δθ)] as a function of Δθ/k
B
T for the stepping rotations probed by magnetic beads in the cases Δt=3 ms (red),

Δt=4 ms (green), and Δt=5 ms (blue) at [ATP]=10μM. The recording rate was 1000 fps. (bottom) Δt dependence of N measured using Eq. (11) for
V

1
 (black) and the mutant V

1
 (red). Results are the average from 5 molecules (black) and 4 molecules (red), respectively.
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Further Applications to Lower-Torque Mutants

To obtain lower-torque mutants, contact regions in F1

between the catalytic β subunits and the rotor γ subunit were

mutated. The torque generation of these mutants F1 was

investigated (Fig. 5a, top)19. By the analysis of FT (Eq.

(11)), the torque value is directly obtained from the fluctua-

tion of a rotating bead, without needing to know the value of

the friction coefficient, which requires the exact size of the

bead, the rotational radius, and the viscosity of the medium

near the surface of a glass slide19. Taking advantage of Eq.

(11), the torques of the mutants F1 were accurately com-

pared with that of the wild-type F1 (Fig. 5a, bottom). We

also investigated other lower-torque mutants of F1 (Fig. 5b)

and a lower-torque mutant of V1 (Fig. 5c) by using Eq. (11).

Discussion

Besides the rotary motor proteins studied here, FT (Eqs.

(10) and (11)) may be applied to other biological systems,

including bacterial flagella and linear motor proteins such

as kinesins and myosins.We hope that FT, which is a non-

destructive force measurement method using fluctuation, will

be applied to a wide range of biological systems in future.

When we consider applying FT to more complex bio-

logical systems, we need to note the limitations of using

Eqs. (10) and (11). The temperature of the environment, T,

appears in these equations because we assumed that fluctua-

tion in the system were attributed to thermal noise. The

application of FT to cell motion, which is affected by spon-

taneous fluctuation of a cell in addition to thermal noise,

explains how the spontaneous fluctuation causes problems to

use Eqs. (10) and (11). See Hayashi and Takagi20 for details.
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