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Abstract: Most breast cancer patients die due to bone metastasis. Although metastasis accounts
for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before
the detection of a primary tumor, most of the patients have bone and lymph node metastasis.
Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their
bones. Therapy options are available for the treatment of primary tumors, but there are minimal
options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine
receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during
bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8)
aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that
CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study,
we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary
tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66
CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant
decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with
the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with
genomic knockdown of CXCR2 (Cxcr2−/−) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase
(4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2−/−

mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the
bone metastasis of breast cancer cells.
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1. Introduction

Breast cancer is the most frequently diagnosed cancer in women in the United States with an
estimated 266,120 new cases in 2018, which represents more than one-quarter (30%) of the total
estimated new cancer cases [1]. The five-year relative survival for women suffering from localized
breast cancer is 99%, but women diagnosed with metastatic breast cancer disease have a five-year
relative survival of only 27% [2]. Thus, the primary tumor itself is not the leading cause of death,
but rather a metastasis to distant organs and lack of response to conventional chemotherapeutic
treatments. Currently, therapeutic options are available to eradicate the primary tumor, but there are
only a few recognized therapies for distant breast cancer cases.
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Breast cancer is known to metastasize to lymph nodes, lung, liver, and bone. Breast cancer
cells show a strong predilection for metastases to bone. Tumor-induced osteolysis is a predominant
feature in breast cancer bone metastasis [3] and also causes skeletal lesions including pathological
fracture, intractable bone pain, nerve compression and hypercalcemia [3]. These complications not
only decrease the quality of life but also in some cases lead to mortality.

The arrival of tumor cells at the bone microenvironment initiates a vicious cycle of bi-directional
interaction between tumor cells and stromal cells of bone microenvironment. Tumor cells produce
various factors to stimulate bone matrix resorption, which in turn releases factors that favor the
growth of tumor cells. Evidence in the literature suggests that chemokines and receptors influence
various aspects of cancer development [4–7]. Chemokines not only have been shown to support
tumor growth but also have been implicated in their progression and the establishment of tumor cells
at distant organ sites [8]. C-X-C motif chemokine receptor type 2 (CXCR2) is a chemokine receptor
known to regulate inflammatory responses during infections and wound healing. Chemokines,
which bind to CXCR2, are CXC chemokines with the ELR+ motif, namely, CXCL1, 2, 3, 5, 6, 7 and 8.
These chemokines have chemoattractant properties for leukocytes and lymphocytes to mediate their
migration toward inflammatory sites and secondary lymphoid organs. Some of them have also been
shown to promote angiogenesis [8,9], proliferation [10–13] and aids chemotherapy resistance in various
cancer types [8,9,13,14]. CXCL8, a ligand for CXCR2, has been shown to regulate osteoclast activation
both in a RANKL dependent and independent pathway during breast cancer bone metastasis [15,16].
A recent study suggests that during autoantibody-mediated arthritis, CXCR2 has a critical role in
recruiting neutrophils and this helps in the development of the disease [17]. CXCR2 binds to all these
chemokines, which have been shown to promote metastasis in various cancer types, and this appeared
to us as a promising molecule to study to assess bone metastasis in breast cancer.

In this study, we investigated the role of both tumor and host CXCR2 expression in tumor-induced
osteolysis using syngenic mouse models. We observed a significant reduction in tumor-induced
osteolysis and osteoclast homing at the tumor-bone interface in mice injected with Cl66 CXCR2
knockdown (Cl66-shCXCR2) cells in comparison with mice injected with Cl66-Control cells
(Cl66-Control). Also, we observed a similar reduction in tumor growth and osteolysis in CXCR2
knockout mice injected with murine breast cancer cells than in the wild type Control mice. These
results suggest that both tumor-derived CXCR2 and host CXCR2 may play a critical role in
tumor-induced osteolysis.

2. Results

2.1. Tumor Cell CXCR2 Signaling Promotes Tumor Growth in the Bone Microenvironment

To determine the role of CXCR2 signaling in the tumor-bone interface, we utilized an experimental
osteolytic bone metastasis model; implanting the breast cancer cells on the dorsal calvaria of mice and
evaluating the tumor growth, bone destruction index, and osteoclast activation (Figure 1A). With this
aim, we implanted breast cancer Cl66-Control and -CXCR2 knockdown cells on the dorsal calvaria of
mice and first evaluated the tumor growth. We observed a significant decrease in tumor growth in
mice implanted with Cl66-shCXCR2 cells (p = 0.045) in comparison with Cl66-Control cells (Figure 1B).
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Figure 1. Downregulation of CXCR2 in tumor cells reduces calvarial tumor growth. (A) Schematic
representation of the tumor cell injections in Balb/c mice. Injection of Cl66-Control or Cl66-shCXCR2
cells mixed and suspended in 25 µL of Hank’s Balanced Salt solution and 25 µL of growth factor
reduced matrigel on the dorsal side on calvaria of Balb/c mice using a 23 gauge needle is marked as
day 1. Mice were monitored for 21 days for tumor growth and sacrificed. (B) The graph shows the
growth kinetics of tumor formed by Cl66-Control and Cl66-shCXCR2 cells on the calvaria of Balb/c
mice. Statistical analysis was performed using the Mann-Whitney Rank Sum Test with * p = 0.045 and
n = 5 per group.

2.2. Knockdown of CXCR2 in Tumor Cells Diminishes Bone Destruction in Mice

Second, we wanted to evaluate how the tumor CXCR2 affects bone damage during breast cancer
bone metastasis. Towards this aim, we collected tumor bone sections from mice after three weeks
of breast cancer cell implantation. We observed reduced osteolysis at the tumor-bone interface in
a group of mice injected with Cl66-shCXCR2 in comparison with the group of mice injected with
the Cl66-Control cells (Figure 2A). We also determined the severity of these lesions (tumor-induced
osteolysis) by calculating the bone destruction index and observed significant inhibition (p < 0.05) of
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tumor-induced osteolysis in mice implanted with Cl66-shCXCR2 in comparison with mice implanted
with Cl66-Control cells (Figure 2B).
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Figure 2. CXCR2 downregulation in Cl66 cells significantly decreased tumor-induced osteolysis.
(A) Representative images show H&E staining demonstrating intact cranial bone in Cl66-shCXCR2
group in comparison with severe bone destruction in Cl66-Control group. Scale bar represents
10,000 µm. (B) Bone destruction index was used to measure the severity of the lesions. Bar graph
showing significantly lower bone destruction index in Cl66-shCXCR2 group (32 ± 5) in comparison
with Cl66-Control group (54 ± 6) (n = 5, p < 0.05).

2.3. Tumor CXCR2 Signaling Enhances Osteoclast Activation during Bone Metastasis

Lastly, to evaluate tumor CXCR2 signaling, we analyzed osteoclast homing at the tumor-bone
interface in the sections of mice injected with Cl66-Control or Cl66-shCXCR2 cells. We analyzed
osteoclasts at the tumor-bone interface using Tartrate-resistant acid phosphatase (TRAP) staining,
which stains explicitly multinucleated alkaline phosphatase producing activated osteoclasts. Like the
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difference we observed in tumor-induced osteolysis, TRAP-positive multinucleated osteoclasts homing
was lower in Cl66-shCXCR2 implanted mice in comparison with Cl66-Control implanted mice
(Figure 3A). We observed 65 ± 9 osteoclasts homed at the TB interface in the CL66-shCXCR2 tumor
group compared to 157 ± 19 osteoclasts in the Control tumor group (Figure 3B).
Int. J. Mol. Sci. 2019, 19, x 5 of 13 
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Figure 3. CXCR2 downregulation in tumor cells lowers activated osteoclast number at the tumor-bone
interface. (A) Representative images of osteolytic activity as determined by TRAP staining at the
tumor-bone interface from Cl66-Control and Cl66-shCXCR2 tumor-bearing mice. Scale bar represents 10
µm (B) Bar graph showing a significantly lower number of TRAP-positive osteoclasts in Cl66-shCXCR2
(65 ± 9) in comparison with the Cl66-Control tumor group (157 ± 12) (n = 5, p = 0.003) at the
tumor-bone interface.

2.4. Host CXCR2 Mediates Tumor Cell Growth in the Bone Microenvironment

CXCR2 has been shown to be expressed during inflammation of bone-related diseases [17,18]
and is present on the surface of mesenchymal cells [19]. As mesenchymal cells lead to the formation
of various cells of the bone microenvironment, we wanted to evaluate how host CXCR2 affects
mammary tumor cells growth in the bone microenvironment. With this aim, we implanted Cl66-Luc
cells on the dorsal side of calvaria of WT, and Cxcr2−/− mice (Figure 4A) and observed a significant
reduction in the growth kinetics of tumor in Cxcr2−/− mice in comparison with the wild type mice
(Figure 4B). Our result suggests that host CXCR2 positively influences tumor cell growth in the
bone microenvironment.
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Figure 4. Host CXCR2 promotes tumor cell growth in the bone microenvironment. (A) Schematic
diagram of the Cl66-Luc cell injection in calvaria of wild type and Cxcr2−/− mice. (B) The graph shows
the kinetics of tumor volume formed by Cl66-Luc cells in the bone microenvironment of the wild type
and CXCR2 −/− mice. Statistical analysis was done using the Mann-Whitney Rank Sum Test with
* p = 0.036 and n = 5/group.

2.5. Host mCxcr2 Knockdown Decreases Bone Destruction

Recent literature suggests that neutrophils express CXCR2 [20,21] and are the critical mediators
of metastasis present in the bone microenvironment. CXCL8, one of the chemokines that bind to
the CXCR2 receptor has been shown to recruit neutrophils which then leads to the generation of
soluble RANKL and hence osteoclast activation [22]. Sundaram et al. report that CXCL5, another
CXCR2 ligand, can mediate RANKL expression which is known for its role in osteoclast activation
during bone metastasis of breast cancer cells [23]. Based on knowledge accumulated from the above
literature, we wanted to examine the importance of host CXCR2 in accentuating bone destruction
during tumor progression. As described for tumor-derived CXCR2, we determined the severity of
osteolysis by calculating the bone destruction index and observed significant inhibition (p < 0.05)
of osteolysis in Cxcr2−/− mice implanted with Cl66-Luc cells in comparison with the wild type
mice (Figure 5A,B) suggesting that the scarcity of CXCR2 dependent signaling in the host may have
abrogated the activation of osteoclasts.
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the spread of tumor cells in real time (Figure 6A). We observed reduced luciferase expression in hind 
limbs and the forelimbs of Cxcr2−/− mice than those of wild type mice, suggesting that host Cxcr2 plays 
a crucial role in directing tumor cells toward bones (Figure 6B,C). Moreover, to further confirm our 
findings we injected 4T-Luc cells intracardially in the wild type and Cxcr2−/− mice. We observed 
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cells are in the bloodstream, it is the Cxcr2 status of the host which determines their localization in 
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Figure 5. Host Cxcr2 deficiency reduced tumor-induced osteolysis. (A) Representative images show
H&E staining demonstrating the intact cranial bone in Cxcr2−/− mice in comparison with severe
bone destruction in wild type mice. Scale bar represents 100 µm (B) Bar graph shows significantly
lower bone destruction index in Cxcr2−/− mice in comparison with wild type mice (n = 5, p < 0.05).
(C) Representative images show immunohistochemical staining for PCNA cells demonstrating higher
cell proliferating cells in the tumor of the wild type mice in comparison with the Cxcr2−/− mice.
Scale bar represents 10 µm. (D) Bar graph demonstrates a lower number of proliferating cells in
Cxcr2−/− mice in comparison with wild type mice (n = 5, p = 0.0079). (E) Representative images show
immunohistochemical staining for isolectin B4 positive cells demonstrating higher microvessel density
in the tumor of the wild type mice in comparison with the Cxcr2−/− mice. Scale bar represents 10 µm.
(F) Bar graph demonstrates lower microvessel density at the tumor-bone interface in Cxcr2−/− mice in
comparison with wild type mice. (n = 5, p = 0.04).

Next, as CXCR2 is a well-known player in cancer cell survival and tumor angiogenesis, we wanted
to examine how loss of host Cxcr2 influences the in situ cell proliferation and microvessel density
in the tumor-bone interface. Towards this goal, we performed immunohistochemical analysis using
PCNA, a cell proliferation marker, and isolectin B4, marker for microvessel density, in wild type and
Cxcr2−/− mice tumors. We observed a significantly higher frequency of proliferating cells (Figure 5C,D,
p = 0.0079) and microvessel density (Figure 5E,F, p = 0.04) in tumors growing in wild type mice in
comparison with Cxcr2−/− mice.

2.6. Host Cxcr2 Influences Mammary Tumor Cell Bone Metastasis

Lastly, to determine whether host Cxcr2 status can influence the mammary tumor cell bone
metastasis, we injected Cl66-Luc cells intracardially in the wild type and Cxcr2−/− mice and monitored
the spread of tumor cells in real time (Figure 6A). We observed reduced luciferase expression in hind
limbs and the forelimbs of Cxcr2−/− mice than those of wild type mice, suggesting that host Cxcr2
plays a crucial role in directing tumor cells toward bones (Figure 6B,C). Moreover, to further confirm
our findings we injected 4T-Luc cells intracardially in the wild type and Cxcr2−/− mice. We observed
similar findings with the 4T1-Luc as with the Cl66-Luc cells (Figure 6D) suggesting that once tumor
cells are in the bloodstream, it is the Cxcr2 status of the host which determines their localization in the
body. With the 4T1-Luc tumor cell model, in the Cxcr2−/− group, except for one mouse we did not
observe any bone metastasis in the rest of the mice, whereas, in the wild type group, 4 out of 5 mice
developed bone metastasis.
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Figure 6. Host Cxcr2 influences mammary tumor bone metastasis. (A) Diagram depicts the schematic
representation of intracardiac tumor cell injection in wild type and Cxcr2−/− mice. (B) In vivo
luminescent images of the wild type and Cxcr2−/− group showing the higher spread of Cl66-Luc cells
in the whole body of the wild type mice in comparison with the Cxcr2−/− mice. (C) Quantification of
bone metastasis burden from Cl66-Luc cells injected intracardially in wild type and Cxcr2−/− mice
based on whole body BLI imaging. The wild type mice group showed a higher tumor burden than
the Cxcr2−/− mice group. The * sign indicates p value < 0.05. (D) Quantification of bone metastasis
burden from 4T1-Luc cells injected intracardially in wild type and Cxcr2−/− mice based on whole body
BLI imaging in wild type and Cxcr2−/− mice. The wild type mice group showed a higher metastatic
tumor burden than Cxcr2−/− mice group. The * sign indicates p value < 0.05.

3. Discussion

This study evaluates the role of CXCR2 in breast cancer bone metastasis by analyzing both
tumor-derived and host-derived CXCR2 in the bone microenvironment. Recent literature demonstrates
the role of CXCR2 ligands in cancer and metastasis, such as CXCL6, one of the CXCR2 ligands
that contributes to osteoclast differentiation and activation in a RANKL-dependent pathway [24].
Another ligand, CXCL8, which binds to CXCR2 has been shown to influence bone metastasis in a
RANKL-dependent and independent manner in breast cancer [15,16]. A recent study also reports the
contribution of CXCR2 ligands CXCL1 and CXCL2 to osteolysis in metastatic prostate cancer [25].
Although the current literature suggests the importance of CXCR2 ligands in bone metastasis, there is
a gap in our knowledge about the significance of the CXCR2 receptor itself concerning bone metastasis
of breast cancer.

In the present study, we examined the role of both tumor-derived and host-derived CXCR2 in
breast cancer bone metastasis. To evaluate the importance of tumor-derived CXCR2 in tumor-induced
osteolysis, we implanted Cl66-shCXCR2 and Cl66-Control cells on the calvaria of mice. We preferred
the implantation of breast cancer cells on calvaria bone than other available bone metastasis model
because previously our group demonstrated that implantation of breast cancer cell lines on the calvaria
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of syngeneic animals induced osteolytic changes in the bone microenvironment [26,27]. We observed
that knockdown of CXCR2 in Cl66 mammary tumor cells decreased the ability of tumor cell to
grow on calvaria bone and hence resulted in reduced tumor burden. We also observed reduced
tumor-induced osteolysis and osteoclast activation in the presence of CXCR2 knockdown Cl66 tumor
cells in comparison with the Cl66-Control cells. Our previous report demonstrates that implantation
of Cl66-shCXCR2 and Cl66-Contol tumor cells in the mammary fat pad of female BALB/c mice
did not result in any significant difference in the tumor volume between the groups [9]. Thus,
our results suggest that the tumor cells require CXCR2 expression for their ability to survive in the
bone microenvironment and the effect of depletion of CXCR2 on tumor growth is dependent on the
host microenvironment.

To determine the role of host-derived CXCR2, we used mice with a genetically modified CXCR2
background. Similar to our finding in tumor-derived CXCR2, we observed a significant decrease
in tumor growth and osteolysis in tumors formed by Cl66-Luc cells injected in Cxcr2−/− mice in
comparison with Cl66-Luc cells injected in the wild type mice. Earlier we demonstrated that orthotopic
injection of Cl66 and 4T1 cell lines in the mammary fat pad of wild type and Cxcr2−/− mice resulted
in decreased tumor growth in Cxcr2−/− mice in comparison with the Control mice [12]. We observed
an increase in the secretion of CXCR2 ligands in Cxcr2−/− tumor-bearing mice in comparison with the
wild type tumor-bearing mice [12].

The non-functional condition of CXCR2 is known to result in lack of neutrophil recruitment or
activation in inflammatory diseases [28], which can also be a possible explanation of suppressed tumor
growth of Cl66 cells in Cxcr2−/− mice in comparison with the wild type mice. We have reported the
similar observation of decreased tumor-associated granulocytes, tumor-associated macrophages and
myeloid-derived suppressor cells in tumors generated from orthotopic injection of Cl66 cells in the
mammary fat pad Cxcr2−/− mice in comparison with the wild type mice [12]. Also, the immune
component in Cxcr2−/− mice does not display defects in the functionality [29]; therefore, the deficiency
is only in the recruitment of immune cells to the tumor site and not systemic.

Lastly, we injected Cl66-Luc cells intracardially in the wild type and Cxcr2−/− mice and observed
the lower seeding of tumor cells in the bones of Cxcr2−/− in comparison with the wild type, thereby
suggesting that the expression of CXCR2 in the host determines its inhabitation by tumor cells and
establishment of bone metastasis. To determine the reproducibility and rule out cell line-specific
observations with the Cl66 tumor cell model, we used luciferase-expressing 4T1-Luc cells another
syngenic and more aggressive cell lines than Cl66 [30]. We observed significantly lower bone metastasis
in the Cxcr2−/− mice in comparison with the wild type mice. Both the cell types used in the study
express CXCR2 ligands [9].

The bone microenvironment is composed of various types of cells, which include endothelial
cells, fibroblast, and immune cells. The bone marrow mesenchymal stem cells give rise to stromal cells,
which eventually differentiate to form various cell types, namely, fibroblast, adipocytes, osteoblasts.
Several factors influence tumor-stromal interaction during bone metastasis including metalloproteinase,
cathepsins, growth factor, chemokines, and chemokine receptors [31]. These factors not only help the
migration of tumor cells to the bone but also support their growth in the bone microenvironment [32].
All the mesenchymal, stromal and most of the transient cells have also been shown to express CXCR2
receptor both in healthy and diseased conditions [20,33]. Fibroblasts in the stroma of the bone
secrete matrix metallopeptidase-2 (MMP2) in an inactive state and have been shown to promote bone
metastasis in the presence of cancer cells, which activates MMP2 [34]. Cancer cells stimulate osteoclasts
in a RANKL-dependent manner and hence aid in bone resorption [35]. Similarly, endothelial cells help
in providing a niche for the tumor cells in the bone microenvironment [36]. Apart from stromal cells,
transient cells like T-cells also promote bone metastasis [37]. Most of the reports in breast cancer bone
metastasis evaluating chemokines CXCL6 and CXCL8 focus on CXCR1, expressed by osteoclasts [16].
However, there is minimal literature investigating the role of CXCR2 in bone metastasis of breast
cancer. A CXCR2 ligand, CXCL8, has been shown to be an important player in osteoclast activation
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and bone metastasis in breast cancer [15,38]. The present report demonstrates the role of CXCR2 in
the process of breast cancer metastasizing to the bone. However, our current investigation lacks the
mechanistic insight into how host cell types or molecules in the bone interact with CXCR2 during
this process.

Previous reports from our laboratory suggest the role of tumor-derived CXCR2 in mammary
tumor growth and lung metastasis [9,11]. We also reported that targeting CXCR2 makes tumor cells
sensitive towards chemotherapy, again suggesting the importance of CXCR2 signaling in controlling
mammary tumor growth and metastasis. This study is an extension of the previous studies and
implicates that CXCR2 signaling is also crucial for bone metastasis of mammary tumor cells. Taken
together, these studies provide direct evidence of tumor and host-derived CXCR2 in breast cancer
progression and metastasis. Other scientific groups also report that CXCR2 expression by the tumor
cells promotes tumor cell invasion [32] and metastasis formation [39]. Taken together, our studies
implicate targeting CXCR2 as a novel approach for breast cancer treatment. CXCR2 blocking with
small molecular antagonists or receptor antagonists could have therapeutic importance in reducing
the metastatic disease progression in breast cancer. Moreover, a recent clinical trial in patients with
severe asthma and sputum neutrophils has found that the CXCR2 antagonist SCH527123 is safe to use
in clinical settings [40]. However, CXCR2 can affect different signaling pathways [10,41], and more
investigations are needed to define the major signaling pathways affected upon CXCR2 depletion in
mammary tumor-induced bone destruction, growth and metastasis.

4. Materials and Methods

4.1. Cell Culture

We utilized the murine mammary adenocarcinoma cell lines CI66 and 4T1 (kind gift from
Dr. Fred Miller, Karmanos Cancer Institute, Detroit, OH). The details of generation of Cl66-Control and
Cl66-shCXCR2 are described elsewhere [9]. We maintained Cl66-Control, Cl66-shCXCR2, Cl66-Luc,
and 4T1-Luciferase (4T1-Luc) cells in Dulbecco’s Modified Eagle Media (DMEM) (Mediatech, Hendon,
VA, USA) with 5% fetal bovine serum (Sigma, St. Louis, MO, USA), 1% vitamins, 1% L-glutamine
and 0.08% gentamycin (Invitrogen, Carlsbad, CA, USA). We supplemented Cl66-Luc and 4T1-Luc
cells with blasticidin (15 µg/mL) as a selection marker. Cell lines were authenticated and tested for
mycoplasma contamination using a kit, MycoAlert (Cambrex Bio Science Rockland. Inc, Rockland,
ME, USA).

4.2. Tumor Cell Implantation and Bone Metastasis

We purchased female BALB/c mice (6–8 weeks old) from the National Cancer Institute, and
Cxcr2−/− mice from Jackson laboratories. We maintained the mice under specific pathogen-free
conditions. The Institutional Animal Care and Use Committee, in the University of Nebraska Medical
Center, approved all the procedures and we performed the procedures according to the institutional
guidelines. Mice were kept anesthetized during the whole procedure using isoflurane. Cl66-Control
or Cl66-shCXCR2 cells (105 cells mixed with growth factor reduced Matrigel) were implanted on the
dorsal skin flap over the calvaria of 6–8 week old female Balb/c mice to study tumor growth and bone
destruction index concerning tumor-derived CXCR2. We implanted Cl66-Luc cells (105 cells/mice) on
calvaria of the 8-week old female Balb/c mice having either wild type or Cxcr2−/− for the assessment
of host CXCR2 role in promoting bone deterioration. The details of the generation of whole body
Cxcr2−/− mice are described elsewhere [11]. We injected Cl66-Luc in the left cardiac ventricle of wild
type or Cxcr2−/− mice to access the homing of mammary tumor cells toward bones. We measured
tumor growth twice a week for calvaria implantation. Tumor volume was calculated using the
formula π/6 × (smaller diameter)2 × (larger diameter). At the end of the study, tumors resected from
mice were fixed in formalin, embedded in paraffin and processed for histopathological evaluation
and immunohistochemistry.
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Bone metastasis was monitored in mice using an experimental bone metastasis model. 4T1-Luc
cells (5 × 104) or Cl66-Luc (1 × 105) cells constitutively expressing firefly luciferase were suspended
in 50 µL of sterile PBS and injected into the left cardiac ventricle of 6–8 weeks old female Balb/C
mice under isoflurane anesthesia. We evaluated disease progression and dissemination to the bone by
noninvasive bioluminescence imaging (BLI) using the IVIS Imaging System (Xenogen, Los Angeles,
CA, USA) and measured total photon flux (photons/sec) from fixed regions of interest (ROI) over the
entire mouse.

4.3. Bone Destruction Index

Twenty-one days post-implantation mice were sacrificed and examined for osteolytic lesions.
To calculate the bone destruction index, we stained the sections of the tumor-bone region with
hematoxylin and eosin [42]. Briefly, the length of the destroyed bone was calculated and was divided
by the total length of the tumor-bone interface. The obtained ratio was then multiplied by 100 to obtain
the bone destruction index.

4.4. Immunohistochemical Analysis

TRAP staining was performed to detect activated osteoclasts in vivo according to the
manufacturer’s instructions (Sigma Chemicals, St. Louis, MO, USA). We examined the immunostained
sections for quantitative analysis, under a Nikon light microscope, and assessed the number of positive
cells at a magnification of 400× for each lesion.

Immunohistochemical analysis was performed to determine in situ cell proliferation and microvessel
density as previously described [9]. In brief, 6-µm thick tumor sections were deparaffinized by xylenes
and ethanol and blocked for 30 min. Tumor sections were incubated overnight in a humid chamber
with an anti-PCNA antibody or biotinylated mouse anti-GS-IB4 (isolectin from Griffonia simplicifolia;
1:50; Vector Laboratories, Burlingame, CA, USA) antibody. Immunoreactivity was detected using the
ABC Elite kit and DAB substrate (Vector Laboratories, Burlingame, CA, USA) as per the manufacturer’s
instructions. A reddish brown precipitate indicated a positive reaction. Negative controls had all reagents
except antibody. The number of microvessels was quantitated microscopically with a 5 × 5 reticle grid
(Klarmann Rulings, Litchfield, NH, USA) using 400× objective (250 µm total area).

4.5. Statistical Analysis

In vivo analysis was performed using the Mann-Whitney U-test and paired t-test using
Sigma Plot 11. All the values are expressed as mean ± SEM. A p-value ≤ 0.05 was considered
statistically significant.
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