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Abstract
Background and Summary: We review the transcriptional
regulation of ABO expression and discuss variants in the
promoter and erythroid cell-specific regulatory region in
individuals with weak ABO phenotypes such as Bm, Am, B3,
and A3. We also review the molecular mechanisms re-
sponsible for variations in ABO expression in development
and disease including the cell type-specific expression of
ABO during erythroid cell differentiation, and reduction of A-
or B-antigens in cancer cells or on red blood cells in patients
with leukemia. Although the relationship between ABO
blood group antigens and diseases has been characterized,
the physiological significance of the ABO blood group
system remains unclear. Key Messages: This review dis-
cusses accumulated knowledge of the ABO gene regulation
and potential reasons for conservation of ABO during
evolution. © 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

The ABO blood group system, termed system number
001 by the International Society of Blood Transfusion,
was discovered by Karl Landsteiner [1, 2], which is the

most important blood group system in transfusion
medicine and transplantation. Many pioneering studies
have revealed weak ABO subgroup phenotypes such as
A3, Ax, Am, Ael, B3, Bx, Bm, and Bel subgroups [3], which
are predicted to result from extensive polymorphism of
the ABO gene. The system is composed of two carbo-
hydrate antigens, A and B, and their antibodies. Bio-
chemical and molecular genetic studies have clarified the
molecular basis of the ABO blood group system [3].

After delineation of the antigen structures, subsequent
investigations were carried out to identify the gene en-
coding the glycosyltransferases by protein purification and
production of enzyme-specific antibodies. Prof. Sen-ichiro
Hakomori and his colleagues including Dr. Fumi-ichiro
Yamamoto at the Biomembrane Institute, University of
Washington, partially purified A-transferase from human
lung and identified a partial amino acid sequence of the
protein [4], followed by elucidation of the human ABO
gene structure [5–7]. These discoveries resulted from their
pursuit of a molecular basis for loss of ABH-antigens in
cancer cells including those in the urinary tract and lung,
and for biosynthesis of A-antigens in gastric cancer cells of
an individual with type O blood group [8–11].

Following identification of the gene structure, subse-
quent genetic analyses reported multiple nonsynonymous
substitution variants in coding exons and splicing sites of
the ABO gene in individuals with weak ABO phenotypes,
and numerous allelic variants involving synonymous
substitutions in individuals with ordinary ABO phenotypes
[12–22], leading to the classification of over 200ABO alleles
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[23]. However, variants in the coding region and splicing
site of the ABO gene in same samples with A3 and Bm
phenotypes have not been observed [24, 25] whereas two
nonsynonymous substitutions were reported in exon 7 of
individuals with an Am analog to Bm [26, 27]. The Bm
phenotype is characterized by a divergence in the amount
of B-antigen between RBCs and saliva [28]. Compared to
individuals with the ordinary secretory-type B phenotype,
those with the secretory-type Bm phenotype exhibit a trace
amount of B-antigen on RBCs but similar amounts of
B-antigen in saliva [3]. In addition, serum B-transferase
activity in individuals with the Bm phenotype is approxi-
mately half that of individuals of the type B group. As the
Bm andA1Bm types accounted for half of the observed weak
phenotypes in Japanese individuals [29], the molecular
basis for these phenotypes requires further exploration in
Japan.

Many phenomena other than those described above
have been well-characterized because of the long history
of research on ABO blood groups [3]. For example, A-
and B-antigens are known to be expressed in a cell type-
specific manner whereby they are expressed on cells of
erythrocyte and epithelial lineage, but not in fibroblasts
(shown in Fig. 1). Moreover, these antigens are expressed
during cell differentiation. Early in vitro cell differenti-
ation experiments demonstrated that expression of
A-antigens on cells of erythroid lineage increased with
cell differentiation, and A-antigen expression was ob-
served in blast-forming and colony-forming unit-
erythroid cells [30–34]. In addition, weak A-antigen
expression on RBCs of patients with acute myeloid
leukemia is well documented [3]. Bianco et al. [35] re-
ported that loss of ABH-antigens in RBCs of patients with
myeloid malignancies including acute myeloid leukemia
and myelodysplastic syndrome (MDS) and myelopro-
liferative disorders including chronic myeloid leukemia
was a frequent phenomenon. However, the molecular
basis for these phenomena remained elusive since they
could not be delineated based on the nucleotide se-
quences of the ABO coding region. Therefore, it was
necessary to elucidate the transcriptional regulation
of ABO.

Gene expression is the process by which the infor-
mation encoded in a gene leads to a function. The
process by which the information encoded in the ABO
gene results in functional expression of A- and
B-antigens involves many stages, such as access of
transcription machinery to regulatory regions in the
ABO gene, transcription from ABO, RNA splicing,
production of glycosyltransferases and their retention
in the Golgi apparatus, and transfer of GalNAc or Gal
to the H-antigen by A- or B-transferase to produce A-
or B-antigens, respectively (shown in Fig. 1) [3].
Transcription, which is the synthesis of RNA from
template DNA, requires a DNA region called a pro-

moter, which defines the transcription start site and
direction of transcription [3]. There are also DNA
regions that activate or repress transcription, called
enhancer or suppressor regions, respectively. Fur-
thermore, DNA-binding transcription factors that at-
tach or assemble on promoter and enhancer regions,
act as an “on/off switch” to control when and where
RNA molecules and proteins are produced and as a
“volume control” to determine the quantity of these
products. Even when the promoter and enhancer re-
gions are separated by distance in the DNA sequence,
they are spatially close to each other due to the loop
structure of DNA (shown in Fig. 1). This review focuses
on the transcriptional regulation of ABO and discusses
variations in ABO expression.

Structure of ABO

The human ABO gene is located on the long arm of
chromosome 9 at 9q34. Yamamoto et al. [5] demonstrated
that ABO is composed of seven exons spanning approx-
imately 19.5-kb of genomic DNA (shown in Fig. 2a) and
that two critical single-base substitutions in the last coding
exon between A- and B-alleles result in amino acid sub-
stitutions responsible for the different donor substrate
specificity between A- and B-transferases. Furthermore,
they showed that a single-base deletion in exon 6 of the
O-allele causes a frameshift, resulting in failure to produce
a protein with the catalytic activity necessary for pro-
duction of A- or B-antigens [36]. As many variants have
been reported in the coding region of individuals with
ordinary and weak ABO phenotypes, we refer readers to
other literature and databases for a comprehensive un-
derstanding of these variants [3, 23].

Transcriptional Regulatory Regions of the Human
ABO Gene

ABO Promoter
A region of approximately 1.3-kb around exon 1 of

the ABO gene has the characteristics of a CpG island
(shown in Fig. 2a). 5′-RACE demonstrated that
transcription of ABO started immediately upstream of
the translation start site on exon 1 (shown in Fig. 3a)
[7, 39, 40]. Transcription was also observed from exon
1a located on the 5′ edge of the CpG island of the ABO
gene [39], although the transcript level from exon 1a
was much lower than that from exon 1. In addition,
transcription in the opposite direction of the ABO
transcription, termed ABOAS, was initiated from the
3′ edge of the CpG island, although its significance was
unclear [41]. Using in vitro experiments, including
luciferase assays and electrophoretic mobility assays
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(EMSAs), promoter activity was demonstrated in the
region from −150 to −2 relative to the translation start
site in cell type-independent manner. In addition, the
transcription factor Sp1 was shown to bind to the
promoter region functioning as a positive trans-

element (shown in Fig. 3a) [42, 43]. In contrast, ge-
netic analyses of weak ABO phenotypes revealed
variants such as single nucleotide substitutions and
deletions in the promoter region of the ABO gene in
individuals with A3 and B3 phenotypes, suggesting that

1
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the promoter region may be involved in transcrip-
tional regulation of ABO in a cell type-independent
manner (shown in Fig. 3a) [44–49].

Investigations in human cultured cancer cells indicated
that DNA methylation of the ABO promoter may be
associated with repression of transcription. Cells lacking
expression of the A-antigen displayed hypermethylation of
the ABO promoter, while promoter region hypo-
methylation was observed in the cells expressing the A- or
B- antigen [39, 50, 51]. Subsequent investigations using
clinical specimens from cancerous tissues in the bladder
and oral cavities demonstrated that the lack of ABH-
antigen expression in cancer cells could be attributed to
gene deletion, promoter methylation, and unknown causes
[52, 53]. Similarly, Bianco-Miotto et al. [54] reported that
DNA methylation of the ABO promoter underlies the loss
of ABO allelic expression in a significant proportion of
patients with leukemia. Thus, ABO transcription appears
to be regulated through epigenetic mechanisms.

Erythroid Cell-Specific Positive Regulatory Region
Using genome annotation data such as DNase

I-sensitive sites, chromatin modifications, and tran-
scription factors identified by the ENCODE project, as
well as in vitro experiments including luciferase assays,
EMSAs, and ChIP assays, a positive regulatory region,
termed the +5.8-kb site (502 bp), was identified ap-
proximately 5.8-kb downstream of the translation start
site of the ABO gene (shown in Fig. 2a, 4a). This site,
which functions as a positive regulatory region in an
erythroid cell-specific manner, was shown to bind the
transcription factor RUNX1 and erythroid cell-specific
transcription factors GATA-1/2 [37, 55, 56]. In addition,
the site contained two GATA-binding sites, both of which
were required for its transcriptional activity [37].

Genetic analysis revealed a 3.0-kb deletion (Bm3.0) and a
5.8-kb deletion (Bm5.8) including the +5.8-kb site in Japanese
individuals with the Bm phenotype (shown in Fig. 2a) [30,
37]. In contrast, the 5.8-kb deletionwas not observed in 1,005
individuals with the standard ABO blood types [37].
Moreover, a single nucleotide substitution in the down-
stream GATA-binding site within the +5.8-kb site was re-
ported in an individual with the Bm phenotype (shown in
Fig. 3b) [55]. Subsequently, single nucleotide substitutions

were observed in the GATA motif of individuals with weak
ABO phenotypes such as Am [48, 59–61]. Further, a deletion
or single nucleotide substitutions in and around the RUNX1
motif were reported in individuals with weak phenotypes
including Am, A3, and B3 [38, 45, 48, 56, 62–64]. Next-
generation sequencing in individuals with weak ABO phe-
notypes revealed a 5.9-kb deletion encompassing the +5.8-kb
site (Bm5.9), single nucleotide substitutions in the upstream
and downstream GATA-binding sites, and a single nucle-
otide substitution near the putative C/EBP binding site
[65–67]. Collectively, these findings suggest that ABO
transcription may be regulated by the +5.8-kb site in an
erythroid cell-specific manner.

Investigation into the sequence of the +5.8-kb site in
113 Japanese individuals showed a relationship between
specific ABO alleles and six haplotypes of the site, which
were classified on the basis of six polymorphic nucleotides
(shown in Fig. 4a), with the exception of 3.5% of the
alleles where genetic recombination was found between
O- and B-alleles, A- and O-alleles, A- and B-alleles [57].
Similarly, allelic genetic recombination was recently
observed using long-read sequencing [68].

In vitro differentiation of CD34-positive cells obtained
from peripheral blood mononuclear cells to erythroid
cells demonstrated that expression of ABO, GATA-2, and
RUNX1 in undifferentiated hematopoietic cells decreased
with differentiation or maturation (shown in Fig. 5) [69].
Conversely, FUT1 and GATA-1 expression increased
during differentiation. These findings suggest that decline
of ABO expression might be attributed to reduced ex-
pression of the transcription factors GATA-2 and
RUNX1 during erythroid cell differentiation.

Investigations of leukemia-associated genes were
recently carried out for 13 patients with MDS, including
2 patients with mixed field agglutination of RBCs in
response to anti-A antibodies [70, 71]. Compared to
patients who did not demonstrate reduction of the A- or
B-antigen, a single 2-bp deletion in RUNX1 was found in
1 patient with A-antigen reduction while the other
patient exhibited single nonsynonymous substitutions in
RUNX1 and GATA-2. Taking the report by Bianco-
Miotto et al. [54] into consideration, leukemogenesis
is likely accompanied by ABO promoter methylation as
well as somatic mutations in RUNX1 and GATA-2,

Fig. 1. Diagrams of ABO expression. a ABO expression in in-
dividuals with ordinary blood types. ABO is expressed in a cell
type-specific manner: ABO is expressed in cells of erythroid and
epithelial lineage, but not in fibroblasts. ABO is located on the
long arm of chromosome 9, and its transcription is dependent
upon the constitutive promoter and cell type-specific regulatory
regions such as the +5.8-kb site and +22.6-kb site, followed by
production of transferase which synthesizes A- or B-antigens.
The +5.8-kb site binds transcription factors RUNX1 and GATA-
1/2, whereas the +22.6-kb site interacts with transcription factor

Elf5. Those are not expressed in fibroblasts. Hexagon represents
A- or B-antigen; Disk indicates transferase; Ribbon denotes
transcript or mRNA; curved arrow indicates transcription, while
curved arrow with stop represents reduced transcription; Dia-
monds denote variants in the DNA. b ABO expression in in-
dividuals of weak ABO phenotype with variant in ABO promoter.
c ABO expression in individuals of weak phenotype with variant
in the +5.8-kb site. d ABO expression in individuals with MDS
with reduced A-antigen expression on RBCs. RUNX1 or GATA-
2 in gray indicates mutated protein.
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resulting in decreased transcription of the ABO gene and
reduced production of A- or B-antigen (shown in
Fig. 1d). Thus, it is likely that weak A-antigen expression
on RBCs is due to mutations involved in MDS patho-
genesis since recurrent mutations of RUNX1 and GATA-
2 were previously reported in patients with MDS.
Furthermore, when combined with observations from
in vitro experiments, the evidence indicates that it is
plausible that transcriptional regulation of ABO is de-
pendent on GATA-2 and RUNX1 during erythroid cell
differentiation.

Epithelial Cell-Specific Positive Regulatory Region
Using the genome annotation data and the in vitro

experiments described above, a positive regulatory
region, termed the +22.6-kb site, was identified ap-
proximately 2.6-kb downstream of ABO (shown in
Fig. 2a, 4b). The site was shown to bind the epithelial
cell-specific transcription factor Elf5 and functioned as
a positive regulatory region in an epithelial cell-specific
manner [58]. When biallelic deletion of the site was
generated in the gastric cancer cell line KATOIII using
CRISPR/Cas9, ABO expression was reduced to one-
third that of the wild-type control cells. Similarly,
shRNA knockdown of ELF5 led to the loss of one-third
of the ABO transcripts and half of the Elf5 protein levels
in knockdown cells relative to control cells. These
findings suggest that ABO transcription could be reg-
ulated by the downstream +22.6-kb site in an epithelial
cell-specific manner.

Other Transcriptional Regulatory Regions
Initial luciferase reporter assays in KATOIII cells

identified a positive regulatory region 3.8-kb upstream
from the translation start site (shown in Fig. 2a) [42, 72].
The region comprises 4 tandem copies of a 43-bp repeat
unit which was demonstrated to bind the positive
transcription factor, CCAAT-binding factor/NF-Y,

through the CCAAT motif. However, similar regulatory
activity was not observed in the erythroleukemia cell
lines HEL and K562 [37, 43], suggesting that this site is
unlikely to be involved in the transcriptional regulation
of ABO in erythroid cells. Genetic population studies
revealed that both B- and O-alleles were linked to 4
tandem copies of the 43-bp repeat unit and that the A1

allele was not linked to this tandem repetitive element
[73, 74]. Seltsam et al. [75] observed unexpected vari-
ations in the CCAAT-binding factor/NF-Y enhancer
region that includes the repeat units, in four individuals
with weak B phenotypes suggesting that the sequence
variations in the regulatory region might cause weak
blood group B phenotypes. In contrast, Thuresson et al.
[76] reported a hybrid allele between O2 and B that
lacked three repeat units, although the B transcript level
was similar to that in fresh peripheral blood samples
from normal controls. Interestingly, transcripts from A1

and A2 alleles could not be detected in peripheral blood
but detected higher levels than transcripts from B- and
O-alleles in CD34+ cells from healthy marrow donors
[42]. Therefore, whether ABO transcription is influ-
enced by the enhancer region in erythroid cells remains
controversial.

A negative regulatory region from −307 to −151 relative
to the translation start site was identified just upstream of
the proximal ABO promoter by the initial luciferase re-
porter assays in KATOIII cells, suggesting that ABO
transcription might be regulated by this negative element
(shown in Fig. 2a) [77]. Although EMSAs revealed a
nuclear factor fromKATOIII cells bound to the region, the
identity of the factor is unknown. Thus, significance of the
negative regulatory region remains elusive. In addition to
the described regulatory regions, genome annotation data
and in vitro experiments including luciferase assays in-
dicate a positive regulatory region 36-kb downstream from
the translation start site (shown in Fig. 2a) [37, 58], but it
have not yet been characterized.

Fig. 2. Schematics of transcriptional regulation of ABO expres-
sion. a Map of the 50-kb region of genomic DNA surrounding
human ABO including structures of wild-type ABO and variants
with a large deletion in intron 1. Vertical lines and squares in-
dicate exons. In addition, blue squares indicate locations of CpG
islands over the structure of ABO. Below the structure, gray
square indicates the CCAAT-binding factor/NF-Y enhancer
region, yellow square represents the proximal promoter, red
square denotes the +5.8-kb site, green square indicates the +22.6-
kb sites, and purple represents the DNase I hypersensitive site
region +36.0. Pro, promoter: +5.8, the +5.8-kb site: +22.6, the
+22.6-kb site: +36.0, region +36.0. Also shown are transcription
factors binding to transcriptional regulatory regions. Below the
genomic structure of the ordinary ABO, variant alleles with a
large deletion including the +5.8-kb site are shown. V-shaped line
represents deletion of the sequence. According to HGVS no-
menclature using the nucleotide sequences of accession number
NG_006669.1 and NM_020469.1 as a reference, Bm3.0 is

represented as c.28+4077_7107del, Bm5.8 as c.28+5110_10889del,
and Bm5.9 as c.28+5443_11354del, while the variant descriptions
were +4105_+7136del [30], +5137_+10914del [37], c.28+5443_29-
1655del [38], respectively, in the original paper. Five nucleotides
flanking the deletions are shown. b Schematic illustration of the
relationship among ABO and the genes around ABO. The top
diagram represents the genomic regions including OBP2B, ABO,
the +5.8-kb site, and the +22.6-kb site. TheABO exons are indicated
by lines or a solid box, and the OBP2B exons are denoted by boxes.
The middle diagram indicates genes around ABO. The bottom
diagram represents the locations of CTCF-mediated chromatin
interactions determined by chromatin interaction analysis with
paired-end tag sequencing (ChIA-PET) data extracted fromMCF-7
cells which were constructed using publicly available data from
ENCODEChromatin Interactions tracks (http://genome.ucsc.edu).
Vertical lines at the ends of horizontal lines correspond to CTCF
binding sites, so that TADmight be formed in the regions shown by
horizontal lines.
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Epigenetic Regulation of Human ABO

As previously mentioned, DNA methylation of the
ABO promoter may be involved in suppression of ABO
transcription in malignant cells [50, 51]. Histone de-
acetylase inhibitors (HDACIs) such as sodium butyrate,
panobinostat, vorinostat, and sodium valproate were
observed to suppress ABO expression in K562 and
KATOIII cells, leading to decreased expression of
B-antigens on the surface of KATOIII cells [78, 79]. These
findings suggest that ABO transcription might be regu-
lated epigenetically.

ABO suppression by HDACIs might reduce the risk of
acute humoral rejection directed against donor-oriented
A/B-antigens on endothelial cells of liver arteries or bile
ducts in ABO-incompatible (ABOi) liver transplanta-
tion [80]. As the most severe form of rejection can lead
to graft loss, any adverse effects resulting from ABOi
liver transplantation could potentially be ameliorated
through decreased expression of A- or B-antigens on
endothelial cells by use of HDACIs. Similarly, ABO
suppression by HDACIs could potentially reduce the
risk of developing venous thromboembolism and cor-
onary heart disease, as genome-wide association studies
have reported associations with the ABO locus and
diseases such as venous thrombosis, coronary artery
disease, gastric cancer, gastric and duodenal ulcers,
norovirus infection, malaria infection severity, and se-
vere COVID-19 [81–83]. The incidence of venous
thrombosis is known to be lower in individuals with type
O blood group compared to other blood types, whereas
addition of A- or B-antigens to von Willebrand factor
(vWF) has been suggested to increase its blood level.
Therefore, it is possible that the risk of developing ve-
nous thromboembolism and coronary heart disease
might be reduced by decreasing the A- or B-antigens in
vWFs using HDACIs. Further research is needed to
elucidate transcriptional regulation of the ABO gene and
provide potential clinical applications.

Topologically Associating Domain aroundHumanABO

One major type of chromatin organization is a self-
interacting domain termed the topologically associating
domain (TAD) or contact domain [84–86]. In mam-
malian cells, TAD boundaries are usually demarcated by
the chromatin architectural protein CCCTC-binding
factor (CTCF) and cohesin. The TAD boundaries pref-
erentially remain stable across cell types, while a small
subset of boundaries show cell-type specificity. In addi-
tion, the two interacting DNA sites bound by the CTCF
protein and occupied by the cohesin complex form
chromosome loop structures: some TADs involve a single
loop, while others include multiple loops. These loops
frequently contain more than one gene, and a feature
which could facilitate the co-regulation and co-expression
of genes located within the same loop. Furthermore,
enhancer sharing, in which a single enhancer affects the
transcription of multiple genes, has been reported. On the
basis that a topological domain boundary is characterized
by binding of transcription factors CTCF and cohesin, the
boundaries were identified at approximately 38-kb on the
centromere side and 38-kb on the telomere side of exon 1
of ABO from the genome annotation data (shown in
Fig. 2b). This internal 76-kb region was inferred to be a
TAD formed around ABO [87]. The topological domain
included ABO and the gene encoding Odorant Binding
Protein 2B (OBP2B) located 66-kb on the centromere
side of ABO. Consistent with this assumption, the ex-
pression of ABO and OBP2B was downregulated in
KATOIII cells with biallelic deletion of the +22.6-kb site,
suggesting that both genes were transcriptionally regu-
lated by the +22.6-kb site in coordinated manner [87].

Genome annotation data suggested that the +22.6-kb
site interacts with the transcription start site of the gene
encoding ADAMTS-13, which is located 178.5-kb on the
telomere side from the site (shown in Fig. 2b) [87].
ADAMTS-13 cleaves vWF, which is synthesized in the
vascular endothelium and secreted into the bloodstream

Fig. 3. Alignment of variants within the regulatory regions in
weak phenotypes. a Nucleotide sequence of the 5′-flanking
region in ABO. Shown is the sequence from position −150 to
c.+28 relative to the translation start ATG site of ABO. The
upper-case letters denote the coding sequences of exon 1, and the
lower case letters the noncoding genomic sequence. High arrows
above the sequence indicate the transcription initiation sites that
were determined by 5′-RACE using human pancreas cDNA by
Yamamoto et al. [7], and low arrows denote the transcription
initiation sites that were determined by in vitro erythroid culture
of AC133-CD34+ cells [39]. The proximal ABO promoter is
located between −150 and −2 relative to the ATG translation
start site [42, 43]. The recognition motif for transcription factor
Sp1 is indicated by an overbar. Variants in ABO promoter were
found in individuals with A3 and B3: Nucleotide substitutions
at −77, −76, −72, and −68 are indicated in red, and the deletion

between −35 and −18 is denoted by an underbar. b Alignment of
variants within the +5.8-kb site found in weak phenotypes. The
top diagram represents the +5.8-kb site including a variant of the
upstream GATA motif. The bottom diagram indicates the se-
quences between c.28+5829 and c.28+5891 in intron 1 of ABO.
The motifs for transcription factors are indicated by overbars,
whereas the putative C/EBP recognition motif has not been
investigated. The nucleotide substitutions that were found in the
weak phenotypes are shown in red, and the nucleotide deletion
of 23-bp is indicated by horizontal lines in red. Those variants
are described on the left side of the nucleotide sequence ac-
cording to HGVS nomenclature using the nucleotide sequences
of accession numbers NG_006669.1 and NM_020469.1 as a
reference. The variant descriptions in the original reports and
the corresponding references are shown on the right side of the
sequence.
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as a macromolecule. vWF acts as a molecular glue by
adhering and aggregating platelets to damaged sub-
endothelial tissue. ADAMTS-13 cleaves vWF to an ap-
propriate length, preventing its binding to platelets in the
bloodstream. As described above, vWF levels in the
circulation are influenced by the addition of A- or
B-antigens [82]. Since the transcription start sites of ABO
andADAMTS13were reported to interact with the +22.6-
kb site, it is plausible that transcription of both of these
genes that are associated with regulation of vWF are
regulated by the +22.6-kb site.

Relationship between ABO and FUT1 Expression

Results from in vitro differentiation of CD34-positive
cells into erythroid cells indicated that co-expression of
ABO and FUT1 could be crucial for synthesis of A- or
B-antigens (shown in Fig. 5) [69]. Variants have been
reported in the ABO promoter and in the +5.8-kb site in
individuals with A3 or B3 blood types, in whom mixed
field agglutination of RBCs is observed when exposed to

anti-A or -B antibodies [3]. Based on this premise, Ta-
kahashi et al. [45] suggested that variants in those reg-
ulatory regions could result in decreased levels of tran-
script and of glycosyltransferase and could shorten the
duration during which A- or B-transferase, as well as
FUT1 concentrations, are adequate to promote synthesis
of A- or B-antigens in sufficient quantities. Adequate
levels of A- and B-antigens are required for hemagglu-
tination by the corresponding antibodies, such that
variation in RBC antigen expression could lead to mixed
field agglutination of RBCs.

The tail of monkeys and uricase that converts uric acid
to 5-hydroxyisourate are thought to have been abolished
or inactivated during evolution of monkeys such as
prosimians, New World monkeys and Old World
monkeys to apes including chimpanzees, gorillas, and
gibbons. Furthermore, the RBCs of monkeys appear to
lack A- or B-antigens, whereas these antigens are ex-
pressed at lower levels in apes [88–90]. One putative
mechanism leading to increased expression of the
H-antigen on human RBCs is the insertion of a short
interspersed nuclear element (SINE), one of several

Fig. 4. Nucleotide sequences of the +5.8-kb and +22.6-kb sites.
Nucleotide sequences of the +5.8-kb site and the +22.6-kb site are
shown in panels a and b, respectively. The +5.8-kb site is located
between c.28+5624 and c.28+6125, and the +22.6-kb site between
c.*3009 and c.*3227. Positions of these nucleotides are described
according to HGVS nomenclature using the nucleotide sequence
accession numbers NG_006669.1 and NM_020469.1 as a ref-

erence. The sequence was derived from a haplotype ABOInt1*01,
whereas dots over nucleotides indicate those with single nu-
cleotide polymorphisms [57]. The motifs for several relevant
transcription factors and E-box are indicated by overbars. The
nucleotides in red were observed to be involved in binding to
transcription factors such as GATA-1/2, RUNX1, and Elf5
[36–58].
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transposable elements, in the first intron of FUT1 since
the SINE was conserved in Hominoidea including hu-
mans and apes, but was absent from monkeys or non-
primate mammals (shown in Fig. 6a) [91]. Moreover,
comparison of the +5.8-kb site in humans with the
corresponding sites in apes and monkeys indicated that
the sites in Hominoidea contained a long terminal repeat
(LTR), another transposable element, which was replaced
with SINE in monkeys (shown in Fig. 6b) [92]. Thus, the
SINE may have been replaced by LTR during the evo-
lution of monkeys to apes, resulting in formation of the
+5.8-kb site, transcription from ABO in cells of erythroid
lineage, production of the glycotransferases, and emer-
gence of A- or B-antigens on RBCs.

Human FUT1 is located on the long arm of chro-
mosome 19 at 19q13. FUT1 is composed of four exons
spanning 7.4 kb, although transcriptional regulation has
not been delineated. However, ENCODE Candidates Cis-
regulatory Elements and RepeatMasker indicated distal
enhancer-like signatures in the LTRs flanking the SINE of
the first intron in human FUT1 (shown in Fig. 6a) [93].
The presence of many GATA motifs in the LTRs com-
bined with observations from the in vitro experiments of
differentiation of CD34-positive cells into erythroid cells,
indicate that the regulatory potential of the LTRs might

be dependent upon GATA-1. Since the +5.8-kb site in-
cludes the LTRwhich is involved in the regulation ofABO
expression in cells of erythroid lineage, Sano et al. [92]
suggested that LTRs could contribute to the cis-regulatory
network thereby facilitating cooperative expression of the
genes involved in the production of carbohydrate chains
with A- or B-antigens at the non-reducing end. Further
research on the relationship between the LTR at the +5.8-
kb site ofABO and the LTRs flanking the SINE in intron 1
of FUT1 is needed to clarify the mechanism underlying
the expression network of genes involved in ABH-antigen
production on human RBCs.

Molecular Basis Underlying Regulation of ABO
Expression

Molecular Basis for Cell-Specific Expression of ABO
ABO transcription is regulated by a constitutive

proximal promoter and a cell-specific regulatory re-
gion such as the +5.8-kb site or the +22.6-kb site
(shown in Fig. 1a). Luciferase reporter assays and genetic
studies showed that the erythroid cell-specific regulatory
activity of the +5.8-kb site was dependent upon binding of
the erythroid cell-specific transcription factor GATA-1 or

Fig. 5. Schematic illustration of the expression of cell surface
antigens and genes during the course of in vitro erythroid cell
differentiation. The diagrams were constructed using the ex-
pression of genes such as FUT1, ABO, GATA-1, GATA-2, and
RUNX1 as well as the cell surface expression of H-antigen and
B-antigen 7, 11, and 15 days after in vitro erythroid cell dif-
ferentiation from CD34+ cells as previously reported [69]. The
time course of the relative expression of individual genes or

antigens is indicated. The maximum gene expression or cell
population showing antigen expression during erythroid dif-
ferentiation is expressed as 1.0 on the vertical axis, whereas the
relative expression ratios at other time points are calculated for
individual genes and antigens. Although the original report [69]
did not show change in the ratios of cells expressing CD71
antigen and CD235 antigen as control, those are shown in the
diagram.

ABO Regulation Transfus Med Hemother 2024;51:210–224
DOI: 10.1159/000536556

219

https://doi.org/10.1159/000536556


6
(For legend see next page.)

220 Transfus Med Hemother 2024;51:210–224
DOI: 10.1159/000536556

Ogasawara/Sano/Kominato

https://doi.org/10.1159/000536556


2 [37]. Similarly, plasmid-based reporter assays demon-
strated that the epithelial cell-specific regulatory activity of
the +22.6-kb site was dependent upon binding of the
epithelial cell-specific transcription factor Elf5 [58]. In
fibroblasts not expressing GATA-1 or 2, or Elf5, it is
plausible that absence of cell-specific regulatory activity at
these sites leads to contributes to lack of ABO expression
(shown in Fig. 1a). Therefore, it is likely that cell type-
specific expression of ABO is dependent upon expression
of cell-specific transcription factors that bind to the +5.8-
kb or +22.6-kb site.

Molecular Basis for Cell Differentiation-Specific
Expression of ABO
Although the in vitro differentiation of CD34+ cells

into erythroid cells indicated that the downregulation of
ABO expression might be attributed to a decline of
RUNX1 and GATA-2 in the later phase of erythroid
differentiation [56], the mechanism of ABO expression at
an early stage of erythroid differentiation remains to be
explored.

Molecular Basis for Weak Blood Group Phenotypes
That Lack Variants in the Coding Region and Splicing
Site
Many variants found in the regulatory regions for ABO

transcription appeared to be responsible for weak phe-
notypes. However, there are rare individuals with weak
phenotypes in whom no variants have been found in the
coding region, splicing sites, or regulatory regions for
ABO transcription [65]. Therefore, more research is re-
quired to elucidate the complete mechanism of tran-
scriptional regulation of ABO.

The prevalence of weak ABO phenotypes was re-
ported to be 0.048% among transfusion donors in To-
kyo, Japan, while the total occurrence of the Bm and
A1Bm subgroups was 0.024% [29]. Genetic analysis using
serological procedures and sequence-specific PCR tar-
geting Bm5.8 demonstrated Bm5.8 in 1,300 individuals,
c.28+5861T>G in two, and Bm3.0 in one individual
among 1,303 Japanese with Bm and A1Bm [94]. Thus, it is
plausible that Bm5.8 might have been inherited over a
long period of time and spread throughout the Japanese

population. Since Bm5.8 has not been reported in Korea
and China, from where ancient people migrated to Ja-
pan, it is possible that Bm5.8 could be specific to the
Japanese population [95].

Molecular Basis for A- or B-Antigen Reduction in
Malignant Cells
As previously described, absence of A- or B-antigens in

cancer cells was attributed to gene deletion, promoter
methylation, and unknown causes. Additionally, reduc-
tion of A- or B-antigens on RBCs in patients with leu-
kemia may be caused by ABO promoter methylation as
well as mutations in RUNX1 and GATA-2. Further re-
search is needed to delineate the comprehensive mo-
lecular basis for A- or B-antigen reduction in malignant
cells.

Prospects

Although numerous studies have characterized the
relationship between ABO blood group antigens and
diseases, the physiological significance of ABO blood
groups remains vague. In addition, it is unclear why
ABO has been conserved throughout evolution, al-
though the O-allele encodes a protein that lacks
transferase activity. One hypothesis is that the protein
encoded by the O-allele could possess a critical function
within organisms that haves not yet been discovered.
Alternatively, the regions surrounding ABO could be
critical for life or survival of a species. As described
above, the +22.6-kb site might regulate ABO and OBP2B
in a coordinated manner. OBP2B, expressed in the
prostate and mammary gland [96] is part of the lip-
ocalin protein which is known to bind to small mole-
cules such as odorants and fatty acids [97]. Although its
physiological role has not been delineated, it seems
likely that OBP2B plays an important physiological role
in reproduction and lactation. Based on this crucial
proposed biological role of OBP2B in organisms, Sano
et al. [87] suggested that the gene and its regulatory
regions may have been conserved during evolution and
that ABO near the regulatory region may also have been

Fig. 6.Homology of nucleotide sequences from the upstream to
downstream regions of ABO or FUT1 between human and non-
human primates. a Human FUT1. b Human ABO. In the di-
agrams, upper panel shows positions relative to the tran-
scription start site of FUT1 or ABO. The second panel from the
top indicates the acetylation at lysine 27 of histone 3 in FUT1 or
ABO, often found near active regulatory elements, which was
demonstrated by ENCODE Regulation Tracks. The third panel
from the top denotes repeating elements including SINE, LINE,
and LTR, which were revealed by RepeatMasker over the ge-
nomic structure of FUT1 or ABO. The fourth panel shows the

genomic structure from the upstream region through FUT1 or
ABO to the downstream region, including exons, as well as
regulatory regions such as the +5.8- and +22.6-sites for ery-
throid cells and epithelial cells, respectively, on the basis of the
human genome draft GRCh38/hg38. Exons are denoted by filled
boxes, and the regulatory regions are indicated by empty boxes.
The fifth panel shows a comparison of the human genome
sequences with their reference sequences in non-human pri-
mates including chimpanzee, gorilla, gibbon, crab-eating ma-
caque, rhesus macaque, and marmoset using Primate Genomes,
Chain and Net alignments [93].
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conserved. However, elucidating the physiological sig-
nificance of ABO blood groups and the reason that ABO
has been conserved remain challenges for future
research.
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