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Abstract

Background: Population transmission models of antiretroviral therapy (ART) and pre-exposure prophylaxis (PrEP)
use simplistic assumptions – typically constant, homogeneous rates – to represent the short-term risk and
long-term effects of drug resistance. In contrast, within-host models of drug resistance allow for more detailed
dynamics of host immunity, latent reservoirs of virus, and drug PK/PD. Bridging these two levels of modeling detail
requires an understanding of the “levers” – model parameters or combinations thereof – that change only one
independent observable at a time. Using the example of accidental tenofovir-based pre-exposure prophyaxis (PrEP)
use during HIV infection, we will explore methods of implementing host heterogeneities and their long-term effects
on drug resistance.

Results: We combined and extended existing models of virus dynamics by incorporating pharmacokinetics,
pharmacodynamics, and adherence behavior. We identified two “levers” associated with the host immune pressure
against the virus, which can be used to independently modify the setpoint viral load and the shape of the acute
phase viral load peak. We propose parameter relationships that can explain differences in acute and setpoint viral
load among hosts, and demonstrate their influence on the rates of emergence and reversion of drug resistance.
The importance of these dynamics is illustrated by modeling long-lived latent reservoirs of virus, through which
past intervals of drug resistance can lead to failure of suppressive drug regimens. Finally, we analyze assumptions
about temporal patterns of drug adherence and their impact on resistance dynamics, finding that with the same
overall level of adherence, the dwell times in drug-adherent versus not-adherent states can alter the levels of
drug-resistant virus incorporated into latent reservoirs.

Conclusions: We have shown how a diverse range of observable viral load trajectories can be produced from a
basic model of virus dynamics using immunity-related “levers”. Immune pressure, in turn, influences the dynamics
of drug resistance, with increased immune activity delaying drug resistance and driving more rapid return to
dominance of drug-susceptible virus after drug cessation. Both immune pressure and patterns of drug adherence
influence the long-term risk of drug resistance. In the case of accidental PrEP use during infection, rapid transitions
between adherence states and/or weak immunity fortifies the “memory” of previous PrEP exposure, increasing the
risk of future drug resistance. This model framework provides a means for analyzing individual-level risks of drug
resistance and implementing heterogeneities among hosts, thereby achieving a crucial prerequisite for improving
population-level models of drug resistance.
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Epidemiological Modeling Group, Intellectual Ventures Laboratory,
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Background
Quantitative analysis of the risk of HIV drug resistance is
important on both an individual and a population level, es-
pecially when the “real-world” use of drugs may differ signifi-
cantly from the more ideal setting of randomized controlled
trials. Examples of non-ideal “real-world” situations include
poor adherence, late entry into therapy, drug stockouts,
unauthorized re-distribution of antiretrovirals, and interrup-
tion of multi-drug regimens in which one drug has a longer
half-life, which creates an interval of “effective monotherapy”
when only this drug is present at high levels [1].
Interest in models of drug resistance has increased recently

due to the addition of pre-exposure prophylaxis (PrEP) to
the world’s HIV prevention toolkit [2]. Clinical trials have
demonstrated that PrEP with tenofovir disoproxil fumarate
(TDF), combined TDF and emtricitabine (FTC), and tenofo-
vir vaginal gel can reduce the risk of HIV acquisition [3-6].
No PrEP regimen prevented transmission entirely, though
increased adherence correlated with increased protection
against HIV. This creates a risk of accidental PrEP use dur-
ing “breakthough” infections, until the individual is diag-
nosed with HIV and PrEP is discontinued. Additionally,
there is risk of accidental initiation of PrEP by infected indi-
viduals due to faulty testing or early “window period” testing.
In addition to their use in PrEP, TDF and FTC are also found
in two popular single-pill, once-daily fixed-dose combination
therapies (Atripla and Complera) as well as the fixed-dose
“quad” pill recently approved by the FDA. Thus, there is
concern as to whether resistance caused by PrEP could
threaten the ability to use two of the safest available drugs
available in a convenient, single-dose, once-daily regimen.
Mathematical models of ART and PrEP have been

used to assess the risk of drug resistance on the individ-
ual and population level [7]. However, state-of-the-art
population models have failed to capture heterogeneities
in the risk of drug resistance among individuals, due to
the disparity in model detail between population-level
and within-host models.
Population-level models of PrEP and resistance tend to

focus on specific conditions of HIV transmission, with a
majority of recent oral PrEP models focusing on hetero-
sexual generalized epidemics [8-10], and others on con-
centrated epidemics among men who have sex with men
[11]. Of the small number of population PrEP models that
include drug resistance, only one has considered reversion
of resistance by assuming that resistance and reversion
occur at fixed rates for the treated and post-treated subpo-
pulations, respectively [10,11]. Recent models of combin-
ation ART that account for resistance and reversion treat
these similarly [12,13]; though one model used stochastic
numerical methods as a proxy for variability in acquisition
and transmission of resistance, these are still assumed to
occur at a fixed rate [13] with no consideration for hetero-
geneous host biology and behavior.
Within-host models have provided some mechanistic
insights into HIV progression, drug efficacy, and the risk
of resistance. Nowak and Bangham formulated a model of
virus dynamics that includes mutation [14], and has
inspired dozens of variations, such as mechanisms of viral
escape arising from competition among quasispecies-
specific cytotoxic T lymphocyte (CTL) [15] and antibody
[16] responses. A common application of these models is
predicting the relationship between dosage and acquisition
of resistance: a quantity not well-characterized in clinical
studies [17]. Very recently, a detailed within-host model
similar to the one presented here was used to propose a
mechanism for drug resistance during HAART that
includes a protease inhibitor, proposing a relationship be-
tween adherence level and risk of treatment failure [18].
This and other models [19] have assumed that adherence
is primarily characterized by the percentage, not the pat-
tern, of doses taken. Other models have incorporated
time-correlated field data [20] and to explore the impact
of “clustering” dropped doses on the drug resistance out-
come [21]. Measuring the true patterns of drug adherence
can be challenging [22-25], but models can represent a
range of possible behaviors in silico to understand the
effects of different possible patterns.
The host immune response is another source of hetero-

geneity that, as we will show, contributes substantially to
the dynamics of resistance and reversion. Though a wealth
of biological studies have revealed the complex relation-
ship between immunity and virologic control, few models
have explored the effect of viral replication and immunity
on drug efficacy [26,27].
Ultimately, population models must capture the import-

ant outcomes of within-host heterogeneities and react ap-
propriately to a range of assumptions about viral fitness,
host immune response, drug pharmacology, and adher-
ence. Here, we use the example of tenofovir-based PrEP to
explore the insights that can be gained from considering
such heterogeneities in a combined model of within-host
virus dynamics, drug pharmacokinetics/pharmacodynam-
ics (PK/PD), and patterns of drug adherence.

Methods
We constructed a model that combines the pharmacoki-
netic/pharmacodynamic outcome of time-varying drug
adherence with the dynamics of competition between
drug-resistant mutants. Hypotheses or data about drug
adherence patterns are provided as input for the simula-
tion, and the model predicts the time-varying popula-
tions of CD4+ T cells and virus (WT and drug-resistant)
in the form of plasma RNA and integrated DNA. The
model is deterministic, but can be driven stochastically
through the choice of adherence pattern.
Figure 1 illustrates the components of the model and

the way in which they are linked. First, an adherence
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Figure 1 Model schematic. (a) The model first assumes an adherence pattern, which is translated into a series of taken or missed doses over
time. Doses, if taken, are assumed to be taken at a specified interval, e.g., daily for TDF. (b) A pharmacokinetic model of TDF translates the series
of doses into a time-varying concentration of TDF-DP in the active intracellular compartment. By including the longer half-life of intracellular TDF-
DP compared to TFV, this model captures the “pharmacologically forgiving” properties of TDF. (c) The relationship between the TDF-DP
concentration and the replication of WT or mutant virus is assumed to be a Hill function following the median-effect model. WT is better able to
replicate in the absence of drug, whereas the drug-resistant mutants are able to replicate at higher drug concentrations. K65R has higher fitness
than M184V at all drug concentrations, and thus is expected to predominate over M184V in all simulations. (d) The basic virus dynamics model,
governed by Equations 2–5, is depicted graphically. The additional factors of forward- and back-mutation due to error in reverse transcription, not
depicted here, are shown in Equations 6–7. (e) The expanded virus dynamics model, which includes a latently infected cell compartment w, is
depicted here and in Equations 11–12.
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pattern is created based on a hypothesis about the time-
scales of adherent and non-adherent time intervals. For
example, adherence could be assumed to be random in
time, periodic with a given duration of adherence and
non-adherence, or stochastic based on a Markov model
described in detail below.
Next, a detailed pharmacokinetics model is used to cal-

culate the time-varying concentration of the active form of
the drug in the relevant compartment, given the sequence
of doses that were taken over time. For oral TDF, the
model includes bioavailability, partitioning across the cell
membrane, and the two phosphorylation steps required to
create the active diphosphate form of the drug.
A pharmacodynamics model is used to translate the

drug concentration into an effect on the replicative cap-
acity of the WT and mutant viral quasispecies.
Finally, a dynamic model of viral replication responds

to the changes in replicative capacity caused by fluctuat-
ing drug concentrations. Here, uninfected CD4+ target
cells (denoted x) are infected by a given viral quasispe-
cies (vi for quasispecies i, e.g., vWT and vmutant) to form a
productively infected cell (yi). Infected cells can be elimi-
nated by virus-specific CTLs (z). In an alternative
version of this model (Figure 1b), infection can yield
long-lived latently infected cells (wi) with probability g,
or productively infected cells (yi) with probability 1-g.
Latently infected cells produce no virus and are not sus-
ceptible to CTLs until they become activated into pro-
ductively infected cells at a slow rate, h.

Model parameters
All parameter values and associated references are listed
in Table 1. Except for studies of acute infection in the
absence of drug, the model was initialized at presumed
Table 1 Parameter values

Parameter Value Units

vSS 51,000 copies mL-1

λ 105 cells mL-1 day-1

b 0.027 day-1

d 0.1 day-1

u 5 day-1

a 0.5 day-1

c1 1000 cells mL-1 day-1

β 2f × 105 mL count-1 day-1

f Variable (Equation 9) Unitless

h 0.002 day-1

wss/yss(for g) 0.39 Unitless

kWT 100/f day-1

kK65R 61.054/f day-1

H 1800 Unitless
steady-state values of xss, yss, vss, and zss for numerical in-
tegration. Simulations of acute infection dynamics were
initialized at x = 106, vi = 1, and yi =wi = z = 0.

Adherence patterns
A hypothesis or data set related to adherence is con-
verted to a bit string representing whether the dose is
taken or missed at each time in the dosing schedule.
The sequence could potentially be informed by field
data, e.g., if a time-correlated data set such as electronic
monitoring of bottle opening were used [24,25].
We begin with a simple periodic model in which the fre-

quency of switching between adherent and non-adherent
states is altered while maintaining the same total fraction
of missed doses. However, when considering potential
causes of poor adherence, neither periodic nor random/
unstructured missing of doses is fully realistic: there are
various reasons for poor adherence with different intrinsic
time scales, which can introduce temporal correlations in
adherence patterns. As an example of an intermediate be-
tween the fully periodic and fully random models, we also
implemented a Markov model of discrete drug-taking and
drug-missing states, which we call “adherence states.”
Each state has a characteristic dwell time, analogous to
models of packet loss in communication channels [28,29].
The time spent in the ith adherence state before switching
to a different state was calculated using the Gillespie sto-
chastic simulation algorithm [30,31] as

Δt ¼ �1X
j∈Ji

ri→j

In randð Þ ð1Þ

where Ji represents the set of possible states that could be
entered from i, ri→ j is the rate of transitioning from state
Ref Parameter Value Units Ref

[32] mWT 1.139 Unitless [46]

[32] mK65R 1.126 Unitless [46]

[32] IC50,WT 0.050* μg mL-1 [46]

[32] IC50,K65R 2.2* μg mL-1 [46]

[32] Ka 14.64 day-1 [41]

[32] Ke 9.6 day-1 [41]

[32] K1f 9.6 day-1 [41]

[32] K1b 30.3 day-1 [41]

K2f 270.7 day-1 [41]

[41] K2b 95.5 day-1 [41]

[72] Km 24000 day-1 [41]

[32] Kc 1.1 day-1 [41]

[46] fplasma-bound 0.07 Unitless [41]

[42] * Concentration in plasma.
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i to state j, and rand is a random number uniformly dis-
tributed between 0 and 1. After time Δt, the next state
was chosen among possible states Ji proportionally to the
relative magnitude of the transition rates ri→ j. Finally, the
states were discretized into a binary sequence of taken or
missed doses by determining whether the individual was
in an ART-taking or ART-missing state at the time of each
dose.

Virus dynamics and immune response
We used a classic model of virus dynamics [14,32,33]
extended to include immune pressure by CTLs [32-34]
as shown in Figure 1b. For uninfected CD4+ target cells
x, infected cells y, free virus v, and CTLs z, the compet-
ing dynamics of multiple quasispecies, indexed by i, are
governed by:

ẋ ¼ λ� dx�
X
i

βxvi ð2Þ

y
̇
i ¼ βxvi � ayi � pyiz ð3Þ

v̇ i ¼ kiyi � uvi � βxvi ð4Þ

z
̇ ¼ c� bz ð5Þ

We assumed that the population of free viruses and
cell-incorporated viruses interact with a common pool
of uninfected target cells, and that immune pressure
p was exerted equally on all infected cells. (This as-
sumption would break down if the drug resistance
mutation occurred in an epitope targeted by two
CTLs that may be present at significantly different
levels or subject to different levels of immune regula-
tion.) The steady-state frequency of HIV-specific
CTLs zss = c/b was set to 37 cells/uL, consistent with
phenotypic analysis of HIV-infected human peripheral
blood [35,36]. We assumed z grows at rate c inde-
pendently of z, y, or the product zy, the dynamics of
which are described elsewhere [32-34]. We explored
this system under varying p because this is a known
heterogeneity among hosts: viremia is elevated [37] or
suppressed [38] in the presence of certain HLA-
restricted CTL subtypes.
Single-point mutants form during infection of a

target cell x by wild type (WT) drug-susceptible
virus vWT, due to reverse transcription with a per-
position mutation probability q. We assumed that
each mutant could revert to wild-type with the same
probability. The dynamics of the mutant (Equation 6)
and wild-type (Equation 7) infected cell populations
are affected by this assumption as follows:

y
̇
i; i≠WT ¼ 1� qð Þβxvi � ayi � pyiz þ qβxvWT ð6Þ

y
̇
WT ¼ 1�

X
i≠WT

q

 !
βxvWT � ayWT � pyWTz

þ
X
i≠WT

qβxvi

ð7Þ

whereas the growth of target cells, free virions, and
CTLs were still governed by Equations 2, 4, and 5,
respectively.
At steady-state ẋ ¼ y˙i ¼ v˙i ¼ ż ¼ 0

� �
with the ap-

proximation that − βxvi ≈ 0 when calculating ν̇ (negli-
gible depletion of virus due to infection of new target
cells) and the assumption of negligible mutation, Equa-
tions 2–5 can be solved to estimate the steady-state viral
load of the dominant quasispecies [32]:

vss ¼ λk

aþ c
b p

� �� d
β

ð8Þ

Increasing the magnitude of the CTL response p
reduces vss. To modulate p while preserving vss and the
clearance rates of each species, a multiplier f can be ap-
plied to modify the original infection rate β0 into an
adjusted rate β = β0 f, and modify the original virus pro-
duction rate k0 into an adjusted rate k = k0/f. The value
of f is calculated from the original parameter values and
the desired value of vss using the equation

f ¼ 1
vss

λk0
aþ c

b p
� �

u
� d
β0

 !
ð9Þ

Changing f alone preserves the overall dynamics of the
system, including the basic reproductive ratio of the
virus [32]:

R0 ¼ βλk

aþ c
b p

� �
du

ð10Þ

We investigated the effect of changing p with and with-
out a compensating change in f that preserves vss at the
mean value measured in discordant heterosexual couples
in Zambia, 51,000 copies/mL [39].
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To incorporate latency into the model for a subset of
the simulations, we added an optional latent compart-
ment w with latency rate g and reactivation rate h (for
clarity, shown here using the simplified equations with-
out mutation):

y
̇
i ¼ β� gð Þxvi þ hwi � ayi � pyiz ð11Þ

w
̇
i ¼ gxvi � hwi ð12Þ

For the dominant subtype, the steady-state level of la-
tently infected cells is approximately:

wss ¼ g
h
xssvss ¼ g

hβ
λ� adu

kβ

� �
ð13Þ

The total body load of activated CD4+ T cells contain-
ing incorporated HIV DNA has been measured in lymph
nodes and blood and estimated to be approximately 3.1 x
107, compared to approximately 1.2 x 107 resting CD4+ T
cells with incorporated viral DNA [40]. We fixed the ratio
wss/yss, with

yss ¼ λ

aþ c
b p

� �� du
βk

¼ u
k
vss ð14Þ

This relationship allowed us to calculate g for a given
value of h to ensure wss/ys = 0.39 using

g ¼ h
βk
au

wss

yss
ð15Þ

In the latency simulations shown, we set the latently
infected cell reactivation rate h to 0.002 days-1, repre-
senting the long-lived component of the latently infected
cell reservoir [41]. The simplifying assumptions made by
this implementation of latency include (1) a constant
low rate of gradual reactivation, in lieu of the wide range
of re-activation rates possible from different cell sub-
types, and (2) the production of a single activated cell by
each latently infected cell, neglecting proliferation in the
process of re-activation.

Pharmacokinetics
We implemented a previously reported model by Dixit
and Perelson [42] that captures the more “pharmaco-
logically forgiving” nature of intracellular TDF-DP as
compared to shorter-lived TDF in plasma. Tenofovir
partitions across cell membranes and, inside cells, is
phosphorlyated twice into its active antiviral form, TDF-
diphosphate (TDF-DP) [43]. Importantly, the half-life of
intracellular TDF-DP is 10-fold higher than that of TDF
in plasma [44,45]. We used model equations and para-
meters published by Dixit and Perelson [42]. Briefly, we
modeled the drug concentration in the digestive
compartment (Cd), extracellular compartment (Ce),
intracellular compartment (Cc), intracellular singly phos-
phorylated state (Ccp), and the active, intracellular
double phosphorylated state (Ccpp) using the following
equations:

Cd

̇ ¼ �KaCd ð16Þ

Ce

̇
¼ KaCd � KeCe ð17Þ

Cc

̇
¼ Kmmax 0; 1�mð ÞHCe � Ccð Þ � KcCc

� K1f Cc þ K1bCcp

ð18Þ

Ccp

̇
¼ �KcCcp þ K1f Cc � K1bCcp � K2f Ccp

þ K2bCcpp

ð19Þ

Ccpp

̇ ¼ �KcCcpp þ K2f Ccp � K2bCcpp ð20Þ
The rate constants for this model, also taken from

Dixit and Perelson [41], are listed in Table 1.

Pharmacodynamics
The pharmacodynamics component of the model takes
as input the time-varying drug concentration in its active
form (Ccpp) and determines its time-varying effect on
viral replication. We modeled only the single mutants
known to confer drug resistance using recently reported
dose–response data from single-cycle replication studies
[46]. Mutation is assumed to incur a fitness penalty that
reduces the virus production rate k. In the case of the
K65R mutant, this rate is reduced by 39% at zero drug
concentration. Multiple-position mutants were not
modeled.
TDF-DP concentrations D(t) in the intracellular com-

partment are assumed to reduce β through their effect
on reverse transcriptase. Each mutant is affected accord-
ing to the median-effect model [47]

βi ¼ β
1

1þ D tð Þ
IC50;i

� �m ð21Þ

where IC50 is the median-effect dose and m is the Hill
coefficient. We used values recently reported from an
in vitro study [46] and multiplied the IC50 by the parti-
tion coefficient of TDF across the cell membrane in the
pharmacokinetic model [42] to reflect the intracellular
activity of TDF-DP.

Results
Heterogeneities in infection and immunity
The early transient (acute phase) and steady-state (chronic
phase) trajectories of viral load are measurable and vary
among individuals, potentially reflecting heterogeneity in
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underlying viral replication parameter values. To under-
stand the insights that may be gained by including these
heterogeneities in our model of adherence/resistance
(Figure 1a), we began by identifying the “levers” within the
virus dynamics model (Figure 1a and b) that can be used
to reproduce these clinically observable heterogeneities.
We hypothesized that the immune pressure parameter
p, alone and in combination with other parameters, could
be leveraged to effect these heterogeneities.
Observations of viremia during early HIV infection

have revealed an early peak in viral load that is 2 logs
(±1 log) higher than the setpoint viral load [48-52]. The
time of the acute phase peak has been reported in the
range of 12–31 days [53] or 5–19 days [54]. Some mod-
els lacking an immune compartment attribute the peak
[55] and setpoint [56] viremia exclusively to the deple-
tion of uninfected target cells rather than immune pres-
sure. While such models could still achieve a 2-log
reduction in viremia from peak to setpoint, the depletion
of uninfected target cells is extreme when this drop is
driven by target cell depletion alone, with nearly all
CD4+ T cells ending up in the infected state. An immune
response component was required to preserve a substan-
tial fraction of uninfected target cells while producing a
characteristic acute phase, both of which are features of
realistic infection dynamics. Furthermore, correlations be-
tween CTLs and viremia in humans [57-59], as well as dir-
ect studies of CD8+ T cell depletion in primates [60-62],
provide evidence for an important role for CTLs in bring-
ing viral load down to setpoint. Therefore, we chose a
model wherein both target cell depletion and CTL-
mediated killing contribute to setpoint and acute phase
virus dynamics. We then hypothesized that variability in
immune response among hosts could, even in a simple
model, reproduce the range of possible viral load trajector-
ies among individuals.
Increasing the immune pressure parameter p reduced

setpoint viral load with little influence on the acute
phase (Figure 2a), which occurs during the ramp-up in
CTL frequency and therefore is subject to lower levels of
immune pressure compared to steady-state levels. As
predicted by Equation 10 and illustrated in Figure 2b, in-
creasing p reduces the basic reproductive ratio (R0) of
both wild-type and mutant virus. Because mutant virus
incurs a higher fitness cost in the absence of drug, the
level of p required to suppress the mutant virus popula-
tion (R0 < 1) is lower for the mutant than for the wild-
type virus. The steady-state viral load declines with
increasing p, providing a “lever” to modulate setpoint viral
load over the range of physiologically relevant values.
A second, independent “lever” was required to modu-

late the acute phase viral load trajectory. This is because
viral load during the acute phase is not predictive of set-
point viral load [53,63] nor rate of AIDS progression
[50,63], although AIDS progression is correlated with
setpoint viral load [64-66] and symptoms such as
fever, vomiting, diarrhea, and headache during acute
infection [50].
Frequent longitudinal sampling of patients with an

estimated date of infection has revealed three equally
common patterns of viral load trajectories: rapid decline
to setpoint, a slow “shoulder” with gradual decline to
setpoint, and an initial interval of viral suppression fol-
lowed by a rebound of viremia, which takes over 90 days
to return to setpoint [53]. With this range of biological
variability in mind, we searched for a “lever” that can
vary the shape (height, timing, and “shoulder”) of the
acute phase viral load trajectory without changing set-
point viral load.
Sensitivity analysis of the virus dynamics model

(Additional file 1: Table S1) found the acute phase peak
time to be most sensitive to β and k, and the acute phase
peak height to be most sensitive to k (closely followed
by λ and u). Dividing k and multiplying β by a factor f
preserves the number of virions produced with each rep-
lication cycle, but modulates the setpoint viral load. To
keep the setpoint viral load constant, we used
f to offset the change in setpoint viral load caused by
p, changing the two parameters together as per Equa-
tion 9. We found that these counterbalanced parameters
modulate the peak time, magnitude, and settling time of
the peak of acute phase viremia while maintaining a
constant setpoint viral load (Figure 2c-d). A biological
interpretation of f might be ascribed to variability in
non-CTL components of the host immune response,
such as the relative magnitude of the neutralizing anti-
body response, which reduces β, and innate immune
responses such as antiviral factors, which reduce k.
Both “levers” described here rely on the immune pres-

sure parameter p, an expected source of heterogeneity
among hosts. We next asked how p influences the re-
sponse to antiretroviral therapy and the risk of resist-
ance, using the context of misused tenofovir-based PrEP
as a relevant scenario.

Resistance and reversion of mutations: effect of immune
response
Human studies of TDF monotherapy have not agreed on
a characteristic timescale for the emergence of resist-
ance. Two human studies of daily TDF, lasting 21 days
[67] and 28 days [68] respectively, did not find evidence
of resistance. In the rhesus macaque SHIV model, TDF
monotherapy elicited K65R mutations with associated
viral rebound in all animals within 2 to 12 weeks
(median 4 weeks) of therapy initiation [69]. This implies
that the human trials were likely too short to detect the
emergence of resistance. We therefore used our model
to simulate longer timescales of drug exposure.
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Using a pharmacokinetic model by Dixit and Perelson
[42] to translate 300 mg daily dosing of TDF into intra-
cellular diphosphate concentrations, our model con-
firmed that TDF monotherapy transiently suppresses
viremia, but then selects for the K65R mutant. Figure 3a
shows our reproduction of the Dixit and Perelson phar-
macokinetic model, emphasizing the importance of
modeling intracellular drug species, which exhibit a
longer half-life and therefore higher concentrations than
those found in plasma. Figure 3b shows an example of
prolonged adherence to TDF monotherapy initiated dur-
ing HIV infection, with p set to 1.5 × 10-5. Consistent
with experimental data, resistance begins to emerge after
50 days, with the K65R mutant dominating the viral
population at a lower viral load and a higher CD4 count
than WT infection due to the mutant’s reduced replica-
tive capacity. This reduced fitness drives reversion to
a WT-dominated infection after cessation of TDF
monotherapy.
To investigate the effect of immune pressure on resist-

ance and reversion rates, we next analyzed the effect of
varying p, balanced with f (per Equation 9 and similarly
to Figure 2c), on resistance and reversion times for a
fixed interval of TDF monotherapy. We defined resist-
ance as the first time K65R viral load reaches 50 copies/
mL, and reversion as the crossover point between K65R
and WT viremia. We analyzed a range of p that permits
growth of the K65R mutant according to its R0 at peak
and trough TDF-DP concentrations, shown in Figure 3c.
Note that the pharmacokinetic model with intracellular
TDF-DP ensures that the peak-to-trough change in ac-
tive drug concentration only brings R0 of the WT above
1 for a very narrow range of p, illustrating the pharma-
cological “forgiveness” of daily TDF for most levels of
immune pressure.
Increasing p lengthened the delay time until resistance

from 29 days to ever-increasing values as R0 of K65R
declined toward 1, as shown in Figure 3d. The time from
monotherapy cessation until reversion to a WT-
dominated infection declined with increasing p over the
same range. Reversion required a maximum of 37 days
in the absence of CTL activity with p set to zero. As in-
creasing p drove the R0 of K65R toward 1, this duration
dropped toward a minimum of 15 days (Figure 3e).
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Thus, increasing immune pressure led to slower appear-
ance and more rapid reversion of the drug-resistant mu-
tant. Intuitively, this result can be construed as a balance
between immune pressure, which favors the WT due to
the mutant’s fitness cost, and pharmacological pressure,
which favors the mutant. In the drug-free condition
shown in Figure 2b, a sufficiently high value of p drives
the mutant R0 below 1, only allowing the WT to survive
in the absence of drug. With daily TDF dosing, it is the
mutant that can survive for an intermediate range of p,
and this range occurs at overall lower values of p com-
pared to the drug-free state as a result of pharmaco-
logical pressure exerted on both quasispecies.
The dependence of resistance/reversion rates on im-

mune strength may have further implications on the ef-
fect of late entry into therapy, or, in the case of PrEP,
whether the accidental misuse of PrEP occurred dur-
ing initial or early infection (due to breakthrough in-
fection or false negative HIV tests during the
“window period” of early infection) or well into infec-
tion (due to unauthorized drug use or failure of HIV
testing).
Long-term effect of monotherapy: latent reservoirs
The net effect of increasing p in the short term is a
shorter interval of resistance-dominated infection, i.e.,
fewer viral replication cycles involving the drug-resistant
mutant. However, the model as used thus far allows the
system to rapidly return to equilibrium after cessation of
monotherapy, yielding no long-term implications of
transient drug resistance. To investigate these long-term
implications, we included another key feature of HIV in-
fection: the incorporation of virus into long-lived latently
infected cells capable of re-activating after months or
years of suppressed viral replication.
For each mutant, we included a latently infected cell

compartment wi, as shown in Equations 6–7 and illu-
strated in Figure 1c. We hypothesized that slow re-
activation rates would endow this compartment with a
“memory” of the virus subtypes that have undergone
prior replication cycles, such that more intense and pro-
longed infection with drug-resistant virus would increase
the fraction of drug-resistant mutants available for fu-
ture re-activation. During non-suppressed viremia, the
contribution of this compartment would be negligible
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compared to rates of forward- and back-mutation. How-
ever, during fully suppressive therapy, the latent com-
partment would become the sole source of new virions,
and therefore would govern the production rate of drug-
resistant mutant virions.
To test this hypothesis about the dynamics of the

latency-embellished model, we simulated an interval of
monotherapy, followed by one decade of untreated in-
fection and, finally, an interval of prolonged suppressive
therapy. The delay of one decade allows the very long-
term effects of past drug resistance to be evaluated. Sup-
pressive therapy is assumed to be a regimen against
which the single mutations that exist in all infected indi-
viduals do not confer resistance, such as triple-drug
highly active antirectroviral therapy (HAART). (Any
given single-position mutant is almost guaranteed to
exist in an infected individual due to the high error rate
of reverse transcriptase, but the pre-existance of a mu-
tant resistant to all components of HAART is unlikely
[32]). Rather than modeling the pharmacokinetics of all
three drugs in detail, we used a simple caricature for
suppressive therapy in which we reduced the burst size
of the virus by 1000-fold. As shown in Figure 4a, this
rapidly drove the free virus and the activated, product-
ively infected cell populations toward extinction. When
the long-lived latent compartment w was added, as in
Figure 4b-d, the latent reservoir maintained a very low-
level viremia, representing the source of potential re-
activation of virus that is observed after treatment
cessation or failure.
The level of drug-resistant mutants present in this

compartment (wmutant) grows during monotherapy when
replication of the mutant is favored over that of the
wild-type, and declines in the absence of monotherapy
while being gradually replaced with wild-type latently
infected cells (wWT) until it reaches its equilibrium con-
centration. At equilibrium, both the latent and the active
infected cell populations are primarily maintained
through forward mutation of the wild-type virus due to
its error rate q. When only 30 days of monotherapy are
used to initially grow wmutant, this equilibrium level is
reached within a decade, as shown in Figure 4b. When
monotherapy is applied for longer intervals, such as
90 days (Figure 4c) or 1 year (Figure 4d), wmutant

requires over a decade to reach equilibrium. Thus, as
expected and shown in Figure 4e (graphed at the values
achieved after 2 years of suppressive therapy), the frac-
tion of the latent reservoir harboring drug resistance
during the final period of suppressive therapy increases
with increasing duration of initial monotherapy, except
for short monotherapy exposures (<50 days) for which
equilibrium is reached during the intervening decade.
This threshold time would be shorter for shorter inter-
vening spans between monotherapy and suppressive
therapy. The fraction of drug-resistant free virus pro-
duced from the latent reservoir exhibits the same trend
as the fraction contained in the latent reservoir, but is
lower due to the reduced replicative capacity of the mu-
tant, as shown in Figure 4f.
The previously discussed examples were conducted

with immune pressure p, set to 1.5 × 10-5. As a final step
in analyzing the behavior of our extended model with la-
tency, we varied p, which reduced the fraction of drug-
resistant mutant in the latent compartment (Figure 4g)
and in the free virus produced by the latent compart-
ment (Figure 4h). As with the monotherapy duration,
the trends were the same for latently infected cells and
free virus produced, but the fraction of mutant virus was
lower in the free virus pool due to the reduced replica-
tive capacity of the mutant. At a sufficiently large p, no
further reduction in the fraction of mutant was
observed. Similar to the minimum duration of mono-
therapy required for variation in Figure 4e-f, this thresh-
old occurs because back-mutation of the wild-type virus
became the primary source of drug-resistant mutants.
We hypothesize that incorporation of drug-resistant

virus into the long-lived latent reservoir could explain why
past exposure to subclinical drug concentrations (e.g.,
single-dose nevirapine administration for prevention of
mother-to-child-transmission) can lead to increased risk
of treatment failure long after the initial drug exposure
has waned and any rapidly-replicating viral populations
should have returned to equilibrium. Thus, minimizing
the total exposure to drug-resistant viremia would reduce
the incorporation of these mutants into the latent pool.

Patterns of adherence: effect on drug resistance dynamics
We have already learned that increased immune pres-
sure can reduce exposure to resistance by delaying its
onset and hastening its reversion. However, the pattern
of adherence to a drug regimen, including accidental
PrEP during infection, is another important source of
heterogeneities that may influence the total exposure the
drug resistance and thus influence the long-term out-
come. We therefore finish with an exploration of drug
adherence patterns and their effect on total exposure to
drug-resistant viremia.
Unlike suppressive therapy, for which pauses in treat-

ment lead to subclinical drug concentrations that drive re-
sistance, accidental PrEP use during infection can drive
resistance even with perfect adherence. Even so, we found
that the dynamics of adherence determine the proportion
of time spent with drug resistance. For a fixed fraction of
doses taken, this depends on the duration of adherent and
non-adherent spans another variable is the degree of peri-
odicity or stochasticity in these durations. In the examples
shown, we used a simple assumption of 50% adherence
with immune pressure p fixed at 10-5, a value at which
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resistance occurs in 37 days of constant monotherapy, and
reversion after prolonged monotherapy occurs after
24 days. We compared a perfectly periodic schedule to the
opposite extreme of a Markov process. For periodic 10-day
transitions between adherence states, resistance cannot
develop in a single span of monotherapy, but leads to even-
tual and sustained resistance with no opportunity for rever-
sion (Figure 5a, left panel). Longer durations of adherence
states permit reversion of resistance, leading to a smaller
proportion of time spent in the resistant state (Figure 4a).
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In a stochastically driven model, elaborate Markov chains
can be constructed with this model to represent different
causes of adherence that may lead to different durations of
dose-taking and dose-missing, as shown in Figure 5b. A
simple, two-state Markov model with transition rates of
(30 days)-1 allows for wide stochastic variation in the time
spent in adherence states, including occasional longer
intervals spent in states that favor drug resistance
(Figure 5c). These longer dwell times may be the main dri-
vers of resistance in individuals whose time to resistance is
long compared to the average transition rate between
states (e.g., due to a higher immune pressure p).
The patterns of adherence – particularly, whether re-

version can occur within the intervals of non-adherence –
can therefore influence the overall exposure to drug resist-
ance even for the same total fraction of doses missed.
Knowing that immune pressure influences the required
time for development and reversion of resistance, the
critical dwell times in the dose-taking and dose-missing
states would vary among individuals, such that populations
with different immune phenotypes may exhibit different
responses to particular patterns of drug adherence.
Through our latency model, we further hypothesize that
these changes in short-term resistance dynamics may influ-
ence treatment outcomes long after the exposure to
drug resistance.
Discussion
Modern population models of HIV transmission are lim-
ited in their ability to predict the impact of drug resist-
ance on individuals and the epidemic, because their
representation of the development of drug resistance, if
any, is simplistic. This simplification is chosen in part
for lack of a way to model within-host dynamics in a
manner that is consistent with observables such as viral
load, which is heterogeneous across individuals, popula-
tions, and time periods [70]. We have shown how ob-
servable quantities such as setpoint and acute peak viral
load can be independently tuned in such a model over
the range of values observed in patients [53,63]. Modula-
tion of the parameters p and f in our model can recap-
itulate common patterns of early viremia: rapid decline
to setpoint, a slow “shoulder” with gradual decline to
setpoint, or an initial interval of viral suppression fol-
lowed by a rebound of viremia, which approaches set-
point after 90 days or more [53].
The kinetics of tenofovir resistance due to K65R muta-

tion are not fully characterized in humans [67-69]. By
accounting for adherence patterns, pharmacokinetics, and
the competition between quasispecies at time-varying
drug concentrations, we were able to model the depend-
ence of resistance and reversion rates on heterogeneities
in host immunity and patterns of drug adherence. At
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constant overall levels of adherence, we showed the rela-
tionship between the duration of dose-taking and dose-
skipping intervals and the resulting proportion of time
that K65R dominated the infection. We also examined the
extremes of periodic versus exponentially distributed tran-
sitions between drug-taking and drug-missing states. Real-
ity is likely somewhere in-between: for example, lack of a
prescription refill may cause monthly transitions into a
drug-missing state, yet the transition back to a drug-
taking state may be more variable, depending on the
accessibility of the pharmacy, availability of drugs, trans-
portation resources, and other factors.
Without a long-lived latent compartment, our model

predicted rapid reversion of resistance with no longer-
term impact on the host. With fully suppressive therapy,
the populations of both WTand mutant virus drop toward
extinction, as back-mutation of one quasispecies can no
longer contribute to sustaining the others. In this state, re-
activation of long-since-incorporated latent virus becomes
a significant contributor to the viral pool. By including a
latent compartment as has been described [32,33], we
were able to observe increasing proportions of K65R mu-
tant in both the latent reservoir and the free virus popula-
tion as the duration of TDF exposure increased, and as
immune pressure p decreased.
This model feature provides a potential link between

past monotherapy exposure (e.g., misuse of PrEP or
single-dose nevirapine administration for prevention of
mother-to-child-transmission) and future susceptibility
to treatment failure. It explains why past exposure to
monotherapy may increase the risk of treatment failure
many years later. Further, it allows for host heterogene-
ities in immune response to be considered in evaluating
the risk of this outcome.
Our analysis has thus far been limited to single-position

mutations. In part, this is driven by the availability of
detailed in vitro dose–response data for single-position
mutants [46]. Additionally, the mutation rate of HIV is
high enough that any given single-point mutant is likely to
exist within a patient by the end of the acute phase. In
contrast, fewer than one-third of double mutants are
present during a WT-dominated infection, and a given
triple-mutant is unlikely to already exist somewhere in the
body [71]. In such situations, a stochastic simulation with
discrete viral counts would be required to account for
small populations such as rare mutants.
In the present analysis, we deliberately chose scenarios

in which our continuous deterministic model would
agree with the outcome of a stochastic model. We con-
firmed this through stochastic simulation of a subset of
the experiment points. Although we found that simula-
tions of a single milliliter did exhibit species fade-out,
simulations of approximately 1% of the total system vol-
ume fully approached deterministic model results.
Application of stochastic modeling to new areas in
which the results could deviate from deterministic mod-
els, such as multi-position mutants, is an area of on-
going work.

Conclusions
To date, no model has linked the population-level dynam-
ics of HIV transmission with a representation of within-
host interactions of HIV virus dynamics, host immune
response, and drug PK/PD [7]. We have shown that host
immunity and patterns of drug adherence are important
drivers of individual-level risks and dynamics of drug ad-
herence. Understanding how within-host models can cap-
ture among-host heterogeneities is an important step
toward the milestone of bridging within-host and
population-level models of HIV drug resistance.

Additional file

Additional file 1: Table S1. Sensitivity analysis of the virus dynamics
model (without antiviral drugs). Parameters of the model (left column)
are systematically decreased by 10%, then increased by 10%. The percent
change in the steady-state values for WT viral load, WT-infected cell
count, K65R mutant viral load, and K65R mutant-infected cell count are
shown. Additionally, the percent change in the peak viral load value
during the acute phase, and of the time of this peak, are shown. Steady-
state values are the most sensitive to changes in k, λ, and u, while acute
phase dynamics are most sensitive to changes in β , k, and u. Parameter
values are set as in Figure 1/Table 1, with p = 1.5x10-5. Table S2.
Sensitivity of resistance and reversion times to model parameters. The
time of emergence of drug resistance is sensitive to the infection rate,
viral production rate, and viral clearance rate (β , k, and u), as well as f,
which combines changes in β and k such that steady-state viral load
remains constant. In is also sensitive to the production and clearance of
target cells (λ and d), clearance of infected cells (a), and the production,
clearance, and killing power of immune cells (b, c, and p). Parameter
values are set as in Figure 2/Table 1, with p = 1.5x10-5.
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