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Abstract

Classical clustering algorithms typically either lack an underlying probability framework to

make them predictive or focus on parameter estimation rather than defining and minimizing

a notion of error. Recent work addresses these issues by developing a probabilistic frame-

work based on the theory of random labeled point processes and characterizing a Bayes

clusterer that minimizes the number of misclustered points. The Bayes clusterer is analo-

gous to the Bayes classifier. Whereas determining a Bayes classifier requires full knowledge

of the feature-label distribution, deriving a Bayes clusterer requires full knowledge of the

point process. When uncertain of the point process, one would like to find a robust clusterer

that is optimal over the uncertainty, just as one may find optimal robust classifiers with

uncertain feature-label distributions. Herein, we derive an optimal robust clusterer by first

finding an effective random point process that incorporates all randomness within its own

probabilistic structure and from which a Bayes clusterer can be derived that provides an

optimal robust clusterer relative to the uncertainty. This is analogous to the use of effective

class-conditional distributions in robust classification. After evaluating the performance of

robust clusterers in synthetic mixtures of Gaussians models, we apply the framework to

granular imaging, where we make use of the asymptotic granulometric moment theory for

granular images to relate robust clustering theory to the application.

Introduction

The basic optimization paradigm for operator design consists of four parts: (1) define the

underlying random process; (2) define the class of potential operators; (3) characterize opera-

tor performance via a cost function; and (4) find an operator to minimize the cost function.

The classic example is the Wiener filter, where the four parts consist of wide-sense stationary

true and observed signals, linear operators, minimization of the mean-square error, and opti-

mization in terms of power spectra. In practice, we might be uncertain as to the distribution

governing the random process so that we desire a robust operator, one whose performance is

acceptable relative to the uncertainty. Robust design can be posed in the following way: Given

a class of operators and given that the state of nature is uncertain but contained in some
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uncertainty class, which operator should be selected to optimize performance across all possi-

ble states of nature?

Our interest here is in clustering, where the underlying process is a random point set and

the aim is to partition the point set into clusters corresponding to the manner in which the

points have been generated by the underlying process. Having developed the theory of opti-

mal clustering in the context of random labeled point sets where optimality is with respect to

mis-clustered points [1], we now consider optimal clustering when the underlying random

labeled point process belongs to an uncertainty class of random labeled point processes, so

that optimization is relative to both clustering error and model uncertainty. This is analo-

gous to finding an optimal Wiener filter when the signal process is unknown, so that the

power spectra belong to an uncertainty class [2]. We now briefly review classical robust oper-

ator theory, which will serve as the foundation for a new general theory of optimal robust

clustering.

Optimal robust filtering first appeared in signal processing in the 1970s when the problem

was addressed for signals with uncertain power spectra. Early work considered robust filter

design from a minimax perspective: the filter is designed for the state having the best worst-

case performance over all states [3–5]. Whereas the standard optimization problem given cer-

tainty with regard to the random process takes the form

c
�
¼ arg min

c2C
gðcÞ; ð1Þ

where C is the operator class and γ(ψ) is the cost of applying operator ψ on the model, minimax

optimization is defined by

cMM ¼ arg min
c2CY

max
y2Y

gyðcÞ; ð2Þ

where Θ is the uncertainty class of random processes, CY is the class of operators that are opti-

mal for some state in the uncertainty class, and γθ(ψ) is the cost of applying operator ψ for state

θ 2Θ.

Suppose one has prior knowledge with which to construct a prior distribution π(θ) on states

(models) in the uncertainty class. Rather than apply a minimax robust operator, whose average

performance can be poor, a Bayesian approach can be taken whereby optimization is relative

to π(θ). A model-constrained (state-constrained) Bayesian robust (MCBR) operator minimizes

the expected error over the uncertainty class among all operators in CY:

cMCBR ¼ arg min
c2CY

Ey½gyðcÞ�: ð3Þ

MCBR filtering has been considered for morphological [6], binary [7] and linear [8] filtering.

MCBR design has also been applied in classification with uncertain feature-label distributions

[9].

Rather than restrict optimization to operators that are optimal for some state in the uncer-

tainty class, one can optimize over any class of operators, including unconstrained optimiza-

tion over all possible measurable functions. In this case, the optimal operator is called an

intrinsically optimal Bayesian robust (IBR) operator (filter) and Eq (3) becomes

cIBR ¼ arg min
c2C

Ey½gyðcÞ�; ð4Þ

where C is a set of operators under consideration. IBR filtering has been considered for linear

and morphological filtering [2]. The IBR approach was first used to design optimal classifiers

when the unknown true feature-label distribution belongs to an uncertainty class [10, 11]. In
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that setting, optimization is relative to a posterior distribution obtained from the prior utilizing

sample data and an optimal classifier is called an optimal Bayesian classifier (OBC).
Unlike the state of affairs in filtering and classification, classical clustering algorithms typi-

cally lack an underlying probability framework to make them predictive. The exceptions, for

instance, expectation-maximization based on mixture models, typically focus on parameter

estimation rather than defining and minimizing a notion of operator error. Work in [12] and

[1] addresses the solution to Eq (1) in the context of clustering using a probabilistic theory

of clustering for random labeled point sets and a definition of clustering error given by the

expected number of “misclustered” points. This results in a Bayes clusterer, which minimizes

error under the assumed probabilistic framework. An (optimal) Bayes clusterer is analogous to

an (optimal) Bayes classifier, which minimizes classification error under the assumed feature-

label distribution. Here, we characterize robust clustering using the framework and definitions

of error in [12] and [1], and introduce definitions of robust clustering that parallel concepts

from filtering. In particular, we present minimax, MCBR and IBR clusterers, and develop

effective stochastic processes for robust clustering. We also evaluate performance under mix-

tures of Gaussians and demonstrate how the methodology can be implemented in practice

with an example from granular imaging.

Bayes clustering theory

In this section, we review Bayes clustering theory from [12] and [1]. A random labeled point
process (RLPP) is characterized by a pair, (X, Λ), where X is a point process generating a point

set S � Rd and Λ generates random labels on the points in S. In particular, let η(S) denote the

number of points in S. The first component in this pair, X, maps from a probability space to

ðN;N Þ, where N is the family of finite sequences in Rd and N is the smallest σ-algebra on N

such that for any Borel set B inRd the mapping S 7! η(S\ B) is measurable. A probability mea-

sure, ν, of X is determined by the probabilities ν(Y) for Y 2 N , or (via the Choquet-Matheron-

Kendall theorem [13–16]), may be reduced to the system of probabilities P(X \ K 6¼ ;) over

all compact sets K � Rd. Given a point set S 2 N, a label function ϕS: S! L = {1, 2, . . ., l} is a

deterministic mapping that assigns each point x 2 S to label ϕS(x) 2 L. The second component,

Λ, is a random labeling, that is, Λ = {FS: S 2 N}, where FS is a random label function with

probability mass P(FS = ϕS|S) on LS.
For any set S, and pair of label functions ϕS and φS, define the label mismatch error between

ϕS and φS to be the proportion of points where the label functions differ:

εðS; �S;φSÞ ¼
1

ZðSÞ

X

x2S

I�SðxÞ6¼φSðxÞ; ð5Þ

where IA is an indicator function equal to 1 if A is true and 0 otherwise. Clustering involves

identifying partitions of a point set rather than the actual labeling. A partition of S into l clus-

ters has the form PS ¼ fS1; S2; . . . ; Slg such that the Sy are disjoint and S ¼
Sl

y¼1
Sy. Every

partition PS has associated with it a family, GPS
, of label functions that induce the partition

PS. That is, φS 2 GPS
if and only if PS ¼ fS1; S2; . . . ; Slg where Sy = {x 2 S: φS(x) = ℓy} and

(ℓ1, . . ., ℓl) is a permutation of L. For any point set S, label function ϕS, and partition PS, define

the cluster mismatch error to be the minimum label mismatch error between ϕS and all label

functions that induce PS:

εðS; �S;PSÞ ¼ min
φS2GPS

εðS; �S;φSÞ: ð6Þ
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This is a simplified version of the original definition in [12]. Define the partition error of PS to

be the mean cluster mismatch error over the distribution of label functions on S:

εðS;PSÞ ¼ EFS
½εðS;FS;PSÞjS�

¼ EFS
min
φS2GPS

εðS;FS;φSÞjS
� �

:
ð7Þ

In [1], it was shown that Eq (7) can be written in the form

εðS;PSÞ ¼
X

QS2KS

cSðPS;QSÞPSðQSÞ; ð8Þ

where KS is the set of all partitions of S,

PSðQSÞ ¼
X

�S2GQS

PðFS ¼ �SjSÞ ð9Þ

is the probability mass function on partitions QS 2 KS of S, and we define the natural partition
cost function,

cSðPS;QSÞ ¼
1

ZðSÞ
min

φS2GPS ;�S2GQS

X

x2S

I�SðxÞ6¼φSðxÞ: ð10Þ

The partition error under the natural cost function is essentially the average number of mis-

clustered points.

Taking Eq (8) as a generalized definition, other cost functions can be applied [17–20]. The

natural cost function stands out in two respects. First, while these works define loss over label

functions, we define cost directly over partitions, which is mathematically cleaner, and auto-

matically treats the label switching problem in which multiple distinct label functions may pro-

duce the same partitions. Second, these works treat loss abstractly without connecting to a

practical notion of clustering error, like the expected (minimum) number of mislabeled points.

In contrast, we begin with a practical definition of clustering error, and prove that this error is

equivalent to the average cost given in Eq (8) under the natural cost function.

A cluster operator z maps point sets to partitions. Define the clustering error of cluster oper-

ator z to be the mean partition error of z(X) over the random point sets X:

εðzÞ ¼ EX½εðX; zðXÞÞ�:

A Bayes cluster operator z� is a clusterer having minimal clustering error ε(z�), which is called

the Bayes clustering error. Since ε(S, z(S)) depends on the clusterer z only at point set S, ε(z) is

minimized by setting z
�
ðSÞ ¼ P�S for all S 2 N, where P�S is a Bayes partition of S, defined to be

a partition having minimal partition error, εðS;P�SÞ, called the Bayes partition error.
This formulation parallels classification theory, where an RLPP corresponds to a feature-

label distribution, εðS;PSÞ corresponds to the probability that a given label is incorrect for a

fixed point in the feature space, ε(z) corresponds to the overall classification error for an arbi-

trary classifier, z� corresponds to a Bayes classifier, and ε(z�) corresponds to the Bayes classifi-

cation error.

To find the Bayes partition, we must evaluate the partition error for all partitions. We call

partitions with non-zero probability reference partitions, and denote a set of r reference parti-

tions by RS ¼ fQ
1

S; . . . ;Qr
Sg � KS. We call partitions that comprise the search space candidate

partitions, and denote a set of c candidate partitions by CS ¼ fP
1

S; . . . ;Pc
Sg � KS. The set of

candidate partitions is not required to contain all reference partitions, and may even contain

Optimal clustering under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0204627 October 2, 2018 4 / 21

https://doi.org/10.1371/journal.pone.0204627


non-reference partitions. The partition error of all candidate partitions is:

εðS;P1

SÞ

..

.

εðS;Pc
SÞ

2

6
6
4

3

7
7
5 ¼

cSðQ
1

S;P
1

SÞ � � � cSðQ
r
S;P

1

SÞ

..

. . .
. ..

.

cSðQ
1

S;P
c
SÞ � � � cSðQ

r
S;P

c
SÞ

2

6
6
4

3

7
7
5

PSðQ
1

SÞ

..

.

PSðQ
r
SÞ

2

6
6
4

3

7
7
5: ð11Þ

If CS ¼ RS ¼ KS, then we require a cost matrix of size jKSj � jKSj, which can be prohibitively

large for moderate η(S). To alleviate this, [1] provides both exact and approximate techniques

to evaluate Eq (11) under the natural cost function with reduced complexity.

Separable RLPPs

Up to this point, we have characterized RLPPs with a point process X that generates point sets,

S, followed by an S-conditioned labeling process Λ that generates label functions, ϕS. Alterna-

tively, it is often easier to characterize an RLPP as a process that draws a sample size n, a set

of labels for n points, and a set of n points with distributions corresponding to the labels. For

instance, one might think of points being drawn from l Gaussian distributions possessing ran-

dom parameters. We say that an RLPP is separable if a label function ϕ is generated from an

independent label generating process F with probability mass function P(F = ϕ) over the set

of all label functions with domain {1, 2, . . ., n}, a random parameter vector ρ is independently

drawn from a distribution f(ρ), and the ith point xi in S, with corresponding label y = ϕ(i), is

independently drawn from a conditional distribution f(x|y, ρ). From Bayes’ rule, the probabil-

ity of label function ϕS 2 LS given S = {x1, . . ., xn} is

PðFS ¼ �SjSÞ / f ðSj�ÞPðF ¼ �Þ; ð12Þ

where ϕ(i) = ϕS(xi),

f ðSj�Þ ¼
Z Yl

y¼1

Y

x2Sy

f ðxjy; rÞ

0

@

1

Af ðrÞdr; ð13Þ

and Sy = {xi: ϕ(i) = y, i = 1, . . ., n} is the set of points in S assigned label y. A separable RLPP

thus has three components: P(F = ϕ), f(ρ) and f(x|y, ρ), where P(F = ϕ) is a prior on labels,

which is not dependent on S, and P(FS = ϕS|S) is a posterior probability on labels given a spe-

cific point set S, which is found using Eqs (12) and (13).

If ρ = [ρ1, . . ., ρl], where the ρy are mutually independent parameter vectors and the label-y-

conditional distribution depends on only ρy, that is, if f(x|y, ρ) = f(x|y, ρy) for y = 1, . . ., l, then,

f ðSj�Þ ¼
Yl

y¼1

Z Y

x2Sy

f ðxjy; ryÞ

0

@

1

Af ðryÞdry: ð14Þ

Gaussian RLPPs

Expressions for label function probabilities have been solved under several models in [1].

Here, we review an important case in which clusters are Gaussian with random means and

covariances. Specifically, consider a separable RLPP where, for each y 2 {1, . . ., l}, ρy = [μy, Sy]

and f(x|y, ρy) is a Gaussian distribution with mean μy and covariance Sy. Given a label function

ϕS, let y 2 {1, . . ., l} be fixed, and let ny be the number of points in S assigned label y. For ny� 2

Optimal clustering under uncertainty
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it was shown in [1] that

Y

x2Sy

f ðxjy; ryÞ ¼ ð2pÞ
�
dny

2 jSyj
�
ny
2 exp �

1

2
tr F�yS

� 1

y

� �� �

; ð15Þ

where

F�y ¼ ðny � 1ÞbSy þ nyðmy � bmyÞðmy � bmyÞ
T
;

bmy and bSy are the sample mean and covariance of points in Sy, respectively, and where |�|

denotes a determinant, tr(�) a trace and T a transpose. When ny = 1, Eq (15) holds with

F�y ¼ ðmy � bmyÞðmy � bmyÞ
T
, and when ny = 0 the product over an empty set is 1.

Assume f(ρy) = f(Sy)f(μy|Sy), where f(μy|Sy) is a Gaussian distribution with mean my and

covariance 1

ny
Sy with νy> 0, and f(Sy) is an inverse-Wishart distribution with κy> d − 1

degrees of freedom and a positive-definite scale matrix Cy, i.e.,

f ðSyÞ ¼
jCyj

ky
2 jSyj

�
kyþdþ1

2

2
kyd

2 Gd
ky
2

� � exp �
1

2
trðCyS

� 1

y Þ

� �

;

where Γd is the multivariate Gamma function. The expected mean is my, the expected covari-

ance matrix is 1

ky � d� 1
Cy if κy> d + 1, and as νy and κy increase f(ρy) becomes more “informa-

tive.” The probability of label function ϕS under this RLPP is found from Eqs (12) and (14) as

PðFS ¼ �SjSÞ / PðF ¼ �Þ
Yl

y¼1

Gd
kyþny

2

� �

jny þ nyj
d
2jCy þC

�

y j
kyþny

2

; ð16Þ

where

C
�

y ¼ ðny � 1ÞbSy þ
nyny

ny þ ny
ðbmy � myÞðbmy � myÞ

T
ð17Þ

for ny = 2, C
�

y ¼
ny

nyþ1
ðbmy � myÞðbmy � myÞ

T
for ny = 1, and C

�

y ¼ 0 for ny = 0. If ν1 = � � � = νl,

κ1 = � � � = κl and P(F = ϕ) is such that the size of each cluster is fixed and partitions with

clusters of the specified sizes are equally likely, then for any ϕS inducing clusters of the cor-

rect sizes,

PðFS ¼ �SjSÞ /
Yl

y¼1

jCy þC
�

y j
�

kyþny
2 : ð18Þ

Similar derivations for the posterior on parameters under Gaussian mixture models can be

found in [21], and similar derivations for the posterior on label functions under Gaussian

mixture models can be found in [17].

Robust clustering operators

Under a known RLPP (X, Λ), optimization in the Bayes clusterer is over the set �C of all cluster-

ing algorithms with respect to the clustering error,

z
�
¼ arg min

z2�C
εðzÞ; ð19Þ

Optimal clustering under uncertainty
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however, in practice the RLPP is likely to be uncertain. In this section we present definitions

for optimal Bayesian robust clustering and show that IBR clusterers solve an optimization

problem of the same form as in Eq (19) under an effective process.

Definitions of robust clustering

We present three robust clustering operators: minimax robust clustering, model-constrained

Bayesian robust (MCBR) clustering, and intrinsically optimal Bayesian robust (IBR) clustering.

Our main interest is in IBR clustering. The first two methods are provided to emphasize

parallels between the new theory and existing robust operator theory from filtering and

classification.

Consider a parameterized uncertainty class of RLPPs (Xθ, Λθ), θ 2 Θ, where Xθ is a point

process on ðN;N Þ, Λθ = {Fθ, S: S 2N} is a random labeling on N consisting of a random label

function Fθ, S for each S, and εθ(z) is the error of cluster operator z for state θ.

A minimax robust clusterer zMM is defined by Eq (2) with CY being the set of state-specific

Bayes clusterers and εθ(z) in place of γθ(ψ). An MCBR cluster operator zMCBR is defined by Eq

(3) with εθ(z) in place of γθ(ψ).

Our focus is on optimization over the full class �C of cluster operators. This yields an IBR
cluster operator,

zIBR ¼ arg min
z2�C

Ey½εyðzÞ�: ð20Þ

In analogy to [2], where effective characteristics for IBR linear filtering were derived from

effective random signal processes, here we show how IBR cluster operators can be found via

effective random labeled point processes.

Effective random labeled point processes

We begin with two definitions.

Definition 1. An RLPP is solvable under clusterer class C if

z
�
¼ arg min

z2C
εðzÞ

can be solved under this process.
Definition 2. LetΘ be an uncertainty class of RLPPs having prior π(θ). An RLPP (Xeff, Λeff)

is an effective RLPP under clusterer class C if for all z 2 C both the expected clustering error
Eθ[εθ(z)] under the uncertainty class of RLPPs and the clustering error εeff(z) under (Xeff, Λeff)

exist and

Ey½εyðzÞ� ¼ εeffðzÞ: ð21Þ

Theorem 1. LetΘ parameterize an uncertainty class of RLPPs with prior π(θ). If there exists a
solvable effective RLPP (Xeff, Λeff) under clusterer class C with optimal clusterer z

�

eff
, then

z
�

eff
¼ arg minz2CEy½εyðzÞ�. If C ¼ CY, then z

�

MCBR
¼ z

�

eff
, and if C ¼ �C , then z

�

IBR
¼ z

�

eff
.

Proof. The proof is immediate from the definition of an effective RLPP and Eq (19):

arg min
z2C

Ey½εyðzÞ� ¼ arg min
z2C

εeffðzÞ ¼ z
�

eff :

The solutions for MCBR and IBR clustering follow from their definitions.

To find an MCBR or IBR clusterer, we first seek an effective RLPP. This effective RLPP is

not required to be a member of the uncertainty class parameterized by θ, but must be solvable.

If (Xeff, Λeff) is an effective RLPP under clusterer class C, then it is an effective RLPP under any

Optimal clustering under uncertainty
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smaller clusterer class. Hence, an effective RLPP found for IBR clustering is also an effective

RLPP for MCBR clustering. However, not only are IBR clusterers better performing than

MCBR clusterers across the uncertainty class, they are typically much easier to find analyti-

cally. In particular, the IBR clusterer is directly solved by importing methods from Bayes clus-

tering theory, i.e., one may solve Eq (19) by minimizing the partition error over all partitions

of a point set S under the effective RLPP. The MCBR clusterer, on the other hand, is signifi-

cantly hampered by computational overhead in finding CY and actually evaluating the cluster-

ing error for each z 2 CΘ. The next theorem addresses the existence of effective RLPPs.

Theorem 2. LetΘ parameterize an uncertainty class {(Xθ, Λθ)}θ 2 Θ of RLPPs with prior π(θ).

There exists an RLPP, (Xeff, Λeff), such that

Ey½EXy ;Ly
½gðXy;Fy;Xy

Þjy�� ¼ EXeff ;Leff
½gðXeff ;Feff;Xeff

Þ� ð22Þ

for any real-valued measurable function, g.

Proof. Suppose that the parameter θ is a realization of a random vector,

W : ðO;A;PÞ ! ðY;ℬÞ. Then {ϑ−1(θ): θ 2Θ} partitions the sample space, O. The point process

Xθ is thus a mapping

Xy : ðW
� 1
ðyÞ;A \ W

� 1
ðyÞ; PyÞ ! ðN;N Þ;

where Pθ is the conditional probability and we assume nyðYÞ ¼ PyðX
� 1

y
ðYÞÞ for all Y 2 N is

known. Write the random labeling as Λθ = {Fθ, S: S 2 N}, where Fθ,S has a probability mass

function P(Fθ, S = ϕS|θ, S) on LS. Given any real-valued measurable function g mapping from

point set and label function pairs, let X = g(X, FX) be a random variable where (X, FX) is

drawn from {(Xθ, Λθ)}θ2Θ with prior π(θ), and note Eθ[E[X|θ]] = E[X].

Let Xeff : ðO;A;PÞ ! ðN;N Þ be a mapping, where given a fixed ω 2 O we have a corre-

sponding fixed realization θ = ϑ(ω) and we define Xeff(ω) = Xθ(ω). Note that

nðYÞ � PðX� 1

eff ðYÞÞ ¼ Ey½nyðYÞ�

and Xeff is a random point process. Define Λeff = {Feff,S: S 2N}, where Feff,S has a probability

mass function

PðFeff;S ¼ �SjSÞ ¼ Ey½PðFy;S ¼ �Sjy; SÞ�

for all ϕS 2 LS. Thus, Λeff is a random labeling. Let Z ¼ gðXeff;Feff;Xeff
Þ be a random variable

where ðXeff;Feff;Xeff
Þ is drawn from the RLPP we have constructed, (Xeff, Λeff), and note

E[X] = E[Z].

Theorem 2 applies for any function g(S, ϕS), including the cluster mismatch error

g(S, ϕS) = ε(S, ϕS, z(S)), for any clusterer z 2 �C . Thus, Eq (22) implies

Ey½εyðzÞ� ¼ Ey½EXy ;Ly
½εðXy;Fy;Xy

; zðXyÞÞjy��

¼ EXeff ;Leff
½εðXeff ;Feff ;Xeff

; zðXeffÞÞ� ¼ εeffðzÞ:

Hence, (Xeff, Λeff) is an effective RLPP on �C , covering MCBR and IBR clusterers.

The following corollary shows that for separable RLPPs, the effective RLPP is also separable

and aggregates uncertainty within and between models.

Corollary 1. Let each RLPP in the uncertainty class be parameterized by ρ with prior density
f(ρ|θ), let F be an independent labeling process with a probability mass P(F = ϕ) that depends on
neither θ nor ρ, and denote the conditional distribution of points by f(x|y, ρ, θ). Then the effective
RLPP is separable with parameter [θ, ρ], prior f(θ, ρ), an independent labeling process with proba-
bility mass P(F = ϕ), and conditional distributions f(x|y, ρ, θ).
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Proof. Let the number of points, n, and the label function ϕ: {1, . . ., n}!Ln be fixed. For a

fixed θ, the effective random point process Xeff(ω) is set equal to Xθ(ω). Equivalently, a realiza-

tion of S = {x1, . . ., xn} under the effective RLPP is governed by the distribution

f ðSj�Þ ¼
Z Z Yn

i¼1

f ðxij�ðiÞ; r; yÞ

 !

f ðrjyÞdr

 !

pðyÞdy:

This is equivalent to a separable random point process with parameter [θ, ρ], prior f(θ, ρ) =

π(θ)f(ρ|θ) and conditional distributions f(x|y, ρ, θ). Since the labeling process is independent,

the full effective RLPP is the separable RLPP given in the statement of the corollary.

A graphical model of the uncertainty class of RLPPs assumed in Corollary 1 is provided in

Fig 1. A general description of how the IBR clusterer may be found follows.

1. We assume an uncertainty class of RLPPs of the form stated in Corollary 1 and illustrated

in Fig 1. In particular, we require the sample size, n, prior π(θ), label process probability

mass function P(F = ϕ), parameter prior f(ρ|θ) and conditional density f(x|y, ρ, θ). These

components characterize our prior knowledge about the point set generating process, and

ideally are constructed and validated using available scientific knowledge about the problem

at hand.

2. By Corollary 1, the effective RLPP is found by merging uncertainty in the state (across

RLPPs) and parameters (within RLPPs). In particular, the effective RLPP is characterized

by the sample size n, label process probability mass function P(F = ϕ), parameter prior

f(θ, ρ) and density f(x|y, ρ, θ).

3. By Theorem 1, the IBR clusterer is the Bayes (optimal) clusterer under the effective RLPP.

Given point set S, the IBR clusterer outputs the partition PS corresponding to the minimal

error εðS;PSÞ in Eq (11). The natural cost function cS is a constant function given by Eq

(10), the partition probabilities are given by Eq (9), and the label function probabilities

P(FS = ϕS|S) under the effective (separable) RLPP are given by Eq (12) with the likelihood

function in Eq (13) using f(θ, ρ) in place of f(ρ) and f(x|y, ρ, θ) in place of f(x|y, ρ). An algo-

rithmic description of the IBR clusterer under separable RLPPs is provided in Algorithm 1.

Algorithm 1 is equivalent to the Bayes clusterer under the effective RLPP, and several opti-

mal and suboptimal methods to improve upon this Bayes clustering algorithm are provided

in [1].

Fig 1. A graphical model of the uncertainty class of RLPPs assumed in Corollary 1. The parameter θ is governed by

a prior distribution π(θ) and indexes each RLPP in the uncertainty class. The number of points, n, may be generated

from an independent process, or considered fixed. For fixed n, the label function, ϕ, is generated according to the

probability mass function P(F = ϕ). Given θ, ρ is generated from the density f(ρ|θ), and each point in the point set

S = {x1, . . ., xn} is drawn from the density f(x|y, ρ, θ), where the corresponding label for point xi is y = ϕ(i).

https://doi.org/10.1371/journal.pone.0204627.g001
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In practice, the primary issues are: (a) deriving an analytical form for the label function

probability, P(FS = ϕS|S), (b) evaluating the natural cost, cS, for all pairs of partitions, and (c)

evaluating partition errors, εðS;PSÞ, for all partitions. Note that P(FS = ϕS|S) is available for

Gaussian separable RLPPs in Eq (16). Issues (b) and (c) may also be alleviated using optimal

and suboptimal algorithms, as discussed in [1].

Algorithm 1 IBR Clustering for Separable RLPPs
Require: Data set, S
Require: Maximum number of clusters, l
Require: Label generating process, P(Φ = �)
Require: Effective parameter generation process, f(θ, ρ)
Require: Effective data generation process, f(x|y, ρ, θ)
n  number of points in S
KS  set of all possible partitions on n points with up to l clusters
r  number of partitions in KS (number of reference partitions)
c  number of partitions in KS (number of candidate partitions)
normalize  0
for i = 1 to r do

QS  KSðiÞ
for all label vectors � that induce partition QS do
f(S|�)  likelihood from Eq (13) using f(θ, ρ) and f(x|y, ρ, θ)
a(�)  f(S|�)P(Φ = �) (unnormalized label function prob. from Eq
(12))
normalize  normalize + a(�)

end for
end for
for i = 1 to r do

QS  KSðiÞ
sum  0
for all label vectors �S that induce partition QS do
P(ΦS = �S|S)  a(�)/normalize (normalized label function
probability)
sum  sum + P(ΦS = �S|S)

end for
PS(i)  sum (partition probability from Eq (9))

end for
for j = 1 to c do

PS  KSðjÞ
for i = 1 to r do

QS  KSðiÞ
cS(j, i)  natural cost between PS and QS from Eq (10)

end for
εðS; jÞ  

Pr
i¼1

cSðj; iÞPSðiÞ (clustering error from Eq (8))
end for
j�  minj = 1, . . ., c ε(S, j)
P�S  KSðj�Þ (output the IBR partition)

Robust clustering under Gaussian RLPPs

Consider synthetic Gaussian data with l = 2 clusters in d = 1, 2, 10, 100 and 1, 000 dimensions.

The state of nature is composed of the cluster covariances, and for a given state of nature the

point process generates equal sized Gaussian clusters with random means and the correspond-

ing covariances. Formally, we parameterize the uncertainty class of RLPPs with θ = [θ1, θ2],

where θy = Sy, and each Sy is drawn independently from an inverse-Wishart distribution with

κy degrees of freedom and scale matrix Cy. The RLPP in the uncertainty class corresponding

to θ, (Xθ, Λθ), is a separable RLPP with parameter ρy = μy, Gaussian prior f(ρy|θy) with mean
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my and covariance Sy/νy, and Gaussian conditional distributions f(x|y, ρy, θy) with mean μy
and covariance Sy. We set κ1 = κ2 = d + 2, C1 = C2 to be d × d identity matrices, ν1 = ν2 = 1,

and m1 = m2 to be all-zero vectors. The number of points, n = n1+n2, is set to 10 or 100 with

n1 = n2, and the labels are permuted. Thus, the true distribution on label functions, P(F = ϕ),

has a support on the set of label functions that assign the correct number of points to each clus-

ter, and is uniform on its support.

For each combination of d and n, we generate 1, 000 states of nature, θ, and one point set

per state of nature from the corresponding separable RLPP (Xθ, Λθ). For each point set, we run

several classical clustering algorithms: fuzzy c-means (FCM), k-means (KM), hierarchical clus-

tering with single linkage (H-S), hierarchical clustering with average linkage (H-A), hierarchi-

cal clustering with complete linkage (H-C), and a clusterer that produces a random partition

with equal sized clusters for reference (Random). More details about these algorithms may be

found in [22]. In addition, we cluster using expectation maximization for Gaussian mixture

models (EM), and a method that minimizes a lower bound on the posterior expected variation

of information under an estimated posterior similarity matrix generated from samples of a

Gibbs sampler for Gaussian mixture models (MCMC) [23]. EM is run using the mclust pack-

age in R with default settings [24–26]. The Gibbs sampler is implemented using the bayesm

package in R with 18, 000 samples generated after a burn-in period of 2, 000 samples, and oth-

erwise default settings [27]. The posterior similarity matrix is estimated using the mcclust

package in R [28], and minimization with respect to variation of information is implemented

with the mcclust.ext package in R [29]. We also implement EM informed with the “correct”

hyperparameters, κy, Cy, νy and my (EM-I) and MCMC informed with the “correct” hyper-

parameters (MCMC-I).

To find the IBR clusterer, the effective RLPP, (X, Λ), is constructed using Corollary 1,

which states that the effective RLPP merges uncertainty in the state θ with uncertainty in the

parameter ρ. In this case, the effective RLPP is precisely the separable RLPP presented in the

“Gaussian RLPPs” section, which accounts for both random means in ρ and random covari-

ances in θ. The effective RLPP is solvable (at least for small point sets) using the Bayes clusterer

presented in [1]. By Theorem 1, the IBR clusterer is equivalent to the Bayes clusterer under the

effective RLPP. Thus, the IBR clusterer can be found when n = 10 by evaluating Eq (8) for all

partitions using Eqs (9) and (18), and choosing the minimizing partition. When n = 100, we

approximate the IBR clusterer (IBR-A) using a sub-optimal algorithm, Suboptimal Pseed Fast,

presented in [1], which finds the maximum probability partition for a random subset of 10

points, generalizes these clusters to the full point set using a QDA classifier (in this case the

threshold is selected such that n1 = n2), iteratively searches for the highest probability partition

on the full point set by considering all partitions with at most two points clustered differently

from the best partition found so far, and finally chooses the highest probability partition result-

ing from 10 repetitions with different initial subsets of points. MCBR and minimax robust

clusterers are not found, since they are computationally infeasible. Furthermore, having found

an IBR clusterer one would certainly not use an MCBR clusterer and very likely not use a mini-

max robust clusterer.

For each point set and each algorithm, we find the cluster mismatch error between the true

partition and the algorithm output using Eq (6). For each combination of d and n and each

algorithm, we approximate the average clustering error, Eθ[εθ(z)], under the natural cost func-

tion using the average cluster mismatch error across all 1, 000 point sets. Fig 2A presents a

graph of these errors with respect to d for n = 10, and similarly Fig 2B presents performance

for n = 100. In part A the IBR clusterer is optimal. Although the IBR clusterer cannot be found

in part B for n = 100, it is expected that its performance curve here should be slightly lower

than its performance curve in part A for n = 10 [1]. Note the approximate IBR clusterer in part
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B is slightly higher than the IBR clusterer in part A for 1 and 2 dimensions, slightly lower for

10 dimensions, and they both have nearly zero error for 100 and 1, 000 dimensions (in fact,

they are the only algorithms with error rates below 10% in these high-dimension cases). This

suggests that the IBR clusterer is very close to optimal, especially in easy problems where the

error rate is very small.

When the number of points is large (n = 100) and the number of dimensions is smaller

than the number of points, the performances of EM and EM-I are very close to the approxi-

mate IBR clusterer. However, when the number of points is small, or the number of dimen-

sions is larger than the number of points, these algorithms tend to be similar to FCM and KM.

This is most likely because mclust tests several different modeling assumptions regarding the

covariances, and uses the Bayesian information criterion (BIC) to select a final output parti-

tion. When n is small relative to d, the full covariances of the Gaussian mixtures cannot be esti-

mated well, so there is a tendency to select simpler models that assume covariances are equal

and circular, which is essentially the same assumption made by FCM and KM. MCMC by

default uses a particular normal-inverse-Wishart prior with hyperparameters that do not

match the “correct” hyperparameters. The fact that MCMC-I performs much better than

MCMC suggests that this method may be quite sensitive to the priors, especially when the sam-

ple size is small. Finally, note that MCMC and MCMC-I are not shown for d = 100 because

they tend to be unstable in this case. For example, when n = 100 and d = 100 MCMC outputs

all points in the same cluster for 913 out of 1, 000 iterations, MCMC-I outputs a label vector

with the alternating pattern “1, 2, 1, 2, . . .” (i.e., it always assigns odd and even indexed points

to separate clusters) for 849 out of 1, 000 iterations, and MCMC-I outputs this alternating pat-

tern with at most three of the n = 100 points being exceptions for all of the remaining itera-

tions. MCMC and MCMC-I are not shown for d = 1, 000 because the code crashes in this case.

Sample size does not influence the performance of IBR, IBR-A, KM or FCM very much,

nor the performance of EM or EM-I under large dimensions. When dimensionality is small,

EM and EM-I improve as we increase sample size, to the point where they approach the per-

formance of the (nearly optimal) approximate IBR clusterer. In cases where MCMC and

MCMC-I are working, they also improve as sample size increases, though to a lesser extent.

One reason that EM and MCMC based methods may not perform particularly well under

small samples is that they attempt to estimate the underlying Gaussian densities behind the

clusters, and estimating an arbitrary covariance matrix becomes problematic as dimensionality

increases. In contrast, the IBR clusterer does not attempt to estimate the densities, but rather

Fig 2. Average cluster mismatch error for Gaussian RLPPs. (A) n = 10. (B) n = 100.

https://doi.org/10.1371/journal.pone.0204627.g002
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directly focuses on an easier problem: finding the best partition of the points. The performance

of hierarchical methods all degrade as sample size increases, with H-S actually performing

worse than random clustering in some cases. Hierarchical methods are sensitive to outliers

and certain artifacts in the data that may be more likely to occur under large samples.

When the IBR clusterer assumes n1 = n2, there are r = C(n, n1)/2 reference partitions and

c = 2n−1 candidate partitions. For n = 10, r = 126 and c = 512 and the cost matrix in (11) con-

tains 126 × 512 = 64, 512 elements. Although we use methods described in [1] to find the

Bayes clusterer efficiently without computing the whole cost matrix whenever possible (typi-

cally these tricks are most effective when the error rate is low), the size of the cost matrix

increases very rapidly as n increases. The IBR clusterer is currently infeasible to compute for

more than about n = 20, which corresponds to r = 92, 378 reference and c = 524, 288 candidate

partitions. Run times for algorithms run in the n = 100 case are shown in Table 1. Note we ini-

tialize IBR-A using the computationally intensive maximum probability partition for the sub-

set of 10 points to improve error rates; when initializing with FCM run time improves at the

expense of performance. An extensive analysis of the runtime and memory requirements for

IBR and the FCM-based variant of IBR-A are provided in [1].

Robust clustering in granular imaging

While digital photography may now dominate over chemical photography, silver-based imag-

ing remains important and is currently growing in use. Research remains active. Crystal shape

is of particular importance. For many years granulometric analysis has been important in par-

ticle and texture analysis. In particular, morphological granulometries can generate image fea-

tures relating to the size, shape, and concentration of particles. We present an application of

robust clustering for images of silver-halide photographic T-grain crystals with respect to

grain proportions using granulometric features.

Morphological granulometries

A basic model for silver-halide emulsions includes grains that are equilateral triangles, hexa-

gons formed by removing triangle corners, rods (rectangles), and ill-formed blobs. To simplify

calculations, we focus on a binary image model using only triangles and rods. In film grade

emulsions grains overlap, but for laboratory analysis diluted emulsions with negligible overlap-

ping can be produced, thus we also focus on images with non-overlapping grains.

Morphological granulometries are particularly well-suited for modeling and processing

binary images consisting of grains of different sizes and shapes. The most commonly employed

granulometry is a family of parameterized morphological openings: for a convex, compact struc-
turing element (set) B, a granulometry {Ct} is defined by Ct(I) = I � tB for t> 0 and C0(I) = I,
where I � tB = [{tB + x: tB + x� I} is the opening of image (set) I by tB (more general granulo-

metries exist [15]). If OI(t) is the area of Ct(I), then OI(t) is a decreasing function of t, known as

a size distribution. A normalized size distribution is defined by FI(t) = 1 − OI(t)/OI(0). If I is

Table 1. Average run time (in ms) over 1, 000 iterations in the Gaussian example with n = 100.

d IBR-A FCM KM MCMC MCMC-I EM EM-I H-C H-A H-S Random

1 4, 266 1.2 3.4 12, 436 12, 047 5.3 4.6 1.1 1.1 1.3 0.5

2 17, 077 1.2 3.2 11, 461 11, 256 21.7 15.6 1.1 1.1 1.4 0.3

10 15, 992 1.5 3.3 12, 416 11, 965 405.3 18.0 1.1 1.1 1.4 0.3

100 172, 104 5.8 4.0 142, 888 147, 804 18.4 20.2 1.3 1.2 1.6 0.3

1,000 241, 375 26.9 10.3 – – 171.2 191.2 2.9 2.8 3.2 0.4

https://doi.org/10.1371/journal.pone.0204627.t001
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compact and B consists of more than a single point, then FI(t) increases from 0 to 1 and is con-

tinuous from the left. Thus, it defines a probability distribution function called the pattern spec-
trum of I (relative to B). Moments of FI(t) are used for image classification and segmentation

[30]. FI(t) is a random function and its non-central moments (called granulometric moments)
are random variables.

In this work, we use granulometric moments as features for clustering. Given a set I, we

extract as features the first q granulometric moments of I generated by granulometries arising

from p structuring elements B1, B2, . . ., Bp, where we denote the kth granulometric moment

corresponding to Bj by μ(k)(I, Bj) for j = 1, 2, . . ., p and k = 1, 2, . . ., q. Consider a random set I
of the form

I ¼
[m

i¼1

[Ni

j¼1

ðrijAi þ xijÞ; ð23Þ

where A1, A2, . . ., Am are compact sets called primitives, rij and xij specify the radius (grain size)

and center of the jth grain of primitive type i, respectively, and all N = N1 + . . . + Nm grains are

mutually disjoint.

In the silver halide application, we assume preprocessed images are well modeled by Eq

(23), where m = 2, A1 is an equilateral triangle with horizontal base, and A2 is a vertical rod

with height 5 times its base. Without loss of generality, we assume both primitives have unit

area, i.e., ν[A1] = ν[A2] = 1, and we denote the grain proportions by b1 and b2. We further

assume the rij are independent with the ri1; . . . ; riNi
identically distributed, where the grain siz-

ing distribution for primitive i has the property E½rkij� ¼ gikb
k

for all k> 0 and γik and β are posi-

tive constants. If rij* gamma(αi, β), β being the scale parameter for both primitives, then this

property holds with γik = Γ(αi + k)/Γ(αi).
For the morphological opening, we use p = 2 structuring elements, where B1 and B2 are,

respectively, vertical and horizontal linear structuring elements. The first q = 2 granulometric

moments for B1 and B2 are

z ¼ ½ mð1ÞðI;B1Þ mð1ÞðI;B2Þ mð2ÞðI;B1Þ mð2ÞðI;B2Þ �
T
:

Given the constants μ(k)(Ai, Bj) and the radii rij of all grains, the exact moments in z under the

granulometric model may be found analytically (see Theorem 1 in S1 Appendix). In particular,

z = Mx, where

M ¼

mð1ÞðA1;B1Þ mð1ÞðA2;B1Þ 0 0

mð1ÞðA1;B2Þ mð1ÞðA2;B2Þ 0 0

0 0 mð2ÞðA1;B1Þ mð2ÞðA2;B1Þ

0 0 mð2ÞðA1;B2Þ mð2ÞðA2;B2Þ

2

6
6
6
6
4

3

7
7
7
7
5
;

and x = [x11, x21, x12, x22]T, where

xik ¼
PNi

j¼1
rkþ2
ij

PN1

j¼1
r2

1j þ
PN2

j¼1
r2

2j

: ð24Þ

In general, the constants μ(k)(Ai, Bj) under convex grains can be found using theory from [31].

It can be shown that for triangle A1 and vertical structuring element B1 that μ(1)(A1, B1) = 2 �

3−3/4 and μ(2)(A1, B1) = 2−131/2. Similarly, for other combinations of primitives and structuring

elements, μ(1)(A1, B2) = 4 � 3−5/4, μ(2)(A1, B2) = 2 � 3−1/2, μ(1)(A2, B1) = 51/2, μ(2)(A2, B1) = 5,

μ(1)(A2, B2) = 5−1/2 and μ(2)(A2, B2) = 5−1.
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In the current application, we cluster on the features x = M−1z. Theorem 3 in S1 Appendix.

guarantees asymptotic joint normality and provides analytic expressions for the asymptotic

mean and covariance of granulometric moments under multiple primitives and multiple

structuring elements. In particular, given the grain proportions b1 and b2, and the grain sizing

parameters β and γik for i = 1, 2 and k = 2, 3, 4, x has asymptotic mean

1

b1g12 þ b2g22

½ b1g13b b2g23b b1g14b
2 b2g24b

2 �
T

ð25Þ

and covariance matrix

1

Nðb1g12 þ b2g22Þ
4

A11b
2 A12b

3

A21b
3 A22b

4

" #

; ð26Þ

where the Aij are 2 × 2 matrices that depend on only the bi and γik, and are provided in S1

Appendix.

Robust clustering

Suppose we are given a collection of n binary images of mixtures of silver-halide photographic

T-grain crystals, where each image belongs to one of two groups, indexed by y = 1, 2. Images

in class 1 and 2 have different proportions of triangles, b1, and different sizing parameters,

thereby providing different photographic properties. Our objective is to cluster the images into

the two groups (our concern is partitioning, not labeling) based on feature vectors x = M−1z

obtained from moments of morphological openings z.

Given the grain sizing distributions and a prior f(ρ), the asymptotic joint normality

of x motivates a separable RLPP model where, given y and ρ, f(x|y, ρ) is a Gaussian distribu-

tion with mean and covariance given by Eqs (25) and (26), respectively. We substitute ρ
and 1−ρ in place of b1 and b2 under class 1, and vice-versa under class 2. For simplicity, we

assume P(F = ϕ) is uniform with support such that the number of images in each class is

known.

The grain sizing distribution in a binarized image typically depends on the image threshold-

ing method and other factors, and thus is unknown. To account for this, we model an uncer-

tainty class of RLPPs parameterized by θ, where the grain sizes are assumed to be gamma

(αiy, βy) distributed, the αiy parameters are fixed and known, the βy depend deterministically

on θ, and we assume θ and ρ are mutually independent with known prior π(θ). From Eqs (12)

and (13), the IBR clusterer reduces to finding the following label function probabilities under

the effective RLPP:

PðFS ¼ �SjSÞ / PðF ¼ �Þ�
Z 1

0

Z 1

0

f ðS1j1; r; yÞf ðS2j2; r; yÞf ðrÞpðyÞdrdy;
ð27Þ

where

f ðSyjy; r; yÞ ¼
Y

x2Sy

f ðxjy; r; yÞ:

Since we assume a Gaussian model, f(Sy|y, ρ, θ) is precisely the likelihood function in Eq (15).

To make Eq (27) tractable, we assume discrete priors on ρ and θ so that the integrals can be

written as sums.
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Experimental results

The image generation model is based on the parameterized RLPP model described above. For

a given set of images under a given RLPP with parameter θ, which determines the sizing distri-

bution, we generate n = n1 + n2 binary images, where n1 and n2 denote the fixed number of

images from class 1 and class 2, respectively. Each image contains 1, 000 non-overlapping and

vertically aligned grains (triangles and rods), and is 550 × 550 pixels. The prior f(ρ) on the pro-

portion of triangles for class 1 is uniform over 500 values from 0.45 to 0.55, and we assume the

proportion of triangles for class 2 is 1 − ρ. Fig 3 shows three example realizations of images

with gamma(α = 1.95, β = 2) sizing distributions for the triangles and gamma(α = 1.97, β = 2)

for the rods. Parts A, B, and C contain triangle proportions 0.45, 0.5, and 0.55, respectively.

The prior π(θ) is uniform over 10 values from 1.75 to 2. We assume gamma(αiy, βy) sizing

distributions for primitive i under class y, where β1 = θ, β2 = 3.75 − θ. For triangles, α1y = 1.95

and 1.97 for class 1 and class 2, respectively, and for rods, α2y = 1.97 and 1.95 for class 1 and

class 2, respectively. We generate 500 sets of images for each state, for a total of 5, 000 sets of

images. For each image, openings are found, followed by granulometric moments z from

the openings, and finally a feature vector x = M−1z. Fig 4 provides example scatter plots of all

pairs of features extracted from 100 images. These images correspond to θ = 1.75 and the 10

smallest values of ρ (between 0.45 and 0.452), with 5 images selected from each value of ρ and

each group.

For each set of images, we run FCM, KM, H-S, H-A, H-C, EM, MCMC and Random. Note

EM-I and MCMC-I, which use normal-inverse-Wishart priors on the mean and covariance

pairs, are not sensible to run here since the model uncertainty on b1, b2 and β is not very com-

patible with this prior form. We also find the IBR partition using the Bayes partition for the

effective RLPP, which merges uncertainty in θ and ρ. In particular, we compute the partition

error for all partitions of the images from Eq (11), and choose the partition with minimal parti-

tion error. Note that Eq (11) is found using the natural cost function in Eq (10), and the poste-

rior partition probabilities in Eq (9), which is based on posterior label function probabilities

that may be computed exactly using a discretized version of Eq (27). Recall f(x|y, ρ, θ) is

assumed Gaussian with means given by Eq (25), covariances given by Eq (26), and appropriate

values for b1, b2 and β depending on y, ρ and θ. It is possible to list all partitions and compute

the partition errors exactly when n = 10 and l = 2. Again, we did not test MCBR and minimax

robust clusterers owing to their high computational cost.

Fig 5 shows the approximate clustering error for all algorithms with respect to θ, computed

using the average cluster mismatch error over 500 sets of images for each θ. Part A shows

results when n1 = n2 = 5, and part B shows results when n1 = 6 and n2 = 4. In both parts A and

Fig 3. Examples of image realizations generated by the T-grain crystal model. Each image contains 1, 000 grains.

The sizing distribution of the grains are gamma(α = 1.95, β = 2) for the triangles and gamma(α = 1.97, β = 2) for the

rods. The size of each image is 550 × 550 pixels. (A) Proportions of 0.45 triangles and 0.55 rods. (B) 0.5 triangles and

0.5 rods. (C) 0.55 triangles and 0.45 rods.

https://doi.org/10.1371/journal.pone.0204627.g003
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B, the IBR clusterer performs much better than all classical algorithms across all states. Note

that the IBR clusterer makes “incorrect” Gaussian modeling assumptions, but that the Gaus-

sianity assumption and the analytically computed mean and covariance for each cluster

become more accurate as the number of grains increases. Under all algorithms there is a signif-

icant variation in performance, which deteriorates when θ� 1.8750. This corresponds to the

Fig 4. Scatter plots of all pairs of features extracted from 100 images.

https://doi.org/10.1371/journal.pone.0204627.g004

Fig 5. Average cluster mismatch error as a function of the state, θ, in the granular imaging example. (A) n1 = n2 = 5. (B) n1 = 6 and n2 = 4.

https://doi.org/10.1371/journal.pone.0204627.g005
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case where β1 = β2, i.e., the case where the classes are most similar. Among all classical algo-

rithms, the EM algorithm is usually the best, followed by FCM and KM, which have very simi-

lar performance. In some cases in Fig 5, the performance of hierarchical clustering with single

linkage is worse than Random. As seen in the “Robust Clustering Under Gaussian RLPPs” sec-

tion, MCMC with incorrect priors and small samples again has very poor performance. These

graphs are summarized in Table 2, which shows the approximate average clustering error for

each algorithm over all states and iterations. Finally, note that performance is similar between

equal and unequal cluster size for all algorithms.

Since our focus is on robust clustering theory rather than image processing, in particular,

the interplay between clustering optimization and the structure of prior knowledge, we have

implemented a model setting based on Eq (23); nevertheless, before concluding this section,

we believe a few comments concerning the effect of deviations from the model assumptions on

the asymptotic granulometric moments are warranted.

The grain model of Eq (23) has been used in numerous studies of granulometric filtering

and asymptotic moment analysis. Three issues regarding robustness of the theory to devia-

tions from model assumptions have been addressed in [32]: (1) assuming a certain sizing

distribution when in fact the random set satisfies a different sizing distribution, (2) using

erroneous parameters for the sizing distribution, and (3) prior segmentation when there is

modest overlapping.

For instance, the effect of erroneous gamma(α, β) sizing was analytically quantified with

respect to misclassification error. Perhaps more importantly, the effect of watershed segmenta-

tion to separate overlapping grains prior to moment analysis was quantified by establishing

lower and upper bounds on the actual kth granulometric moments when there are multiple

grain primitives. One could reconsider the entire clustering analysis relative to these bounds;

however, given the complexity of the bounds, this would involve a complicated mathematical

study that would lead us far afield. The bounds are quite tight when grain overlapping is

minor, as it is with a properly prepared emulsion.

Finally, as in all asymptotic granulometric theory, grain orientation is assumed fixed and

not subject to rotation. The assumption is that each grain can be canonically rotated so that

triangles have a horizontal base and for rods the shorter side forms the base, as assumed in

the model. Robustness relative to imperfect rotation normalization has not been studied ana-

lytically. In fact, in digital image processing, rotation can cause problems for triangles and

rectangles when edge detection is inaccurate, which is troublesome when there is low pixel res-

olution, a situation that is much less problematic today than when the basic granulometric the-

ory was developed twenty years ago.

Conclusion

We have extended the theories of robust filtering and classification to clustering and developed

new theory showing that optimal Bayesian robust clustering can be viewed as two equivalent

optimization problems, one based on a parameterized uncertainty class of RLPPs and the

other on a single effective RLPP that absorbs all parameters in the model. Thus, one can first

Table 2. Average cluster mismatch error over 5, 000 iterations in the granular imaging example.

n1, n2 IBR FCM KM MCMC EM H-C H-A H-S Random

5, 5 0.1239 0.2899 0.2938 0.4858 0.2890 0.3086 0.3223 0.3477 0.3786

6, 4 0.1351 0.2924 0.2952 0.3956 0.2904 0.3079 0.3224 0.3488 0.3799

https://doi.org/10.1371/journal.pone.0204627.t002
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focus on modeling the uncertainties and then focus on finding the Bayes clusterer (or a good

approximation) for the effective model.

The proposed paradigm for robust clustering is distinct from all other clustering methods

in that it is fully model-based, can account for all prior knowledge and sources of uncertainty,

and is optimal relative to clustering error. A key part of the paradigm involves justifying the

modeling assumptions. In cases where the modeling assumptions can be justified, like in our

granular imaging example where we developed new theory on the asymptotic joint normality

and moments of our extracted features, we now have a very powerful theory for optimal robust

clustering. Furthermore, since the Bayes and IBR clusterers employ powerful optimization

directly with respect to clustering error (or clustering risk if used with specialized cost func-

tions), under small to moderate imperfections of the assumed model they often continue to

outperform many principled optimization-based methods. For instance, although our imple-

mentations of the EM, MCMC and IBR algorithms all assume Gaussian mixture models, EM

and MCMC do not always perform as well as IBR because: (1) they focus on estimating the

means and covariances instead of minimizing error, (2) they are often implemented without

available prior knowledge.

IBR clustering is useful in a wide range of applications, particularly in clustering problems

where the underlying data generation process is unknown, but can be theoretically constrained

or partially described using scientific knowledge. Our granular imaging application is an excel-

lent example, where we use a theorem that justifies Gaussianity and constrain parameters of

the sizing distributions to train an IBR clusterer that far outperforms other data-driven meth-

ods. IBR clustering makes distributional assumptions that are expected to improve perfor-

mance when correct, but may also degrade performance when grossly incorrect. Although we

have defined and characterized IBR clustering for general applications here, in specific applica-

tions prior construction and prior validation are critically important steps.

The IBR clusterer (and Bayes clusterer) can only be implemented under small samples with

up to 20 or so points; when n is large approximations of the IBR clusterer are available. Near

optimal performance is possible with reasonable run time, and by tweaking the approximation

algorithm one can make a trade-off between performance and run time. Suboptimal methods

inspired by the optimal equations for the Bayes clusterer under Gaussian models (e.g., Subopti-

mal Pseed Fast) presented in [1] have good performance and competitive computation time

with point sets of size up to 10, 000. Whether the exact or approximate IBR clusterer is used,

increasing dimensionality also increases computation time, but to a much smaller extent; here

we have implemented IBR clustering on datasets with up to 1, 000 features. Nevertheless, new

suboptimal algorithms and methods to address computation remain important topics for fur-

ther research. Since our objective here has been to develop a basic framework for robust clus-

tering, we have focused on examples with relatively small point sets, implemented optimal

algorithms whenever possible, and strongly favored better performing suboptimal algorithms

at the expense of run time. We aim to continue developing improved algorithms for Bayes and

IBR clustering in future work.

Supporting information

S1 File. Minimal data set for the Gaussian example. This file contains the number of mis-

matches (integer count of errors) between the correct label and label output by each algorithm

(mismatch error is minimized over all sets of labels that induce the same partitions) in each

iteration, and the run time for each algorithm in each iteration, which are used to generate Fig

2 and Table 1.

(ZIP)
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S2 File. Minimal data set for the granular imaging example. This file contains the number

of mismatches between the correct label and label output by each algorithm in each iteration,

which are used to generate Fig 5 and Table 2. This file also contains raw data and MATLAB

code used to generate Fig 4.

(ZIP)

S1 Appendix. Granulometry theorems. This file contains three granular imaging theorems

that justify modeling assumptions like normality used by the IBR clusterer in The granular

imaging example.

(PDF)
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Project administration: Lori A. Dalton, Edward R. Dougherty.

Software: Marco E. Benalcázar.
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1. Dalton LA, Benalcázar ME, Brun M, Dougherty ER. Analytic Representation of Bayes Labeling and

Bayes Clustering Operators for Random Labeled Point Processes. IEEE Transactions on Signal Pro-

cessing. 2015; 63(6):1605–1620. https://doi.org/10.1109/TSP.2015.2399870

2. Dalton L, Dougherty E. Intrinsically optimal Bayesian robust filtering. IEEE Transactions on Signal Pro-

cessing. 2014; 62(3):657–670. https://doi.org/10.1109/TSP.2013.2291213

3. Kuznetsov VP. Stable detection when the signal and spectrum of normal noise are inaccurately known.

Telecommunications and Radio Engineering. 1976; 30-31:58–64.

4. Kassam SA, Lim TI. Robust Wiener Filters. Journal of the Franklin Institute. 1977; 304(415):171–185.

https://doi.org/10.1016/0016-0032(77)90011-4

5. Poor HV. On robust Wiener filtering. IEEE Trans Automatic Control. 1980; 25(4):531–536. https://doi.

org/10.1109/TAC.1980.1102349

6. Dougherty ER, Chen Y. Robust Optimal Granulometric Bandpass Filters. Signal Processing. 2001;

81:1357–1372. https://doi.org/10.1016/S0165-1684(01)00017-2

7. Grigoryan AM, Dougherty ER. Design and analysis of robust binary filters in the context of a prior distri-

bution for the states of nature. Mathematical Imaging and Vision. 1999; 11(3):239–254. https://doi.org/

10.1023/A:1008356620614

Optimal clustering under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0204627 October 2, 2018 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204627.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0204627.s003
https://doi.org/10.1109/TSP.2015.2399870
https://doi.org/10.1109/TSP.2013.2291213
https://doi.org/10.1016/0016-0032(77)90011-4
https://doi.org/10.1109/TAC.1980.1102349
https://doi.org/10.1109/TAC.1980.1102349
https://doi.org/10.1016/S0165-1684(01)00017-2
https://doi.org/10.1023/A:1008356620614
https://doi.org/10.1023/A:1008356620614
https://doi.org/10.1371/journal.pone.0204627


8. Grigoryan AM, Dougherty ER. Bayesian Robust Optimal Linear Filters. Signal Processing. 2001; 81

(12):2503–2521. https://doi.org/10.1016/S0165-1684(01)00144-X

9. Dougherty ER, Hua J, Xiong Z, Chen Y. Optimal Robust Classifiers. Pattern Recognition. 2005; 38

(10):1520–1532. https://doi.org/10.1016/j.patcog.2005.01.019

10. Dalton LA, Dougherty ER. Optimal classifiers with minimum expected error within a Bayesian frame-

work–Part I: Discrete and Gaussian models. Pattern Recognition. 2013; 46(5):1301–1314. https://doi.

org/10.1016/j.patcog.2012.10.019

11. Dalton LA, Dougherty ER. Optimal classifiers with minimum expected error within a Bayesian frame-

work–Part II: Properties and performance analysis. Pattern Recognition. 2013; 46(5):1288–1300.

https://doi.org/10.1016/j.patcog.2012.10.019

12. Dougherty ER, Brun M. A Probabilistic Theory of Clustering. Pattern Recognition. 2004; 37(5):917–925.

https://doi.org/10.1016/j.patcog.2003.10.003

13. Choquet G. Theory of capacities. Annales de l’institut Fourier. 1954; 5:131–295. https://doi.org/10.

5802/aif.53

14. Kendall DG. Foundations of a theory of random sets. Stochastic Geometry. 1974; 3(9):322–376.

15. Matheron G. Random sets and integral geometry. New York: John Wiley & Sons; 1975.

16. Chiu SN, Stoyan D, Kendall WS, Mecke J. Stochastic geometry and its applications. 3rd ed. Wiley

Series in Probability and Statistics. Chichester, West Sussex, United Kingdom: John Wiley & Sons;

2013.

17. Binder DA. Bayesian cluster analysis. Biometrika. 1978; 65(1):31–38. https://doi.org/10.1093/biomet/

65.1.31

18. Quintana FA, Iglesias PL. Bayesian clustering and product partition models. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology). 2003; 65(2):557–574. https://doi.org/10.1111/1467-

9868.00402

19. Fritsch A, Ickstadt K, et al. Improved criteria for clustering based on the posterior similarity matrix.

Bayesian analysis. 2009; 4(2):367–391. https://doi.org/10.1214/09-BA414

20. MeilăM. Comparing clusterings—an information based distance. Journal of multivariate analysis. 2007;

98(5):873–895. https://doi.org/10.1016/j.jmva.2006.11.013

21. DeGroot MH. Optimal statistical decisions. Hoboken, NJ: John Wiley & Sons; 2005.

22. Dalton L, Ballarin V, Brun M. Clustering algorithms: On learning, validation, performance, and applica-

tions to genomics. Current genomics. 2009; 10(6):430–445. https://doi.org/10.2174/

138920209789177601 PMID: 20190957

23. Wade S, Ghahramani Z. Bayesian cluster analysis: Point estimation and credible balls. arXiv preprint

arXiv:150503339. 2015;.

24. Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. Journal of

the American statistical Association. 2002; 97(458):611–631. https://doi.org/10.1198/

016214502760047131

25. Chris Fraley TBM Adrian E Raftery, Scrucca L. mclust Version 4 for R: Normal Mixture Modeling for

Model-Based Clustering, Classification, and Density Estimation. Department of Statistics, University of

Washington; 2012. Technical Report No. 597.

26. R Core Team. R: A Language and Environment for Statistical Computing; 2017. Available from: https://

www.R-project.org/.

27. Rossi P. bayesm: Bayesian Inference for Marketing/Micro-Econometrics; 2017. Available from: https://

CRAN.R-project.org/package=bayesm.

28. Fritsch A. mcclust: Process an MCMC Sample of Clusterings; 2012. Available from: https://CRAN.R-

project.org/package=mcclust.

29. Wade S. mcclust.ext: Point estimation and credible balls for Bayesian cluster analysis; 2015.

30. Dougherty ER, Pelz J. Morphological Granulometric Analysis of Electrophotographic Images—Size

Distribution Statistics For Process Control. Optical Engineering. 1991; 30:438–445. https://doi.org/10.

1117/12.55823

31. Dougherty ER, Sand F. Representation of Linear Granulometric Moments for Deterministic and Ran-

dom Binary Euclidean Images. Visual Communication and Image Representation. 1995; 6:69–79.

https://doi.org/10.1006/jvci.1995.1006

32. Sand F, Dougherty ER. Robustness of Granulometric Moments. Pattern Recognition. 1999; 32

(9):1657–1665. https://doi.org/10.1016/S0031-3203(99)00028-X

Optimal clustering under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0204627 October 2, 2018 21 / 21

https://doi.org/10.1016/S0165-1684(01)00144-X
https://doi.org/10.1016/j.patcog.2005.01.019
https://doi.org/10.1016/j.patcog.2012.10.019
https://doi.org/10.1016/j.patcog.2012.10.019
https://doi.org/10.1016/j.patcog.2012.10.019
https://doi.org/10.1016/j.patcog.2003.10.003
https://doi.org/10.5802/aif.53
https://doi.org/10.5802/aif.53
https://doi.org/10.1093/biomet/65.1.31
https://doi.org/10.1093/biomet/65.1.31
https://doi.org/10.1111/1467-9868.00402
https://doi.org/10.1111/1467-9868.00402
https://doi.org/10.1214/09-BA414
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.2174/138920209789177601
https://doi.org/10.2174/138920209789177601
http://www.ncbi.nlm.nih.gov/pubmed/20190957
https://doi.org/10.1198/016214502760047131
https://doi.org/10.1198/016214502760047131
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=bayesm
https://CRAN.R-project.org/package=bayesm
https://CRAN.R-project.org/package=mcclust
https://CRAN.R-project.org/package=mcclust
https://doi.org/10.1117/12.55823
https://doi.org/10.1117/12.55823
https://doi.org/10.1006/jvci.1995.1006
https://doi.org/10.1016/S0031-3203(99)00028-X
https://doi.org/10.1371/journal.pone.0204627

