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A deep proteomics analysis was conducted on a primary acute
myeloid leukemia culture system to identify potential protein
targets regulated by miR-126. Leukemia cells were transduced
either with an empty control lentivirus or one containing the
sequence for miR-126, and resulting cells were analyzed using
ultra-high performance liquid chromatography (UHPLC) coupled
with high resolution mass spectrometry. The mass spectrometry
data have been deposited to the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier PRIDE:
PXD001994. The proteomics data and statistical analysis described
in this article is associated with a research article, “miR-126 reg-
ulates distinct self-renewal outcomes in normal and malignant
hematopoietic stem cells” (Lechman et al., 2016) [1], and serves as
a resource for researchers working in the field of microRNAs and
their regulation of protein levels.

& 2016 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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ype of data
 Figures, Perseus workflow, R script

ow data was
acquired
LC MS/MS on an Orbitrap Fusion Mass Spectrometer (Thermo Fisher Scientific)
ata format
 RAW, filtered and analyzed

xperimental
factors
Samples were subjected to SCX fractionation prior to analysis
xperimental
features
miR-126 was overexpressed in a primary AML culture system through viral
transduction, and samples were analyzed and compared between miR-126 and
empty control viral vectors.
ata source
location
University Health Network, Toronto, Canada
ata accessibility
 Data is within this article and the mass spectrometry data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PRIDE: PXD001994 (http://proteomecentral.proteo
mexchange.org/cgi/GetDataset?ID¼PXD001994)
Value of the data

� First global proteomics dataset of miR-126 overexpression in the context of primary human
leukemic cells.

� Enforced expression data sheds first light on miR-126 driven protein regulation for use by leukemia
researchers.

� Targets highlighted by proteomics data provide the community with candidates for proteins under
(direct) control of miR-126.
1. Data

The dataset described in this article embodies the first global proteomics dataset investigating the
biological impact of miR-126 enforced expression in human AML cells. The data files shared here
provide the computational workflow that was applied to filter the data in Perseus [2], and to
determine significantly regulated proteins using Limma [6]. Furthermore, the experimental workflow
and an overview of the technical and biological reproducibility of the analyses are presented.
2. Experimental design, materials and methods

To assess the protein-level regulation of direct targets of miR-126, we conducted a proteomics
analysis to compare AML cells transduced with either a miR-126 overexpression (126OE) or control
(CTRL) vector (Fig. 1A and B). A primary AML culture system, 8227 (described in [1]), was subjected to
viral transduction and cells were subsequently analyzed for their global protein expression levels
using mass spectrometry. Deep proteome coverage was obtained through the use of SCX fractiona-
tion, and protein quantitation was conducted using a label-free quantitation (LFQ) approach [3].

Two weeks postviral transduction, three biologically independent sets of 8227 cells transduced
with either 126OE and CTRL vectors (also containing the mOrange gene to enable detection of
transduced cells) were flow sorted for mOrangeþ cells, counted and subjected to sample preparation
as described in [1]. Briefly, cells were lysed, boiled at 95 °C and sonicated, to subsequently be digested
in a 2-step digestion protocol with Lysyl Endopeptidase C (MS grade, Wako) and Trypsin (MS grade,
Promega). Resulting peptide samples were simultaneously desalted and fractionated using Strong
Cation Exchange StageTips (2251, Empore 3M) packed in-house [4]. Five fractions were eluted using
50, 75, 125, 200 and 300 mM ammonium acetate in 20% Acetonitrile, 0.5% formic acid respectively,
and the final fraction was eluted using 5% ammonium hydroxide, 80% Acetonitrile. After
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concentrating the samples in an Eppendorf Speedvac, the eluted fractions were re-constituted in 1%
TFA, 2% Acetonitrile for Mass Spectrometry (MS) analysis.
2.1. Mass spectrometry acquisition

Each SCX fraction was analyzed on an Orbitrap Fusion (Thermo Fisher Scientific), connected to a
Thermo EasyLC 1000 UHPLC system in a single-column setup, and peptides were eluted over a
140 min gradient on a 50 cm C18 reverse-phase analytical column (Thermo Fisher EasySpray ES803).
Detailed MS settings are described in [1], and mass spectrometry performance was monitored for
consistency throughout the analysis of standard QC samples generated from complex HEK293T
lysates. Each sample was run in technical duplicate, and the reproducibility of the analyses is depicted
in Fig. 2. All raw files were deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PRIDE: PXD001994 [5].
Fig. 1. (A) Schematic representation of the lentiviral construct for enforced expression of miR-126. The human miR-126 coding
sequence is driven off of the SFFV promoter. (B) Experimental workflow for generation of proteomics data from cells trans-
duced with miR-126 and CTRL virus. Two weeks after viral transduction, mOrange positive cells are sorted, and after cell lysis,
proteins are reduced, alkylated and digested, and subsequently subjected to SCX fractionation for deep proteome coverage.
Resulting peptide fractions are analyzed on an Orbitrap Fusion and the raw data is interpreted using MaxQuant. Resulting
protein expression levels are tested for significance in Limma, resulting in a final quantitative table of comparative protein
expression levels between miR-126OE and CTRL.
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Fig. 2. Overview of technical and biological reproducibility of the mass spectrometry analyses.
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2.2. Label-free quantitative proteomics analysis

MaxQuant version 1.5.2.8 [3] was used to analyze the resulting .raw files and generate the label-
free quantitation (LFQ) values. A minimum of 3 unique peptides per protein was required, and Oxi-
dation (M), Acetyl (protein N-term), Gln-4pyro-Glu and Glu-4pyro-Glu were set as variable mod-
ifications. False discovery rate was kept constant at 1%, and “match between runs” was enabled.

The resulting table, containing all identified proteins and LFQ values was processed in Perseus
(version 1.5.0.9, workflow attached in Supplementary materials) [2]. After removing contaminants
and reverse hits, 8848 proteins remained, of which 4837 proteins were quantified in all samples.
Protein ratios for each biological replicate were calculated, and this final table was processed in
Limma (R Statistical Framework [6]) to determine those proteins that are significantly regulated
according to the moderated t-test. Limma input, the R script and results are attached in this manu-
script, and the final results used for downstream analysis can be found as Table S4 in [1].
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