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Abstract

Structural variants (SVs) represent an important genetic resource for both natural and artificial selection. Here we
present a chromosome-scale reference genome for domestic yak (Bos grunniens) that has longer contigs and scaffolds
(N50 44.72 and 114.39 Mb, respectively) than reported for any other ruminant genome. We further obtained long-read
resequencing data for 6 wild and 23 domestic yaks and constructed a genetic SV map of 372,220 SVs that covers the
geographic range of the yaks. The majority of the SVs contains repetitive sequences and several are in or near genes. By
comparing SVs in domestic and wild yaks, we identified genes that are predominantly related to the nervous system,
behavior, immunity, and reproduction and may have been targeted by artificial selection during yak domestication.
These findings provide new insights in the domestication of animals living at high altitude and highlight the importance
of SVs in animal domestication.
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The domestication of livestock species is one of the major
achievements in the human civilization history. A series of
phenotypic changes in domesticated animals, such as reduc-
tion of brain size and increased tameness, are considered to
constitute the domestication syndrome (Hammer 1984). In
several domestic species, the underlying genetic basis has
been examined by using genetic markers such as single-
nucleotide polymorphisms (SNPs), short insertions and dele-
tions, and the copy number variations (CNVs) (Chen et al.
2009, 2018; Serres-Armero et al. 2017; Genova et al. 2018),
which account for the most widespread mode of genomic
variations. However, the role of structural variants (SVs),
which comprise insertions, deletions, duplications, inversions,
or translocations of 50 bp or longer (Baker 2012), has
remained underexplored due to two technological con-
straints (Huddleston and Eichler 2016). First, detection of
SVs needs long-read sequencing reads spanning over their
full length (Chaisson et al. 2015; Sedlazeck et al. 2018).
Second, it also requires a continuous reference assembly cov-
ering the repetitive fraction in genomes (Weckselblatt and

Rudd 2015; Peona et al. 2021). Long-read sequencing is not
suitable for the detection of single-nucleotide variations be-
cause of a single-base error of 85–95% (Kono and Arakawa
2019), but it is the method-of-choice for detecting large SVs.
Recently, long-read sequencing and a high-quality reference
genome revealed significant roles of SVs during plant domes-
tication (Fuentes et al. 2019; Zhou et al. 2019). Whole-genome
sequencing (WGS) data based on a short-read assembly with
a high coverage have been published for domestic and wild
yaks (Qiu et al. 2012; Liu et al. 2020). In this study, we present a
high-quality reference genome for domestic yak (BosGru3.0).
By long-read resequencing of selected 29 wild and domestic
yaks from genetic groups from 80 previous (Qiu et al. 2015)
and 18 new short-read whole-genome sequences, we
obtained a comprehensive and representative SV map for
domestic and wild yaks, which allows a tentative identifica-
tion of SV-related genes involved in the domestication
syndrome.

For the chromosome-scale BosGru3.0 reference assembly
(supplementary fig. S1, Supplementary Material online), DNA
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was extracted from blood of a male domestic yak from
Hongyuan County, Sichuan Province. We conducted a de
novo assembly of Oxford Nanopore long reads with a
~88� coverage. Through being polished by Illumina short
reads and clustering based on interaction strength from Hi-
C data (supplementary fig. S2, Supplementary Material on-
line), we obtained a highly continuous reference genome
BosGru3.0, with 116 contigs assembled in 31 chromosomes.
The contig and scaffold N50 of BosGru3.0 are 44.72 and
114.39 Mb, respectively, and these values are higher than
obtained for other ruminant reference genomes (table 1
and supplementary table S1, Supplementary Material
online). Repetitive elements (supplementary fig. S3 and table
S2, Supplementary Material online), protein-coding genes
(supplementary table S3, Supplementary Material online),
and noncoding elements (supplementary table S4,
Supplementary Material online) were predicted for our as-
sembly. A total of 21,232 protein-coding genes were predicted
(table 1 and supplementary fig. S1, Supplementary Material
online, see more details about BosGru3.0 in Supplementary
Material online).

Twenty-three domestic individuals covering various loca-
tions and six wild yaks (fig.1A) were selected for long-read
WGS resequencing after excluding duplicated samples (sup-
plementary fig. S4 and table S6, Supplementary Material on-
line). As shown by model-based clustering (fig. 1B and
supplementary fig. S5, Supplementary Material online) and
genetic distances of short-read whole-genome sequences of
18 yaks combined with previous data (supplementary tables
S5, Supplementary Material online, Qiu et al. 2015), the 23
domestic yaks represent the genetic diversity within their
distribution range. The average N50 length of the long-read
WGS reaches 22.59 Kb (domestic) and 21.99 Kb (wild), with
an effective depth of 8.4� to 15.6� (domestic) or 11.4� to
21.2� (wild, supplementary table S6, Supplementary Material
online). We identified 372,220 SVs, which included 328,936
deletions, 32,618 insertions and 4,321 duplications, 1,993
inversions, and 4,352 translocations (supplementary figs. S6
and S7 and table S7, Supplementary Material online). We did
not find any SV alleles that were absolutely specific for either
wild or domestic yaks. We annotated all SVs by their positions
on BosGru3.0 and found 257,155 SVs (69.09%) in intergenic
regions, and 93,582, 14,964, 1,811, and 3,620 SVs were in
intronic, exonic, UTR, or the 150 bp upstream and down-
stream flanking regions of genes, respectively (supplementary
table S8, Supplementary Material online).

The majority of the SVs (74.43%) contains repetitive
sequences. Overall percentages for different categories of
these elements are not substantially different from the per-
centages for the whole genome (supplementary tables S2 and
S9, Supplementary Material online), whereas the length dis-
tribution of SVs depends on the underlying molecular events
(inversion, duplications, insertions, or deletions [supplemen-
tary fig. S7, Supplementary Material online]). Comparison of
SV sequences and of the wild yak or domestic yak genomes
did not display large differences in the contents of any type of
repeats. However, wild yaks have more copies of LINE/RTE-
BovB with a low divergence than domestic yaks

(supplementary fig. S8, Supplementary Material online),
which suggests a recent activity of RTE-BovB in wild yaks.
Interestingly, length distribution of inversions and duplica-
tions sequences shows a peak at about 1,000 bp (supplemen-
tary fig. S7, Supplementary Material online), which mainly
consists of non-repetitive elements and LINE-1 elements
(supplementary table S10, Supplementary Material online).

In order to further identify SVs possibly involved in domes-
tication, we calculated for all SVs the FST between wild and
domestic yaks and found 3,680 SVs with FST outliers > 0.28
under artificial selection (supplementary table S11,
Supplementary Material online). A tree of the yak genotypes
with these SVs increases the separation of domestic and wild
yaks relative to the tree of figure 1C, but still shows variation
in the domestic yaks (supplementary fig. S9, Supplementary
Material online). Among these high-FST SVs, 2,391 SVs are
(0.64% of all SVs) in the intergenic and 1,288 SVs in the exons,
introns, or flanking regions of 725 genes (supplementary table
S11, Supplementary Material online). From these, 34 have
deletions in exonic regions, 24 of which cause a frameshift
in the open reading frame (ORF) (nonsense SVs).

We then annotated the functions of the 725 genes carrying
high-FST SVs and found that the most significantly enriched
function was involved in nervous system development (GO
ID: 0007399, 168 genes) and human disease pathway, long-
term depression (9 genes, KEGG accession: hsa04730, supple-
mentary fig. S10 and tables S12 and S13, Supplementary
Material online). Other GO function categories are related
to the nervous system, including neuron differentiation, gen-
eration of neurons, and others. Typically, the variant with the
second-highest FST was located in an intron of a signal protein
MAGI2 (fig. 1D). A deletion within the human MAGI2 gene
has been associated with epilepsy and schizophrenia
(Marshall et al. 2008; Zhang et al. 2020) and several CNVs
are located near MAGI2 in an aggressive dog breed (Chen et
al. 2009). Similar associations with behavior have been
reported for three other high-FST SV genes. GAD2 has been
linked to fear in dog (Pendleton et al. 2018). GAD2-knockout
mice displayed an increase in spontaneous seizures (Kash et
al. 1997). PLCB1 was identified to be associated with schizo-
phrenia (Liu et al. 2005; Lo Vasco et al. 2013), with strong
selection signals in domestication of buffalo (Luo et al. 2020)
and rabbit (Carneiro et al. 2014). GRIK2, which is also related
to fear, anxiety, and aggression, was involved in a selective

Table 1.. Assembly statistics comparison between BosGru2.0 and
BosGru3.0.

Assembly BosGru2.0 BosGru3.0

Total length (bp) 2,645,161,911 2,832,776,395
Number of contigs 41,192 414
Contig N50 (Mb) 1.41 44.72
Scaffold N50 (Mb) 1.41 114.39
Chromosome number 0 31
Unplaced contig number 41,192 383
Number of gaps 192,002 646
GC content (%) 41.7 42.0
Protein-coding genes 20,499 21,232
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FIG. 1. (A) Geographic distribution of all domestic and wild yaks sampled in this research. (B) Genetic groups of 91 domestic and wild yaks in total
based on short-read whole-genome sequences with population structure K¼ 5. Triangles indicate samples selected for long-read whole-genome
sequencing. Orange: domestic yak; Blue: wild yak. GS, Gansu; NP, Nepal; PK, Pakistan; QH, Qinghai; SC, Sichuan; XZ, Xizang; YN, Yunnan; WY, Wild
yak. (C) Neighbor-joining tree constructed based on SNPs of all long-read samples. (D) Domestication-related SVs in the region of MAGI2.
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sweep in domesticated animals including rabbit, dog, and
duck (O’Rourke and Boeckx 2020).

Other genes carrying SVs are involved in immunity, ana-
tomical structure morphogenesis, and economical traits (sup-
plementary table S12, Supplementary Material online). For
example, NAFT has been proved to regulate the expression
of potent immunomodulatory cytokines by downstream-
targeting IL-2 growth factor in T cells (Müller and Rao
2010). SMOC2 was reported to be related to brachycephaly
in dogs (Marchant et al. 2017) and is highly expressed in
endometrium and other reproductive tissues (Uhl�en et al.
2015). GSK3B is an isoform of GSK3A, which was found to
be related to fat storage ability in pig (Fu et al. 2016).
Knockout of GSK3A in mice improved glucose tolerance in
response to glucose load and elevated hepatic glycogen stor-
age and insulin sensitivity (MacAulay et al. 2007). As for the
nonsense SVs, a few genes are involved in mental or brain
development as well, for instance, PAX3 (Bang et al. 1997),
MAGT1 (Molinari et al. 2008), SHROOM2 (Fairbank et al.
2006), and SSBP3 (supplementary table S11, Supplementary
Material online, Hashimoto et al. 2012).

Taken together, our results suggest that SVs have been
mediated during yak domestication and that preferentially
targeted genes are related to the nervous system, behavior,
and immunity. These findings provide additional insights into
yak domestications (Guo et al. 2006; Wang et al. 2010, 2011;
Qiu et al. 2015; Zhang et al. 2016) and evolution of the bovini
species (Wu et al. 2018; Zhang et al. 2020).

Materials and Methods
A detailed description of methods is provided in
Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Data Availability
All sequences have been deposited to NCBI BioProject with
accession number PRJNA540974. The BosGru3.0 reference
sequences have been deposited to NCBI as
GCA_005887515.2. Annotation information of BosGru3.0
and detailed SV information are available at Figshare as doi:
10.6084/m9.figshare.11151185. Custom workflow and scripts
are available at https://github.com/shangshanzhizhe/
YakPopulationSV (last accessed May 12, 2021).
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