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Abstract

Facilitating the identification of extreme inactivity (EI) has the potential to improve morbidity

and mortality in COPD patients. Apart from patients with obvious EI, the identification of a

such behavior during a real-life consultation is unreliable. We therefore describe a machine

learning algorithm to screen for EI, as actimetry measurements are difficult to implement.

Complete datasets for 1409 COPD patients were obtained from COLIBRI-COPD, a data-

base of clinicopathological data submitted by French pulmonologists. Patient- and pulmo-

nologist-reported estimates of PA quantity (daily walking time) and intensity (domestic,

recreational, or fitness-directed) were first used to assign patients to one of four PA groups

(extremely inactive [EI], overtly active [OA], intermediate [INT], inconclusive [INC]). The

algorithm was developed by (i) using data from 80% of patients in the EI and OA groups to

identify ‘phenotype signatures’ of non-PA-related clinical variables most closely associated

with EI or OA; (ii) testing its predictive validity using data from the remaining 20% of EI and

OA patients; and (iii) applying the algorithm to identify EI patients in the INT and INC groups.

The algorithm’s overall error for predicting EI status among EI and OA patients was 13.7%,

with an area under the receiver operating characteristic curve of 0.84 (95% confidence inter-

vals: 0.75–0.92). Of the 577 patients in the INT/INC groups, 306 (53%) were reclassified as

EI by the algorithm. Patient- and physician- reported estimation may underestimate EI in a

large proportion of COPD patients. This algorithm may assist physicians in identifying

patients in urgent need of interventions to promote PA.
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Introduction

Patients with chronic obstructive pulmonary disease (COPD) are known to be substantially

less physically active than age- and sex-matched healthy subjects [1]. Several studies have

shown that low physical activity (PA) levels are associated with poor prognosis in COPD

patients [2, 3], yet pulmonary rehabilitation programs that incorporate endurance and

strength training have shown significant benefit in this patient population [4]. Thus, accurate

identification of the true PA status is a crucial factor in ensuring that the least active patients,

who would be expected to derive the greatest benefit from PA, can be encouraged to become

more active and/or referred to a rehabilitation program.

Several methods have been devised to assess and quantify PA levels in patients with various

respiratory diseases. In particular, accelerometers can be worn over several days to analyze the

full range of different activities and their distribution over time. Data from such devices have

generally correlated well with assessments of daily metabolic expenditure, as measured using the

doubly labeled water method, and accelerometers are also sufficiently sensitive to detect low lev-

els of PA in COPD patients [4]. These quantitative studies have estimated that approximately

26%–30% of COPD patients are physically inactive and exhibit sedentary behavior, both of

which are independently associated with an increased risk of morbidity and mortality [3, 5, 6].

However, accelerometry requires considerable cost, time, and effort commitments on the part of

the patient and physician, and it is generally considered impractical for routine clinical use. At

the same time, clinical interviews and patient questionnaires alone cannot accurately determine

the patient’s true PA level [7]. To improve this situation, the PROactive consortium proposed

that a combination of questionnaires and accelerometric measurements be used to assess the

behavior of COPD patients [8, 9]. Nevertheless, this approach does not eliminate the drawbacks

of accelerometry, and therefore does not resolve the primary clinical concern, which is to accu-

rately and objectively detect extreme inactivity (referred to hereafter as EI) in patients whose PA

status initially presents as unclear or equivocal [10, 11]. Although such patients may be identified

during consultation with experienced practitioners, it is likely that a significant percentage of EI

patients fall under the radar of clinical vigilance, which most often focuses on respiratory func-

tion. Given the proven benefit of pulmonary exercise programs in COPD patients, we therefore

sought to develop a predictive algorithm that can reliably detect EI patients, who might most

benefit from interventions such as pulmonary rehabilitation programs.

We hypothesized that certain physiological and clinical variables may be more frequently

observed (through cause or effect) among patients at the extreme ends of the PA spectrum

(i.e., EI and overtly active [OA] patients), and that such ‘phenotype signatures’ composed of

non-PA-related variables could be used to develop the predictive algorithm.

Materials and methods

Patients and data collection

This was a retrospective analysis of data submitted to the COLIBRI-COPD database [12, 13],

which has been authorized by the French national commission on personal data privacy

(Commission Nationale de l’Informatique et des Libertés, CNIL, #2013–526). The requirement

for written consent was waived in this observational study in accordance with French law.

Patients provided oral informed consent to their physician. At the time of the analysis, data

were available from 5035 initial consultations for COPD patients (Fig 1). We selected 1409

patients with comprehensive information on 22 specific variables (see Table 2) in the areas of

anthropometry, smoking habits, resting pulmonary function, comorbidities, exacerbations

during the preceding year, Global Initiative for COPD (GOLD) ABCD classification, and self-
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reported questionnaires: the modified Medical Research Council dyspnea scale (mMRC) [14]

and Disability related to COPD Tool (DIRECT), both of which assess dyspnea [15, 16]; the

COPD Assessment Test (CAT), which assesses quality of life [17]; and the Hospital Anxiety

and Depression Scale, which separately assesses anxiety and depression [18, 19].

Construct of the predictive machine learning

We first categorized a cohort of COPD patients into one of four activity levels based on the

patient’s own estimates of their PA (daily walking time) and the physician’s estimates of the

patient’s PA intensity level (domestic, recreational, and fitness-directed). We then tested exist-

ing machine learning processes already in use for predicting disease outcomes using routine

clinical data [20, 21], and trained the model to identify an EI signature using clinicopathologi-

cal data from a subset (80%) of patients in the EI and OA categories. After training, we tested

the algorithm’s predictive validity on the remaining 20% of patients in the EI and OA catego-

ries, and then evaluated its ability to detect EI patients in the intermediate (INT) or inconclu-

sively determined (INC) PA categories.

Definition of PA categories

Assignment of patients to PA categories was based on physician estimates of the predominant

intensity level of the patient’s daily PA: domestic (D, in-home activities), recreational (R,

mostly outside the home), or active (A, devoted to maintaining physical fitness) and patient

estimates of the average daily walking time outside the home (including weekends): <10 min,

10–30 min, 30–60 min, and>60 min. Based on these criteria, we constructed a 3 × 4 table to

identify four main PA categories: (i) least active (EI, n = 172); (ii) most active (OA, n = 660);

(iii) intermediate activity level (INT, n = 410), which had three subcategories (a, b, and c); and

(iv) incompatible (INC, n = 167), which had four subcategories (a, b, c, and d) and consisted of

patients whose self-reported and physician-reported activities were considered conflicting

Fig 1. Study design. See Table 1 for definitions of activity categories.

https://doi.org/10.1371/journal.pone.0255977.g001
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(Table 1). Descriptive clinical and functional characteristics of COPD patients stratified by PA

categories are presented as mean ± standard deviation. Comparisons between PA categories

were performed by Kruskal-Wallis tests and ANOVA with ordinal factors test (ordAOV).

Predictive statistical methods

The predictive machine learning method was developed in five steps. (i) We first verified that

the EI variable and its variability correlated well with a set of continuous and categorical vari-

ables. Then, we performed an explanatory canonical discriminant analysis of mixed data fol-

lowed by a scree plot to select the statistically significant canonical variables to be used in more

elaborate individual predictive models. After this step, a reduced rank display (S1 Fig) showed

that two canonical discriminant projections accounted for 98.6% of the variation between cate-

gories, of which 95.8% concerned EI and OA, while the projection of INT and INC on the two

canonical directions was very slight. (ii) Based on this, we opted to develop an algorithm

focused on individual prediction of the two most extreme categories; EI (n = 172) versus OA

(n = 660). The predictive model was developed using an ensemble regression and classification

algorithm [22] with a version for balancing error in unbalanced data (weighted random forest,

WRF). To account for random effects, such as the physician identity or study center, we also

combined the random forest methodology with generalized linear mixed models using the

binary mixed model (BiMM) forest algorithm [23]. (iii) Data from the 832 patients in the EI

and OA groups were randomly selected; of these, we used data from 666 patients (80%) to

develop the model and data from the remaining 20% (166 patients) to assess its accuracy (i.e.,

predictive error). (iv) In the next step, we addressed the imbalance in our final prediction

using a recent hyper-ensemble of SMOTE under sampled random forests (HyperSMURF)

method, which is based on resampling techniques and a hyper-ensemble approach (S2 Fig).

(v) Finally, once validated, the algorithm was applied to patients in the combined INT and

INC subcategories.

Descriptive results are presented as mean ± standard deviation. The performance of the

algorithm for predicting EI and OA is expressed as overall error, weighted accuracy, true nega-

tive value, true positive value, and sensitivity. Additional performance measurements included

area under the precision and recall curve (AUPRC) and area under the receiver operating

characteristic curve (AUROC).

Results

Descriptive results

Table 1 shows the distribution of the 1409 patients into four categories and 12 subcategories

according to the combination of patient and physician estimates. The reference category EI

(n = 172) was composed of patients with the lowest duration and intensity PA level (subcate-

gory D and <10 min walking/day), whereas the OA category (n = 660) included the most

active patients (subcategory R or A and>30 min walking/day). Patients who spent short times

(�30 min) in daily activities were referred to as the INT group (n = 410) and were subcatego-

rized as a, b, or c, depending on the physicians’ estimate of the activity intensity (Table 1).

Finally, patients whose self- and physician-reported subcategories were incompatible were

referred to as the INC group (n = 167) and were further assigned to a, b, c, or d groups based

on the time and intensity. The seven categories encompassed by INC a–d and INT a–c

together account for about 40% of the total cohort, highlighting the need for a tool to more

accurately assess daily PA.

After validation and predictive validity testing (see next section), we applied the algorithm

to patients in the full cohort as well as the INC and INT categories and determined the number
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of patients who were identified by the algorithm as having the EI phenotype (Table 1). A total

of 21.7% of the full cohort (306/1409) were reassigned to EI. Of these, 15.8% (223/1409) were

in the original INT a–c categories and 5.9% (83/1409) were in the original INC a–d categories.

Thus, application of the algorithm increased the proportion of EI patients in the full cohort

from 12.2% (172/1409) to 33.9% (478/1409).

Not surprisingly, comparisons of clinicopathological characteristics showed a trend towards

worsening health status of patients in the order EI> INT> INC > OA (Table 2). The differ-

ences were particularly stark when comparing patients in the EI versus OA categories, while

the INT group had intermediate values between the EI and OA groups. Fig 2 shows a compari-

son of selected anthropometric and behavioral characteristics (continuous variables) stratified

by our PA categories or the GOLD ABCD 2017 categories. Of note, the symptom-related vari-

ables (mMRC, DIRECT, and CAT scores) logically discriminate between patients according to

the GOLD ABCD classification, but they overlap the PA categories, indicating that these ques-

tionnaires individually have a poor ability to predict PA level. As shown in Fig 3, this possibil-

ity was confirmed by the large overlap between not only continuous variables (DIRECT score,

CAT score, age, body mass index) but also categorical variables (age, sex, exacerbation, and

GOLD ABCD) for patients in the EI, INT, INC, and OA categories, consistent with their poor

individual ability to predict EI status.

Predictive results

Table 3 shows the analysis of the predictive algorithm performance using several classifier

methods. The BiMM and WRF results did not differ significantly, suggesting that the predic-

tion was independent of the physician who collected the data and the practice setting. This

assertion was further checked by performing a panel data analysis on the clustered data and

testing the hypothesis of presence of random effects. This analysis yielded a p value of 0.0069,

thus supporting a fixed effects model (i.e., a random forest prediction without random effects).

Overall, the AUPRC indicates that the HyperSMURF algorithm achieved significantly better

sensitivity than WRF or BiMM for predicting EI, with little deterioration in the sensitivity of

the OA classification. As an example, Fig 3 shows the influence of some variable values on the

prediction of EI status, and S3 Fig shows a comparable analysis for the prediction of OA. As

Table 1. Categorization of physical activity levels in COPD patients according to combined patient- and physician-derived estimates.

Patient’s Estimate (daily walking time; n = 1409) Physician’s Estimate (activity intensity; n = 1409)

(D)omestic (R)ecreational (A)ctive

n = 504 n = 530 n = 375

(1)� 10 min (n = 203) EI INT-b (n = 23)� INC-c (n = 8)

n = 172 EI predicted = 9 EI predicted = 3

(2) 10–30 min (n = 440) INT-a (n = 226) INT-c (n = 161) INC-d (n = 53)

EI predicted = 140 EI predicted = 74 EI predicted = 22

(3) 30–60 min (n = 399) INC-a (n = 69) OA n = 660

EI predicted = 41 n = 194 n = 136

(4) >60 min (n = 367) INC-b (n = 37) n = 152 n = 178

EI predicted = 17

Abbreviations: EI, extremely inactive category; OA, overtly active category; INT (a,b,c), physical activity levels intermediate between EI and OA; INC (a,b,c,d),

incompatible physician and patient estimates of activity. (D)omestic, activities mainly confined to the home; (R)ecreational, predominantly outside the home; (A)ctive,

predominantly devoted to maintaining fitness.

�EI predicted indicates the number of patients within each INT and INC subcategory reassigned to the EI category by the predictive algorithm.

https://doi.org/10.1371/journal.pone.0255977.t001
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can be seen, only the higher scores (mMRC�3, CAT>30, DIRECT >23) are associated with

a probability of EI>0.5. The strength of our predictive model is also confirmed by the corre-

sponding ROC curves (Fig 4). Although the differences between the WRF and HyperSMURF

predictions, as measured by the AUROC, are not large, AUPRC is considered to be more

informative than AUROC for imbalanced data [24]. Finally, we applied our predictive algo-

rithm process to the INT and INC subcategories. Table 1 shows that about half of the patients

were predicted to be EI; specifically, 54% and 41% in the INT and INC categories, respectively.

Table 2. Clinical and functional characteristics of the stratified COPD patients (n = 1409).

EI INT INC OA p-value

n = 172 n = 410 n = 167 n = 660

Anthropometric and behavioral characteristics

Age (years) 67.5 ± 10.1 65.4 ± 9.5 65.9 ± 8.6 65.5 ± 8.3 0.063

Male gender 60.5% 63.9% 61.7% 73.5% ����

BMI (kg/m2) 26.5 ± 6.8 26.2 ± 5.9 25.0 ± 5.4 25.8 ± 5.1 0.058

Smokers (current or ex) 0.965 0.963 0.964 0.964 0.07

mMRC score 2.7 ± 1.1 1.9 ± 1.1 1.8 ± 1 1.2 ± 0.9 ����

DIRECT score 17.4 ± 8.6 13.0 ± 8 12.0 ± 6.9 8.6 ± 6.4 ����

CAT score 21.3 ± 8.1 18.0 ± 7.6 17.4 ± 7.5 14.1 ± 7.2 ����

HADS Anxiety subscore 7.4 ± 4.6 6.3 ± 4.5 6.1 ± 4 5.4 ± 3.7 ����

HADS Depression subscore 8.2 ± 4.8 6.2 ± 4.2 5.6 ± 3.7 4.7 ± 3.5 ����

Functional respiratory parameters and GOLD 2011 classification

FEV1 (L) 1.28 ± 0.6 1.57 ± 0.6 1.58 ± 0.7 1.82 ± 0.7 ����

FEV1 (% predicted) 50.9 ± 22.6 59.2 ± 22 59.2 ± 22.9 65.5 ± 20.5 ����

FVC (L) 2.5 ± 0.9 2.86 ± 0.9 3.0 ± 1.1 3.24 ± 1 ����

FVC (% predicted) 77.9 ± 24.3 85.4 ± 22.5 89.6 ± 25.2 92.8 ± 21.2 ����

FEV1/FVC (%) 50.6 ± 14.5 54.4 ± 13.3 52 ± 14 55.3 ± 11.8 ����

GOLD 1 13.4% 18.3% 21.6% 24.7% ����

GOLD 2 32.0% 45.9% 36.5% 49.4% ����

GOLD 3 25.6% 24.4% 29.3% 21.7% ����

GOLD 4 29.1% 11.5% 12.6% 4.2% ����

Comorbidities and GOLD 2017 classification

Cardiovascular disease and/or diabetes 83.1% 71.0% 69.5% 63.9% ����

Treated for anxiety or depression 72.7% 59.8% 59.9% 51.1% ����

Exacerbation within the previous year (�1 severe or�2 mild/moderate) 48.3% 32.7% 39.5% 25.0% ����

GOLD A 2.9% 6.8% 10.2% 22.0% ����

GOLD B 48.8% 60.5% 50.3% 53.0% ����

GOLD C 0.0% 2.4% 2.4% 3.9% ����

GOLD D 48.3% 30.2% 37.1% 21.1% ����

Data are presented as the percentage or mean ± standard deviation. Comparisons between PA categories were performed by Kruskal-Wallis tests and ANOVA with

ordinal factors test (ordAOV). Significant differences are noted: p< 0,. . .����; p< 0.001 ���; p< 0.01 ��; p< 0.05 �.

Abbreviations: BMI, body mass index; CAT, COPD Assessment Test; COPD, chronic obstructive pulmonary disease; DIRECT, Disability related to COPD Tool; FEV1,

forced expiratory volume in 1 s; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease classification; HADS, Hospital Anxiety and

Depression Scale; mMRC, modified Medical Research Council dyspnea scale. For EI, INT, INC, and OA definitions, see Table 1.

https://doi.org/10.1371/journal.pone.0255977.t002
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S1 Table shows the distribution of the GOLD 2011 and ABCD classifications within the PA

categories.

Discussion

The main contribution of this study is to demonstrate the predictive validity of an algorithm

for predicting the least active COPD patients from information available in routine pulmonol-

ogist practice independently of PA-related measures. The originality and strength of our algo-

rithm lies in its ability to predict EI in patients whose PA level is equivocal or unclear based on

the patient’s and physician’s opinions, thus bringing to light the precise subgroup of COPD

patients who are most in need of increased PA. Depending on the options available to the

referring pulmonologist, this algorithm will help in deciding the optimal next step for each

patient; whether that is accelerometry, as proposed by the PROactive consortium,8 referral to

supervised rehabilitation [25], and/or simply encouraging the patient to participate in social

activities that include PA [26].

Selection of machine learning methods

In the present study, we demonstrate that a specific random forest machine learning algo-

rithm, which we refer to as the EI algorithm, is effective in predicting the EI or OA status of

COPD patients. In addition, the algorithm has the potential to automatically detect the most

informative predictors of EI by excluding many irrelevant confounding factors that influence

both the dependent variable (EI or OA) and independent variables (explanatory variable), thus

causing a spurious association. The EI algorithm outperforms traditional multiple linear/logis-

tic regression models by unmasking predictive potential not apparent in a linear model. We

Fig 2. Univariate boxplots comparing the distribution of selected continuous variables according to the physical

activity category described here (top row) and GOLD 2017 category (bottom row). Plots show the median, minimum,

maximum, and interquartile values. See Table 1 for definitions of activity categories.

https://doi.org/10.1371/journal.pone.0255977.g002
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could also have considered using a Bayesian machine learning framework to develop a predic-

tion procedure and simultaneously identify promising subsets of relevant predictors. While

the Bayesian framework may have achieved equivalent predictive performance, it would have

Fig 3. Box plots (categorical/ordinal variables) and line plots (continuous variables) of the marginal effect of a

predictor (x-axis) on the probability of a patient being assigned to the EI category according to the weighted random

forest method (y-axis). See also S3 Fig for the inverse analysis of probability of assignment to the OA category. Box plots

show the median, minimum, maximum, and interquartile values. See Table 1 for definitions of activity categories.

https://doi.org/10.1371/journal.pone.0255977.g003

Table 3. Evaluation of the performance of the predictive algorithm.

Overall error Accuracy� PPV NPV Sensitivity AUPRC AUROC�

EI OA

HyperSMURF 13.7% 0.76 (0.69–0.82) 0.45 0.93 79.4% 75.0% 0.64 0.84 (0.75–0.92)

Weight Random Forest 14.1% 0.84 (0.87–0.90) 0.63 0.90 59.0% 90.9% 0.49 0.75 (0.66–0.84)

BiMM Random Forest 14.2% 0.84 (0.78–0.90) 0.87 0.67 47.0% 94.0% 0.47 0.70 (0.62–0.80)

�Accuracy and AUROC are presented with 95% confidence intervals.

Data are based on analysis of 20% (n = 166) patients in the OA and EI groups.

Abbreviations: AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision and recall curve; BiMM, binary mixed model forest

algorithm (23); HyperSMURF, hyper-SMOTE under sampled random forests (24); NPV, negative predictive value; PPV, positive predictive value. See Table 1 for

definitions of EI and OA.

https://doi.org/10.1371/journal.pone.0255977.t003
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required a large number of assumptions on independent variables and many successive statis-

tical checks, making it much more difficult to interpret. Because of this complexity, we opted

for a frequentist framework that markedly reduces the number of mathematical steps and their

validation and obtains a level of predictive validity acceptable for its intended clinical use.

Our results confirm that the EI algorithm possesses two critical features of a predictive

model: the agreement between observed probabilities and predicted probabilities (i.e., calibra-

tion) and the ability to clearly distinguish between categories (i.e., discrimination). Thus, for

the intended purpose of guidance in clinical decision-making, our EI algorithm provides an

acceptable balance between a high rate of true positives (correctly identified patients) and a

low rate of false positives (incorrectly identified patients). As with any predictive algorithm

designed to assist in medical decisions, the EI algorithm should be considered a contributing

tool that takes into account the potential impact on the patient’s health.

Decision-making process and machine learning

Matching these predicted probabilities with a 0–1 classification, by choosing a threshold above

which a new observation is classified as 1 versus 0, is no longer part of the statistics. It is part of

the decision-making process that integrates other contingencies or issues than the probabilistic

results of the model. Practitioners may ask several pertinent questions that could influence this

threshold. For example, will a binary categorization (EI and OA) negatively affect patient care

compared with a more detailed determination of daily PA behavior? If so, in what way will it

affect care, especially with respect to the design of individualized pulmonary rehabilitation

programs or personalized recommendations? Like any diagnostic method implemented in the

clinical decision-making process, the predictive validity of the information and the operational

impact of the level of precision must be evaluated. This echoes some points raised by Faner

and Agusti [27], who questioned the practical use of conclusions based on clustering studies

for identifying a clinical phenotype predictive of mortality for a single patient. In that case, the

issue was whether a complex analytical approach—as opposed to common sense—was really

necessary to know that patients with severe airflow limitation and comorbidities would have a

poor prognosis.

Fig 4. Receiver operating characteristic curves for the prediction of EI using weighted random forest (WRF, left) and hyper-

ensemble of SMOTE under sampled random forests (HyperSMURF, right) methods. Areas under the curves are shown as

the median and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0255977.g004
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In real-life practice, the purpose of the EI algorithm would be to alert the physician to the

probability of a new patient having EI or OA status. This is particularly important because

only a minority of patients who are eligible for pulmonary rehabilitation actually derive benefit

[28], partly because the referring pulmonologist may be unaware of the patient’s true EI status,

which may be sufficiently poor as to predispose them to failure. In support of this, our results

suggest that the most extreme inactivity (i.e., EI) is largely underestimated in routine consulta-

tions. Indeed, application of the EI algorithm increased the proportion of the total population

with EI status from 12.2%, detected by the patient and physician estimates, to 21.7%. Our

results compare favorably with those reported by Schneider et al. [5], who examined daily PA

in COPD patients using accelerometry. The detailed analysis of the kinetics and intensity of

PA by those authors found that 49% (n = 67) of patients could be defined as “active and non-

sedentary” and 26% (n = 35) as “non-active and sedentary”, which compare with 46.8% OA

(n = 660) and 34% EI (n = 478) in our study. Nevertheless, further comparisons between stud-

ies based on accelerometry measurements and machine learning using non-PA data are

beyond the scope of this analysis.

Limitations and strengths

The method we have proposed to define EI status may seem too simplistic compared with

objective measurements from accelerometry. Our definition was based on two assumptions:

that employing both patient- and physician-derived information would compensate for any

imprecision resulting from subjectivity; and that EI status could be predicted from routine

clinical data (e.g., behavioral, psychological, symptomatic) that are causes and/or conse-

quences of extreme inactivity. It is important to note that whether the EI status used here

would be exactly the same as one derived from accelerometry is ultimately not a crucial factor.

The most important intended use of the algorithm is to enable patients with genuine EI sta-

tus to be identified when the clinical data are equivocal. The best illustration that our assump-

tions were acceptable is the accuracy of prediction with the test sample of EI and OA patients

(n = 166), which had a modest predictive error of 13.7%. Another limitation is that we did not

perform accelerometry of the 306 patients with intermediate PA levels who were reclassified

by our algorithm as EI. However, various studies have reported that between 10% and 20% of

data are routinely missing from accelerometry studies (incomplete measurements or any other

reasons) and the patient number included per study rarely exceeds about 100. In addition,

considering that >200 pulmonologists from throughout France contributed data to the EI

algorithm, any attempt to perform comparative accelerometry would undoubtedly have

resulted in an even higher rate of lost or unusable data. We propose that the predictive validity

of our predictive algorithm will increase as the size and diversity of the COLIBRI-COPD data-

base increases. Moreover, the addition of new variables to the EI algorithm is technically possi-

ble, because the machine learning approach developed for the algorithm is an evolutionary

and adaptable process. Examples of potentially influential variables for predicting EI status are

psychological and social vulnerability, and regional climate and pollution data [9]. The addi-

tion of physiological data, such as functional exercise capacity (6-minute walk test, chair-rising

test, grip strength, pedometer readings) could also be valuable, even though these parameters

have been shown to be individually unreliable for identifying patients with extremely inactive

lifestyles [11].

Interpretation

In conclusion, we report that a predictive machine learning algorithm, developed from routine

clinical data collected during online consultations, can identify EI status among patients with
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all stages of COPD severity. Integration of this algorithm within online consultations via an

R-Shiny-python interface [29] could alert the clinician to the frequently overlooked patients

who urgently require intervention to promote PA. Thus, it is our hope that the approach pro-

posed here will advance the field of medical decision-making and move it further towards the

holy grail of predictive and personalized medicine for COPD patients.
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majority class (OA) into n partitions. For each partition, oversampling techniques are used to

generate additional patients from the minority class (EI) that closely resemble the distribution
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