
RESEARCH ARTICLE

Host plant forensics and olfactory-based

detection in Afro-tropical mosquito disease

vectors

Vincent O. Nyasembe1,2, David P. Tchouassi1, Christian W. W. Pirk2, Catherine L. Sole2,

Baldwyn Torto1,2*

1 International Centre of Insect Physiology and Ecology, Nairobi, Kenya, 2 Department of Zoology and

Entomology, University of Pretoria, Hatfield, South Africa

* btorto@icipe.org

Abstract

The global spread of vector-borne diseases remains a worrying public health threat, raising

the need for development of new combat strategies for vector control. Knowledge of vector

ecology can be exploited in this regard, including plant feeding; a critical resource that mos-

quitoes of both sexes rely on for survival and other metabolic processes. However, the iden-

tity of plant species mosquitoes feed on in nature remains largely unknown. By testing the

hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting

trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mos-

quito vectors of dengue, Rift Valley fever and malaria being among the most important mos-

quito-borne diseases in East Africa. These included three plant species for Aedes aegypti

(dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for

Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further

sought to identify specific odor signatures that may modulate host plant location. Using cou-

pled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry

and electroantennogram analyses, we identified a total of 21 antennally-active components

variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host

plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected

mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly,

the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mos-

quito species and present in all the identified host plants, suggesting that they may serve as

signature cues in plant location. This study highlights the utility of molecular approaches in

identifying specific vector-plant associations, which can be exploited in maximizing control

strategies such as such as attractive toxic sugar bait and odor-bait technology.

Author summary

Plants play an important role in the fitness of mosquito disease vectors, yet the identity of

plant species that they feed on in their natural habitats remains largely unknown. In this
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study, we employed DNA barcoding to identify the plant species fed upon by Aedes
aegypti, Aedes mcintoshi, Aedes ochraceus and Anopheles gambiae in their natural habitats.

Since plant feeding is mediated by olfactory cues, with potential application as attractant-

based tools for vector surveillance, we identified specific odor signatures that may modu-

late host plant location. Our findings showed preference in odor detection among the

vectors for different compound classes; benzenoids for Ae. aegypti, aldehydes for Ae. mcin-
toshi and sesquiterpenes and alkenes for An. gambiae. This study highlights the utility of

molecular approaches in identifying specific vector-plant associations, a knowledge which

can be exploited in maximizing vector control strategies such as attractive toxic sugar bait.

Furthermore, the elucidation of potential odor signature lays foundation for development

of plant odor-bait technology which is critical for surveillance of different mosquito dis-

ease vectors of varying physiological states and the pathogens they transmit.

Introduction

There has been an increase in the incidence of vector-borne diseases, key among them arbo-

viral diseases such as dengue, chikungunya, Rift Valley fever (RVF) and zika. While dengue

predominantly affects Asian countries, increasing outbreaks in East African coastal regions

have become evident in recent times [1–3]. Rift Valley fever which mainly occurs in Africa,

with foci in East Africa, is rapidly spreading eastwards into Asia and the Arabian Peninsula

[4–6]. The recent upsurge in dengue incidence has been attributed to rapid and unplanned

urbanization which creates conducive breeding habitats for the key mosquito vector of the dis-

ease, Aedes aegypti [3, 7]. On the other hand, RVF is an epizootic disease mainly associated

with devastating outbreaks following widespread elevated rainfall, leading to flooding that cre-

ates favorable breeding sites for the primary mosquito vectors Aedes mcintoshi and Aedes
ochraceus [5, 8]. In East Africa, in particular Kenya, the public health burden due to these arbo-

viral diseases is further compounded by the endemicity of the parasitic malaria disease trans-

mitted by certain species of the Anopheles mosquito [9]. Globally, vector-borne diseases pose

risk of infection to more than half of the world population with more than a million deaths

annually [10]. Consequently, there is renewed effort to come up with new disease control mea-

sures and vector control forms a key pillar in these efforts. Detailed understanding of the vec-

tor ecology is needed in search for novel control strategies.

Plant feeding plays a critical role in the bio-ecology of mosquito disease vectors. Several

studies have demonstrated that both sexes of different mosquito species forage on plants to

obtain carbohydrates required for metabolic processes vital for their survival [11–13]. Besides

providing a ready source of energy for flight, fecundity and cell metabolism [12, 14, 15], plant

carbohydrates are also utilized during diapause by mosquitoes such as Culex pipiens to synthe-

sise lipid reserves [16–18]. The availability of host plants has also been shown to extend sur-

vival of Anopheles gambiae and An. sergentii, likely allowing for the completion of sporogonic

cycle of malaria parasites and thereby increasing disease transmission potential of these vectors

[19–22]. On the other hand, abundance of flowering plants has been linked to reduced human

biting behavior by mosquito disease vectors, which can impact either positively or negatively

on disease transmission potential depending on the infection status of the mosquitoes [13, 20,

23, 24]. In addition, studies have shown that both mosquitoes and sandflies imbibe plant sec-

ondary metabolites during plant feeding, some of which reduce parasite load in the vector

[21, 25, 26]. This has led to the hypothesis of possible self medication by these disease vectors

[15, 26] opening up new avenues for exploiting phytochemicals in development of novel
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chemotherapeutics against the pathogens they transmit. Thus, beyond the provision of nutri-

ents, understanding plant feeding in disease vectors offers promising opportunities for devel-

opment of new control strategies against the myriad of vector borne diseases. Despite this,

little is known about plant feeding behavior of mosquito vectors of dengue and RVF.

Previous studies have demonstrated that mosquitoes are highly selective in their choice of

plants [27–30]. These inferences were drawn from semi-field and field experiments which

either involved feeding mosquitoes on randomly selected peri-domestic plants to determine

their acceptability [27, 28] or determining the attraction of mosquitoes to randomly selected

fruits/seedpods and flowering plants [29–31]. Determination of plant feeding among various

mosquito species has mainly been based on analytical techniques such as cold anthrone tests to

detect fructose in the crop of field collected mosquitoes, chromatographic methods to detect

plant sugars and cellulose staining to detect plant tissue feeding [12, 16, 19, 23, 24, 28, 32], with

little to no direct field observations of mosquitoes feeding on plants [33, 34]. While contribut-

ing immensely towards our understanding of the role of plant feeding in the vectorial capacity

of mosquitoes, these methods are, however, limited by their inadequacy in determining the

precise host plants in the natural mosquito habitats. As diverse plants often occur in each habi-

tat, the critical question of which plants, if any, are foraged upon by mosquito disease vectors,

remains unanswered.

Recent advances have seen the application of DNA barcoding targeting specific genes to

profile plant species fed upon by disease vectors [35, 36]. However, this has not been applied

for any Afro-tropical disease vector, thus far. By employing DNA barcoding targeting multiple

gene loci, we tested the hypothesis that Afro-tropical disease vectors feed on certain plants in

their respective ecologies. We focused on four mosquito species which transmit dengue (Aedes
aegypti), Rift Valley fever (Aedes mcintoshi and Aedes ochraceus) and malaria (An. gambiae) [3,

37–39]. These diseases rank among the most important vector-borne diseases in Kenya with

some having been associated with large outbreaks affecting humans in the recent past [2, 5, 6,

9]. Given the central role of olfactory cues in locating this key plant resource [40–42], we fur-

ther used coupled gas chromatography/mass spectrometry and electrophysiological assays to

test the hypothesis that these disease vectors use unique odor bouquet to locate their suitable

natural host plant. Our results show that the four Afro-tropical mosquito species feed on cer-

tain plant species within their ecological range and detect common and specific chemical cues

to locate their suitable host plants. This study provides useful insight that can inform vector

control strategies targeting plant feeding behavior such as attractive toxic sugar bait and odor

bait technology.

Matherials and methods

Mosquito sample collection

Mosquito samples were obtained from three sites in Kenya: Ae. aegypti from Kilifi (3.6333˚ S

and 39.8500˚ E) in the coastal region with high dengue endemicity [2, 3], Ae. mcintoshi and

Ae. ochraceus from Ijara (1.5988˚ S and 40.5135˚ E) in north eastern Kenya which is a Rift Val-

ley fever endemic region [5, 6] and An. gambiae s.l. from Ahero (0˚10’S, 34˚55’E) which is a

malaria endemic area in western Kenya [9]. The trapping methods used to collect mosquito

samples are described in detail in Nyasembe et al. [42]. Briefly, unlit CDC traps separately

baited with linalool oxide (LO), BioGent (BG) lure and HONAD (a mixture of heptanal, octa-

nal, nonanal and decanal) formulated from mammalian odor by Tchouassi et al. [37] were

used to trap Ae. mcintoshi, Ae. ochraceus and An. gambiae; while BG sentinel traps separately

baited with LO and BG lure, were used to trap Ae. aegypti. The traps were also either baited

with or without carbon dioxide in the form of dry ice at all the three sites. All trappings were
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carried out outdoors. In Ahero and Kilifi, traps were placed in three distinct settings i) close to

the homestead, ii) close to breeding sites a priori identified as positive for the specific mosquito

larvae, and iii) in vegetation away from human dwelling [3, 39, 43, 44]. In Ijara, the traps were

set at two distinct settings i) next to ‘dambos’ which serve as breeding sites for Ae. mcintoshi
and Ae. ochraceus and ii) in bushy grasslands where pastoralists graze their livestock [6, 37,

38]. In Kilifi, trappings were carried out both during the day and night (informed by the diur-

nal nature of Ae. aegypti) while in Ahero and Ijara trappings were carried out during the night

only (due to the nocturnal nature of mosquito vectors in these localities). Traps were emptied

after 12 h and the collected mosquitoes immobilized by placing on dry ice, immediately frozen

in liquid nitrogen and transported to icipe laboratories in Nairobi for further processing.

Sample preparation

To prepare the samples for biochemical and molecular analyses, individual mosquitoes were

submerged in a solution of 0.5% hypochlorite, agitated gently for 1 min with forceps, and then

rinsed in double distilled water (ddH20) for 1 min. This was to remove any plant debris that

may have been on the outside of the insect, which could otherwise contaminate the sample.

The mosquitoes were then placed individually in a 1.5 ml sterile Eppendorf tube and macer-

ated using round-tipped glass rods sterilized through the flame of a Bunsen burner. One hun-

dred microlitres of absolute ethanol was added and the solution homogenized. Two sets of

controls were used as follows: a) laboratory-reared An. gambiae s.s. fed on Parthenium hystero-
phorus (Asteraceae) overnight, and b) An. gambiae aspirated directly from P. hysterophorus
field in Ahero using a backpack aspirator (3” IN-LINE BLOWER, John W. Hock Company,

Gainesville, FL, USA). All mosquitoes from the controls were prepared as described above.

Determination of evidence of recent plant feeding in field collected

mosquitoes

This was done using the cold anthrone test as described by van Handel et al., [45] as a quick

initial test to detect fructose. Aliquots (50 μl) of the prepared mosquito homogenate were indi-

vidually placed in the wells of a flat bottomed 96-well microtiter plate followed by 300 μl of the

reaction solution comprising 0.15% anthrone (Sigma) (wt/vol) in 71.7% sulphuric acid. This

was incubated at 25 oC for 60 min before being examined for color changes. In the presence of

fructose, the reaction mixture changed its color from yellow to blue. The remaining aliquot of

fructose-positive samples was subjected to plant DNA extraction as described below.

Extraction of plant DNA from mosquitoes

Plant DNA was extracted from the homogenized samples of fructose-positive mosquitoes only

using the manufacturer’s protocol described by DNeasy Plant Minikit- (QIAGEN, USA) with

a minor modification. The incubation period with lysis buffer AP1 and RNase was extended

by 30 min while that with the elution Buffer AE was extended for 3 hr. The extracted DNA was

stored at -20˚C until use in PCR amplification.

PCR amplification and sequencing

Plant DNA extracted from the fructose-positive mosquito specimens was amplified targeting

the trnH-psbA intergenic spacer region and maturase K (matK) gene (Table 1) using estab-

lished primers. The use of more than one target was to maximize on the detection possibility

as individual genes selectively amplify certain plant families [46]. Each PCR reaction (carried

out in a volume of 20 μl) consisted of 7 μl template DNA, 10 μl 2x HotStarTaq Master Mix
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(HotStarTaq Plus Master Mix Kit, Qiagen), 0.5 μM of each primer, and 2 μl of RNase free

water. A PCR negative control (RNase-free water) was routinely used. Samples were amplified

using Veriti 96-well Thermal Cycler (Singapore). For trnH-psbA, the cycling parameters were

94 oC for 1 min, followed by 45 cycles of 94 oC for 1 min, 55 oC for 40 sec and 72 oC for 1 min,

and final extension at 72 oC for 10 min. Similar cycling conditions were used for matK amplifi-

cation with the annealing temperature set at 48 oC.

Successful amplifications were confirmed by visualizing PCR amplicons in 1% agarose gel

electrophoresis. They were purified using the Exo/SAP-IT Kit for PCR product (Affymetrix

Inc., USA) as per the manufacturer’s instructions and outsourced for bidirectional sequencing

to Inqaba Biotechnological Industries (Pty) Ltd (Pretoria, South Africa).

The obtained plant DNA sequences for each gene were cleaned, edited and compared to

reference sequences in the GenBank database [47]. In GenBank, the ‘megablast’ search option

of nucleotide Basic Local Alignment Search Tool (BLASTn) [48] algorithm was used with the

default search parameters. The hits with sequence identity above 96% were retrieved and

added to the original sample query sequences. The sequences were aligned using ClustalW in

MEGA 6 [49]. Aligned matrices were used to construct p-distance phylogenetic tree using the

Neighbor Joining method for individual genes with 1000 bootstraps. Nodal support was evalu-

ated by bootstrapping with values of 95% or more considered significant.

Confirmation of identified mosquito host plants

Further steps to confirm the plant identity included on-site identification within the specific

ecologies from where the mosquitoes were sampled by a plant taxonomist (Simon Mathenge,

retired from the Herbarium, Department of Botany, University of Nairobi) and comparison

to established botanical database by the National Museum of Kenya (http://www.museums.

or.ke).

Leaves and flowers (where applicable) of identified plants were sampled from the respective

field sites for DNA extraction and sequencing. The samples were cleaned using double distilled

water before obtaining approximately 100 mg wet weight of the sample which were placed in

sterile 1.5 ml Eppendorf tubes. The plant samples were homogenized and DNA extracted

using the DNeasy Plant Mini Kit as described above. The obtained plant DNA was similarly

amplified for trnH-psbA and matK genes, processed and sent for sequencing as described

above. The sequences were then aligned with those from the mosquitoes and phylogenetic

trees obtained. Nodal support was evaluated by bootstrapping with values of 95% or more con-

sidered significant.

The haplotypes generated from this study have been deposited in GenBank under accession

numbers MG573108, MG573126 –MG573131 (RVF vectors host plant trnH-psbA gene

sequences), MG573132 –MG573139 (dengue vector host plant trnH-psbA gene sequences),

MG573109 –MG573125 (malaria vector host plant trnH-psbA gene sequences), and

KY308115—KY398121 (malaria vector host plant matK gene sequences).

Table 1. Forward and reverse primer sequences for three gene targets used to identify natural host plants of dengue, Rift Valley fever and malaria mosquito disease

vectors.

Primer Direction Sequence (5’-3’) Reference

trnH-psbA trnH CGCGCATGGTGGATTCACAATCC Shaw et al., 2005

psbA GTTATGCATGAACGTAATGCT Shaw et al., 2005

matK 2.1 forward CCTATCCATCTGGAAATCTTAG Kress et al., 2005

5 reverse GTTCTAGCACAAGAAAGTCG Kress et al., 2005

https://doi.org/10.1371/journal.pntd.0006185.t001
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Collection of headspace volatiles from the identified natural mosquito host

plants

Headspace VOCs were collected from five of the confirmed natural host plants for Ae. aegypti,
Ae. mcintoshi, Ae. ochraceus and An. gambiae. The five plants included Pithecellobium dulce
(Fabaceae), Opuntia ficus-indica (Cactaceae), Leonotis nepetifolia (Lamiaceae), Senna alata
(Fabaceae) and Ricinus communis (Euphorbiaceae). This was done by collecting the headspace

volatiles from these plants in situ at their natural habitats using a portable field pump (Analyti-

cal Research Systems, Gainesville, Florida, USA). The aerial parts of an intact plant were gently

enclosed in an air-tight oven bag (Reynolds, Richmond, VA, USA) and charcoal filtered air

passed over the plant at a flow rate of 350 ml/min into a Super-Q adsorbent trap (30 mg, Ana-

lytical Research Systems, Gainesville, Florida, USA). The aerial plant parts enclosed in the

oven bags included leaves, flowers and pods of P. dulce and S. alata, leaves and flowers of L.

nepetifolia, leaves and leaf stalks of R. communis, and leaves, flowers and fruits of O. ficus-
indica. For all plant species, volatiles were collected for 12 hr during the day and 12 hr at night

and replicated three times using different plants in each replicate. The Super-Q traps were

eluted with 200 μl GC/GC-MS-grade dichloromethane (DCM) (Burdick and Jackson, Muske-

gon, Michigan, USA) and the eluents stored at -80 ˚C until analysis.

Analysis of volatiles

For quantification and identification of the constituent compounds of the plant volatiles, an

aliquot (1 μl) of each sample was injected into a gas chromatograph (Agilent technologies-

7890) coupled to inert XL EI/CI mass spectrophotometer (5975C, EI, 70eV, Agilent, Palo Alto,

Califonia, USA) (GC/MS) in a splitless injection mode. The GC was equipped with an HP-5

column (30 m x 0.25 mm ID x 0.25 μm film thickness, Agilent, Palo Alto, California, USA),

with helium as the carrier gas at a flow rate of 1.2 ml/min. The oven temperature was held at

35 ˚C for 5 min, then programmed to increase at 10 ˚C/min to 280 ˚C and maintained at this

temperature for 10 min. The volatile organic compounds were identified by comparing their

mass spectra with library data (Adams2.L, Chemecol.L and NIST05a.L) and with those of

authentic standards where possible (see sources and purity under chemical section below).

The absolute areas of each constituent as calculated by the NIST05a.L software was used to

estimate their amounts using an external calibration equation generated from known amounts

of authentic compounds.

Electrophysiological assays

To isolate the specific VOCs that are detected by the different mosquito disease vectors and

their preferred natural host plants, wild caught adult Ae. aegypti, Ae. mcintoshi and An. gam-
biae s.l., were collected from their respective habitats using methods described above and

transported alive to the icipe laboratories in Nairobi under high containment level and directly

used in electrophysiological assays. The trapped mosquitoes were aspirated into 30 x 30 x 30

cm cages and provided with 10% glucose solution soaked in cotton wool during transporta-

tion. The tops of the cages were covered with a moist towel to maintain high humidity. Once

at icipe, the mosquitoes were kept in a high containment animal rearing unit at a temperature

of 27–31˚C and average humidity of 80%. Only female mosquitoes were used for electrophysi-

ological assays and they were starved for 2 hr before experimentation. Anopheles gambiae s.s.

antennal responses to R. communis headspace volatiles had been tested in our previous study

[40], hence was not repeated in this study. In addition, Ae. ochraceus was not used in these

studies as none were collected during this field sampling.
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Coupled gas chromatography/electro-antennographic detection (GC/EAD) analyses were

performed as described by Nyasembe et al. [40]. Briefly, 5 μl of volatile samples were analyzed

using a Hewlett-Packard (HP) 5890 Series II gas chromatograph equipped with an HP-5 col-

umn (30 m x 0.25 mm ID x. 0.25 μm film thickness, Agilent, Palo Alto, California, USA) with

nitrogen as the carrier gas at 1 ml/min. Volatiles were analyzed in the splitless mode at an

injector temperature of 280 ˚C and a split valve delay of 5 min. The oven temperature was held

at 35˚C for 3 min, then programmed at 10 ˚C/min to 280 ˚C and maintained at this tempera-

ture for 10 min. The column effluent was split 1:1 after addition of make-up nitrogen gas for

simultaneous detection by flame ionization detector (FID) and EAD. For EAD detection, sil-

ver-coated wires in drawn-out glass capillaries (1.5 mm I.D.) filled with Ringer saline solution

served as reference and recording electrodes. Live mounting in which the mosquito was

restrained with an adhesive tape with the reference electrode connected to the base of the head

and the recording electrode connected to the tip of the antennae. The analogue signal was

detected through a probe (INR-II, Syntech, Hilversum, the Netherlands), captured and pro-

cessed with an intelligent data acquisition controller (IDAC-4, Syntech, the Netherlands), and

later analyzed with EAG 2000, software (Syntech). FID signals from the respective host plant

volatiles that elicited repeated antennal responses in at least three replicates using fresh anten-

nae were designated as EAD-active compounds and identified by matching them with corre-

sponding GC/MS data and those of authentic standards.

EAG puffs were used to confirm the detection of seven EAD-active components which elic-

ited antennal responses using synthetic standards. The seven compounds were selected based

on either being detected by more than one mosquito species from the volatiles from their

respective host plants, or by the same mosquito species from volatiles of different host plants.

The synthetic standards were prepared at a concentration of 1 ng/μl, 2 ng/μl and 4 ng/μl in

dichloromethane (Sigma Aldrich, 99.9%) and separately delivered as puffs on 1 cm X 1 cm fil-

ter paper placed in Pasteur pipettes. The puffs were delivered at 1 min interval, allowing the

antennae to equilibrate post-exposure. To correct for variability in response, responses to

blanks (filter paper laced with solvent only) were subtracted from each sample and antennal

response values were normalized to a standard stimulus set at 100% (2 ng/μl 1-octen-3-ol, cho-

sen based on its known attractiveness to hematophagous insects [41]. EAG puffs were repli-

cated nine times for each dose of every stimulus.

Chemicals used

The synthetic standards of the following EAD-active compounds were used: hexanal (Sigma

Aldrich, 99%), (E)-2-hexenol (Aldrich, 96%), benzaldehyde (Sigma Aldrich, 99.5), β-myrcene

(Sigma Aldrich, 99%), ocimene (International Flavors and Fragrance, New York, USA, (Z)-β-

ocimene = 27%, (E)-β-ocimene = 67% and allo-ocimene = 6%), linalool oxide (Sigma Aldrich,

mixture of stereoisomers with furanoid form, 99.5% and 0.5% pyranoid form), indole (Sigma

Aldrich, 99%) and 1-octen-3-ol (Fluka Chemica, racemic mixture of R and S 98%).

Statistical analysis

To determine if there was any significant difference in the volatile profiles of the five plant spe-

cies, ten most abundant volatile constituents in each plant species were selected. Attempts

were then made to retrieve each of these compounds from the VOCs analyzed for the rest of

the plant species, yielding a total of 26 different compounds. The absolute areas of these com-

pounds were then measured and converted into a percentage of the total. These percentages

were then subjected to Principal Component Analysis (PCA) to determine which ones, if any,

are important in explaining the variation in the odor profiles of the five different plant species.
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Quantitative differences in VOCs of the five different plant species were detected using Uni-

variate analysis of variance and Tukey post hoc test. Differences between the antennal dose

responses and between the three different mosquito species, were detected using ANOVA and

Tukey post hoc test. All statistical analyses were carried out at 95% confidence interval using R

2.15.1 software [50].

Results

Evidence of plant feeding among wild-caught Afro-tropical mosquito

species

By applying the cold anthrone test to detect fructose as evidence of recent plant feeding, we

established the degree of plant feeding among the females of four Afro-tropical mosquito spe-

cies Aedes aegypti (dengue vector), Aedes mcintoshi, Ae. ochraceus (RVF vectors) and Anopheles
gambiae s.l. (malaria vector) trapped from different habitats in Kenya during the long rainy

season (April-June, 2014). Since no male mosquitoes were collected for RVF and malaria vec-

tors, this analysis was limited to only female mosquitoes for all the four species. We found evi-

dence of recent plant feeding in Ae. aegypti (17%, n = 245), Ae. mcintoshi (56%, n = 68), Ae.

ochraceus (65%, n = 50) and An. gambiae (24%, n = 146).

Afro-tropical mosquito species feed on diverse plant species in their

natural habitats

To determine the identities of the plant species fed upon by these mosquito species in their

natural habitats, we subjected aliquots of samples that tested positive for the anthrone test to

DNA extraction followed by amplification targeting two plant genes; trnH-psbA and matK;

and then sequencing. We observed that the success rates in amplification of plant DNA from

the mosquito crop differed significantly between the two gene targets; trnH-psbA (24.5%) and

matK (8.8%) (P< 0.05; Table 2). Similarly, sequencing success rates differed significantly

between trnH-psbA (16.4%) and matK (1.9%) (P< 0.05; Table 2). The sequenced fragment

sizes ranged from 276–617 bp for trnH-psbA and 133–846 bp for matK genes.

Blast searches of the sequences for each target in GenBank and further phylogeny showed

strong support (bootstrap values 95% and above) and identified host plants as Pithecellobium
dulce (Fabaceae), Senna uniflora (Fabaceae) and Hibiscus heterophyllus (Malvaceae) for Ae.

aegypti (Fig 1A); Opuntia ficus-indica (Cactaceae) for Ae. mcintoshi; and O. ficus-indica and an

unidentified plant species for Ae. ochraceus (Fig 1A); and Senna alata (Fabaceae), Senna tora
(Fabaceae), Ricinus communis (Euphorbiaceae), Parthenium hysterophorus (Asteraceae) and

Leonotis nepetifolia (Lamiaceae) for An. gambiae (Fig 1A and 1B). The plant identities were

Table 2. Variable success rates of two gene targets in amplifying and sequencing plant DNA in the crop of differ-

ent mosquito species.

Mosquito species N Amplified (Sequenced)

trnH-psbA (total (success)) matK (total (success))

Aedes aegypti 42 8 (6) 0 (0)

Aedes mcintoshi 38 2 (2) 2 (0)

Aedes ochraceus 32 11 (3) 9 (0)

Anopheles gambiae s.l. 35 18 (15) 3 (3)

Overall 147 39 (26) 14 (3)

N = number of mosquitoes from which plant DNA were extracted.

https://doi.org/10.1371/journal.pntd.0006185.t002
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further corroborated by on-site botanical identification to confirm their presence and inclu-

sion of matched sequences of extracted DNA in the analyses. These and putative sequences

from the mosquito gut clustered together with strong bootstrap support in the phylogenetic

analysis (Fig 1A and 1B).

Diverse volatile organic compounds characterize the natural host plants of

Afro-tropical mosquito species

We analyzed headspace volatiles from five of the identified natural host plants viz P. dulce, O.

ficus-indica, L. nepetifolia, S. alata and R. communis. The VOCs of the five different plant spe-

cies were differentiated by unique chemical constituents of varying abundance (Fig 2A). Prin-

cipal Component Analysis (PCA) resolved these chemical constituents into three clusters

which accounted for more than 90% of the total variation (Fig 2B). PC1 explained 38% of the

variation; PC2 explained 32% while PC3 explained 22% of the variation. PC1 was weighed pos-

itively by monoterpenoids and benzenoids, predominantly unique to P. dulce, while PC2 was

positively contributed to by sesquiterpenes which were characteristically abundant in L. nepoti-
folia (S1 Table). PC3 was positively characterized by monoterpenes which were the key constit-

uents detected in the VOCs of R. communis (S1 Table). The headspace volatile constituents of

S. alata and O. ficus-indica contained benzenoids (S1 Table). (E)-β-Ocimene was present in

the VOCs of all the five host plant species, while hexanal, (E)-2-hexen-1-ol, β-myrcene, benzal-

dehyde, α-pinene, nonanal, linalool oxide, decanal, methyl salicylate, (E)-β-caryophyllene and

germacrene D were variably present in the volatiles of two or more plant species (S1 Table).

Multivariate analysis of variance revealed significant quantitative differences in the volatile

profiles of the five plants (F(4, 1095) = 142.907, P< 0.001; Fig 2C).

Afro-tropical mosquito species detect unique volatile organic compounds

from their natural host plants

To test if Afro-tropical mosquito species detect odors of their natural host plants, we employed

coupled gas chromatography/electroantennographic detection (GC/EAD) and GC/mass spec-

trometry to isolate and identify VOCs that are detected by antennae of Ae. aegypti, Ae. mcin-
toshi and An. gambiae. Our assays revealed that the antennae of the three different mosquito

species detected a total of 21 different VOCs, some of which were unique to their preferred

host plants while others were common across two or more of the plant species. Antennae of

Ae. aegypti detected 8 components in P. dulce headspace volatiles (Fig 3A), with 12 compo-

nents detected by Ae. mcintoshi from O. ficus-indica (Fig 3B) while those of An. gambiae s.l.

detected 13 and 7 components in the volatiles of L. nepetifolia and S. alata, respectively (Fig 3C

and 3D). β-Myrcene and ocimene were detected by antennae of all the three different mos-

quito species from their respective host plants while hexanal, (E)-2-hexenol, and linalool oxide

isomers, and benzaldehyde were variably detected by the three different mosquito species. On

the other hand, antennae of the three different mosquito species also detected unique com-

pounds from their respective host plants which included benzenoids (benzyl alcohol and

indole) by Ae. aegypti, aldehydes (octanal, nonanal and decanal) by Ae. mcintoshi, and

Fig 1. NJ phylogenetic trees from two gene targets showing plant species identified as natural host plants of the Afro-

tropical mosquito species. A) Plant species identified using trnH-psbA gene targets as host plants for Aedes aegypti, Aedes
mcintoshi, Aedes ochraceus and Anopheles gambiae. B) Plant species identified using matK gene targets as host plants for

Anopheles gambiae. Plant species names with prefix Aa from Aedes aegypti, Am from Aedes mcintoshi, Ao from Aedes ochraceus
and Ag represent those that were identified from Anopheles gambiae, the numbers being sample ID. Plant species with prefix

P1-4 represent the plant samples sequences to confirm the identity of the mosquito host plants while those with suffixes are

outgroups from GenBank with extension being accession numbers.

https://doi.org/10.1371/journal.pntd.0006185.g001
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sesquiterpenes (β-cedrene, (E)-β-caryophyllene, α-humulene and δ-cadinene) and C-13, C-18

and C-20 alkenes by An. gambiae (Fig 3A, 3B, 3C and 3D).

We then selected compounds which were detected by two or more mosquito species for fur-

ther electrophysiological assays to confirm and compare their bioactivity. These included hex-

anal, (E)-2-hexen-1-ol, benzaldehyde, β-myrcene, (E)-β-ocimene and (E)-linalool oxide (the

mass spectra of these six compounds are provided in S1A–S1G Fig). In addition, following iso-

lation of indole as an EAG-active VOC from Ae. aegypti host plant and its known role as an

oviposition cue for different mosquito species [51], we also included it in these electrophysio-

logical assays. 1-octen-3-ol was used as reference compound. Antennal responses of the two

Fig 2. Variable chemical profiles of plant species used by different mosquito species as host plants. A) Representative profiles of

headspace volatile organic compounds (VOCs) of different plant species as measured by coupled gas chromatography/mass spectrometry.

The identities of the compounds labeled 1–73 representing VOCs from the five plant species, their retention times and Kovats indices are

listed in S1 Table (additional information). B) Three-dimensional graphical representation of PCA which resolves the volatile profiles of the

five plant species into three distinct clusters. PCA1 = 38%, PCA2 = 32% and PCA3 = 22%. C) Mean amounts of VOCs from the five plant

species. Bars capped with different letters are significantly different. Circles and asterisk above the box plots represent outliers. Quantitative

differences in the VOCs content of the five plants were detected using Univariate analysis of variance and Tukey HSD.

https://doi.org/10.1371/journal.pntd.0006185.g002

Fig 3. GC/EAD profiles of headspace volatiles collected from natural host plants of specific Afro-tropical mosquitoes. A) Aedes aegypti gambiae antennal

detection of specific VOCs from Pithecellobium dulce.B) Aedes mcintoshi antennal detection of VOCs from Opuntia ficus-indica. C) Anopheles gambiae antennal

detection of specific VOCs from Leonotis nepetifolia. D) An. gambiae antennal detection of specific VOCs from Senna alata.

https://doi.org/10.1371/journal.pntd.0006185.g003
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Aedes species Ae. mcintoshi and Ae. aegypti to the seven compounds tested were dose depen-

dent, while that of An. gambiae was dose-dependent to three of the compounds including β-

myrcene, (E)-β-ocimene and indole (Fig 4).

Fig 4. Electroantennographic detection responses of three Afro-tropical mosquito species to different doses of

commonly detected plant volatile organic compounds. Variability in EAG responses were corrected by subtracting

the responses to blanks (5 μl dichloromethane and bioassay filter paper) from each sample and the antennal response

values normalized to a standard stimulus set at 100% (2 ng/μl 1-octen-3-ol). Bars capped with different letters are

significantly different between the three doses. The differences in dose response were detected using ANOVA followed

by Tukey post hoc test.

https://doi.org/10.1371/journal.pntd.0006185.g004
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β-Myrcene and (E)-β-ocimene elicited consistent dose-dependent antennal response across

the three different mosquito species. In depth analysis revealed significant differences in odor

detection intensities between the three mosquito species (F(2, 163) = 6.492, P< 0.01), with linal-

ool oxide, (E)-2-hexenol, hexanal and indole variably detected by the three mosquito species

(Fig 5).

Discussion

Our findings confirm that plant feeding is common among the four Afro-tropical mosquito

vectors of dengue, RVF and malaria among other diseases, evidenced by a significant propor-

tion of anthrone-positive mosquitoes. For the first time, we also identify the host plants fed

upon in nature from the habitats of these vectors using DNA barcoding. Plants identified

included P. dulce, S. uniflora and H. heterophyllus for Ae. aegypti, O. ficus-indica for Ae. mcin-
toshi and Ae. ochraceus, and L. nepetifolia, S. alata and S. tora for An. gambiae. This study rep-

resents the first evidence of plant feeding among RVF vectors. Also, some of the plant species

which had been presumed to be potential host plants for malaria vectors due to their presence

near human dwellings in malaria endemic regions were confirmed as host plants. These

included the highly aggressive invasive plants P. hysterophorus and R. communis [27, 28]. The

implications of these findings in the context of control of mosquito-borne diseases include: 1)

the precision of attractive toxic sugar baits can be greatly improved by application of the baits

on preferred natural host plants as opposed to random selection of plants to be laced with

insecticides, 2) some of these plants might have metabolites that impact on pathogen-vector

interactions which can be exploited for development of chemotherapeutics and transmission

blocking agents, and 3) chemical cues utilized by these mosquito species in locating their pre-

ferred natural host plants can be harnessed for development of odor-bait technology to be

used in vector surveillance and control.

Previous studies have suggested that mosquitoes mainly feed on plant nectars, extrafloral

nectaries and honeydew [41], with limited evidence of tissue feeding [19]. The isolation of

plant DNA from field collected mosquitoes points to plant tissue feeding in addition to nectars.

Plant nectars are mainly composed of sugars, with some plants having small amounts of

amino acids and proteins [52, 53], and trace amounts of DNA [54]. Our results show discrep-

ancy in the number of fructose positive mosquitoes and those from which plant DNA was suc-

cessfully isolated, with only about 25% and 8% of fructose positive mosquitoes amplified for

Fig 5. Heat map showing varying intensities of antennal responses to synthetic standards of identified

compounds in three mosquito species. The heat maps are based on doses (4ng/μl) of each compound eliciting the

highest antennal responses in the respective mosquito species. Green represent higher responses while red indicate

lower responses. White asterisks denote significant differences between two mosquito species. Differences in antennal

responses were detected using ANOVA and the means separated with Tukey post hoc test.

https://doi.org/10.1371/journal.pntd.0006185.g005
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trnH-psbA and matK gene targets, respectively. Junilla et al. [35] attributed the detection of

plant DNA in mosquitoes fed on flowering plants to possible presence of DNA in the nectar or

plant tissue feeding. We have observed in our laboratory plant feeding assays that mosquitoes

feed not only on plant nectar but also pierce through the stems and leaf stalks (data not

included). Similar observations were made by Junilla et al. [35]. These observations strongly

suggest that mosquitoes possibly pierce through plant tissue to draw nutrients from plant sap

in addition to nectars. In such a scenario, the mosquitoes would be predisposed to a few plant

metabolites which may impact on their fitness and pathogen transmission potential, as evi-

denced in previous studies [21, 25, 26]. Given that these Afro-tropical mosquito species can

discriminate their host plants from a plethora of plant species present in their habitats, with

more than one host plant identified for three of the mosquito species, it is possible that the

mosquitoes forage on different host plants for different fitness-related benefits. This, however,

does not rule out the possibility of chance feeding depending on the seasonal availability of a

given plant species, an aspect that warrants further research.

The present study further documents both qualitative and quantitative differences in the

VOCs of five of the identified host plants. The variable headspace volatile profiles are not sur-

prising; similar observations even within the same plant species from different cultivars, sea-

sons and geographical locations has been made before [55–57]. Besides, it is probable that

these plants utilize different metabolic pathways to give them the unique fragrance necessary

for a competitive advantage in the event of scarcity of certain shared resources such as pollina-

tors, parasitoids and self-defense [58]. Olfactory cues play a central role in herbivorous insect-

host plant interactions, as evidenced by previous studies [40, 59, 60]. In a complex environ-

ment permeated with many odor plumes from different plant species, plant feeding insects are

expected to evolve mechanisms that allow them to discriminate biologically relevant chemical

cues for resources that confer fitness [60]. Consequently, the finding that mosquitoes can dis-

criminate beneficial host plants from a plethora of plant species in their habitats with variable

VOCs is intriguing. Noteworthy, however, is the fact that some of the VOCs such as (E)-β-oci-

mene, β-myrcene, hexanal, (E)-2-hexen-1-ol, benzaldehyde, α-pinene, nonanal, linalool oxide,

decanal, methyl salicylate, (E)-caryophyllene and germacrene D were common to more than

half of the plants analyzed, albeit in variable amounts. These compounds have been implicated

in plant-insect interactions either as pollinator attractants or in plant defense to attract natural

enemies of detrimental herbivores [61, 62]. In addition, some of these compounds have also

been shown to be utilized by disease vectors to locate either vertebrate host [37, 44] or host

plant [40, 41].

The electrophysiological assays revealed a range of specific compounds from different host

plants which elicited antennal activity. Among VOCs that were common across two or more

plant species, β-myrcene, hexanal, (E)-2-hexen-1-ol, benzaldehyde and the different isomers of

ocimene and linalool oxide were detected by two or more mosquito species from the VOCs

of their respective host plants. On the other hand, the three different mosquito species also

detected unique classes of VOCs from their host plants. These included benzenoids by Ae.

aegypti, aldeydes and a benzenoid by Ae. mcintoshi, and sesquiterpenes and alkenes by An.

gambiae. These results point to the adaptive nature of plant odor reception by different mos-

quito species that allows them to discriminate beneficial from non-beneficial plants. (E)-Linal-

ool oxide and (E)-β-ocimene have been shown to be among the VOCs from different plant

species that elicit antennal activity and behavioral responses in Ae. aegypti, An. gambiae and

Culex pipiens [40, 43, 56, 63]. On the other hand, linalool oxide and benzaldehyde have also

been reported as components of human odors that elicit antennal activity in An. gambiae [64]

and Ae. aegypti [65], respectively. Interestingly, indole which has been reported as an oviposi-

tion site attractant for different Culex and Aedes species [51], was antennally detected by Ae.
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aegypi from the VOCs of its host plant P. dulce. Indole has been shown to be a by-product of

both bacterial degradation of tryptophan [66] and plants [67]. Taken together, these overlaps

in odor detection by different mosquito species across different host plants, with some of the

compounds having been identified from vertebrate hosts and oviposition sites, point to a con-

served nature of receptors for certain biologically relevant chemical cues.

To further assess the potential differences in specificities of plant odor detection between

the three different mosquito species, we conducted dose-dependent electrophysiological assays

using seven of the identified VOCs. The seven compounds included hexanal, (E)-2-hexen-

1-ol, benzaldehyde, β-myrcene, (E)-β-ocimene, (E)-linalool oxide and indole. Our results

showed variable dose response detection to the seven compounds by the three different mos-

quito species in electrophysiological assays, with β-myrcene and (E)-β-ocimene eliciting signif-

icant dose response across all the three species. There were no differences in the sensitivity of

the three different mosquito species to β-myrcene and (E)-β-ocimene, possibly pointing to the

conserved nature of the receptors for these two compounds across different mosquito species.

Thus, it is possible that mosquitoes use both β-myrcene and (E)-β-ocimene to detect the pres-

ence of potential host plants, with the other volatiles playing a background role to the overall

chemical signature in determining the suitability of the plant as a potential nutrient source.

Molecules of high biological significance have been suggested to be encoded by narrowly

tuned odor receptors [68], which have been shown to be highly conserved both quantitatively

and qualitatively across different mosquito species [51]. While considerable effort has been

dedicated towards structural elucidation of vertebrate [42, 64] and oviposition [51] odor recep-

tors in different mosquito species, plant odor receptors in these disease vectors is yet to be fully

explored. Our results point to a similar odor partitioning in mosquito-plant interactions as is

the case in vertebrate host and oviposition site location. While this study presents a significant

step in elucidating important plant VOCs mediating mosquito-host plant interactions, addi-

tional studies to identify plant odor receptors are necessary to understand their nature and

help narrow down on key plant VOCs that can be used in their management. In addition, fur-

ther studies are needed to elucidate the role these compounds and other identified VOCs play

in the behavior of the different mosquito species.

Overall, this study presents a significant milestone in the quest for novel control strategies

to either supplement or replace existing ones. For both dengue and RVF, no viable vaccine or

treatment exists, at least for the human cases [10]. Consequently, vector control constitutes a

key pillar in their eradication/containment efforts. Besides, both diseases are characterized by

cyclic patterns of outbreaks with low viral activity during the inter-epidemic periods [2, 3, 6,

38]. Thus, accurate and efficient monitoring tools are needed to predict outbreaks, a task

which can be greatly complemented by plant-based odors identified in this study. Similarly,

new control tools incorporating vector ecology are needed to sustain the achievements

recorded in reducing malaria incidence and further move towards elimination [10].

In conclusion, this study demonstrates that the Afro-tropical mosquito species feed on vari-

ous plant species available within their ecological ranges. Interestingly, they use specific chemi-

cal cues to interact with their natural host plants, some of which are common to all the three

different mosquito species while others are species-specific. These findings provide a critical

insight into chemical communication that underpins mosquito-plant interactions and present

a unique opportunity for advancement of plant-based mosquito control strategies. We, how-

ever, take note of the fact that the plants identified in this study might not be entirely repre-

sentative of the full spectra of plants fed upon by these mosquito species in their respective

ecology as these are likely to vary with season. In addition, the low success rates of the two

gene targets used in this study is indicative of the likelihood that some plant species might

not have been detected, hence the need for further screening using additional gene targets.
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Nonetheless, these findings provide new insights critical in understanding the ecological driv-

ers of the emergence of vector-borne tropical diseases and a baseline for new control

strategies.

Supporting information

S1 Table. List of compounds identified from five host plants of Afro-tropical mosquito

species and relative amounts ± SEM (ng). The compounds were identified from headspace

volatiles of LN = Lenonotis nepetifolia, RC = Ricinus communis, SA = Senna alata (host plants

of Anopheles gambiae), PD = Pithecellobium dulce (host plant of Aedes aegypti) and OFI =

Opuntia ficus-indica (host plant of Aedes mcintoshi and Aedes ochraceus).
(DOCX)

S1 Fig. Mass spectra and chemical structures of electrophysiologically active compounds

which were confirmed with synthetic standards. A) hexanal, B) (E)-2-hexenol, C) β-myr-

cene, D) (E)-β-ocimene, E) (Z)-linalool oxide (furanoid), F) (Z)-linalool oxide (pyranoid), G)

indole, and H) benzaldehyde.

(TIF)
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