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Gut microbiota composition during the first years of life is variable, dynamic and
influenced by both prenatal and postnatal factors, such as maternal antibiotics
administered during labor, delivery mode, maternal diet, breastfeeding, and/or
antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional
interactions with infectious agents, either through direct microbiota-microorganism
interactions or indirectly through various stimuli of the host immune system. Here we
review these interactions during childhood until 5 years of life, focusing on bacterial
microbiota, the most common gastrointestinal and respiratory infections and two well
characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and
Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial
microbiota in childhood have been cross-sectional and have reported patterns of
gut dysbiosis during infections as compared to healthy controls; prospective studies
suggest that most children progressively return to a “healthy microbiota status” following
infection. Animal models and/or studies focusing on specific preventive and therapeutic
interventions, such as probiotic administration and fecal transplantation, support the
role of the bacterial gut microbiota in modulating both enteric and respiratory infections.
A more in depth understanding of the mechanisms involved in the establishment and
maintenance of the early bacterial microbiota, focusing on specific components of the
microbiota-immunity-infectious agent axis is necessary in order to better define potential
preventive or therapeutic tools against significant infections in children.

Keywords: gut microbiota, necrotizing enterocolitis, Clostridioides difficile, rotavirus, norovirus, diarrheagenic
Escherichia coli (DEC), RSV, childhood infections

INTRODUCTION

Development in molecular microbiology techniques, sequencing platforms and bioinformatics
during the past decade have allowed us to expand our knowledge on microbiota composition,
dynamics, and impact on human health and disease. We now know that the most abundant and
diverse human microbiota niche is harbored in the gastrointestinal tract. Moreover, during the first
5 years of childhood, the gut microbiota (GM) undergoes major changes as it progresses toward
an “adult-like, more stable community.” This GM plays a role in the development of the enteric
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immune and nervous systems, nutrient metabolism, and
interactions with infectious agents, among other functions. The
GM can affect the occurrence and course of systemic diseases,
not only during childhood, but also later in life, including
autism spectrum disorders (Li et al., 2019), attention deficit
hyperactivity disorder (Boonchooduang et al., 2020), asthma and
allergies (Kim et al., 2019), obesity (Muscogiuri et al., 2019), and
autoimmune disorders (Russell et al., 2019), among others. For
better comprehension we include Table 1 with basic terms needed
for a proper understanding of the topics discussed in this review.

Though bacteria dominate gut microbial communities,
GM is also composed of viruses, fungus, parasites and
archaea, denominated Virome, Mycobiome, Parasitome, and
Archaeome, respectively (Vemuri et al., 2020). Methodological
difficulties associated with their study (including lack of updated
bioinformatic tools and reference databases) have most likely
downplayed our understanding of their true role in GM.
Recent advances in next generation sequencing technologies
have reflected on increasing literature, especially on gut virome
development from childhood to adulthood and its role in gut
homeostasis and immune-related diseases including childhood
infectious diseases, as extensively reviewed (Tiew et al., 2020;
Vemuri et al., 2020; Fulci et al., 2021; Townsend et al., 2021;
Wu et al., 2021). Briefly, adult gut virome is mainly composed
by bacteriophages, and in lower proportion by DNA and RNA
eukaryotic viruses. Development of virome during childhood
is dynamic and occurs in a stepwise manner, with initial
colonization of bacteriophages during the first weeks of life (after
pioneer bacteria colonization in the newborn gut) (Liang et al.,
2020), a progressive increase of eukaryotic viruses during first
2 years of life (Lim et al., 2015) together with an expansion
of bacterial abundance and richness, and a later predominance
of bacteriophages toward an adult-like composition (Gregory
et al., 2020). Gut mycobiome (Strati et al., 2016), and archaeome
(van de Pol et al., 2017; Pausan et al., 2019) composition in
children have been explored, but their trajectories during the
first years of life are not deeply understood at the moment.
For parasites, some studies have evaluated the presence of
commensal parasites in children and their effects on bacterial
GM (BGM) composition (Alzate et al., 2020), but an exhaustive
“omic” approach to understand the parasitome relevance during
childhood is still needed.

This review focuses on the dynamics of BGM during
childhood, and their relationships with the most common
gastrointestinal and respiratory infections, as well as with
two well identified dysbiosis-related diseases: necrotizing
enterocolitis (NEC) and Clostridioides difficile infection.

BACTERIAL GUT MICROBIOTA
DYNAMICS AND MODULATION DURING
THE FIRST 5 YEARS OF LIFE

Human gut bacterial communities in healthy adults are
highly diverse, with each individual harboring over 100
trillion bacteria, belonging to over 150 different species.
The BGM during adulthood is dominated by the phyla

Firmicutes (e.g., Lactobacillus, Bacillus, and Clostridioides)
and Bacteroidetes (e.g., Bacteroides), with lower abundances
of Proteobacteria (e.g., Escherichia) and Actinobacteria (e.g.,
Bifidobacterium) (Arumugam et al., 2011; Rinninella et al., 2019).
The establishment of this “mature microbiota” begins during
early childhood and is influenced by prenatal and postnatal
factors (Roswall et al., 2015; Chu et al., 2019).

Several studies have questioned whether the in-uterus
environment is sterile. The presence of bacteria in amniotic
fluid originating from both the maternal genitourinary tract
and oral cavity was initially demonstrated in preterm infants,
suggesting that ascending (from the genitourinary tract) and
hematogenous (from the oral cavity) bacterial dissemination
causes intra-amniotic colonization/infection (Romero et al.,
2014). There is additional conflicting evidence, as some studies
report the detection of bacteria in the placenta (Aagaard et al.,
2014), amniotic fluid (Rautava et al., 2012) and the umbilical
cord (Jimenez et al., 2005) in women with healthy term
pregnancies, as well as in the meconium of term newborns
(Su et al., 2018), while other studies report a sterile in-uterus
environment in this context (Lim et al., 2018; Rehbinder
et al., 2018). Thus, the role of “in utero” colonization is
currently uncertain, this may in part be due to the lack of
evidence of bacterial viability beyond detection of bacterial DNA
(Perez-Munoz et al., 2017).

Delivery mode is a major determinant of BGM composition
during early infancy. Vaginal delivery is followed by newborn
gut colonization with the mother’s vaginal microbiota, mainly
composed of Prevotella and Lactobacillus spp. (Dominguez-Bello
et al., 2010), while the microbiota of infants delivered through
cesarean section resembles that of the mother’s skin microbiota,
and of the nosocomial environment (Dominguez-Bello et al.,
2010; Shao et al., 2019). These differences are most distinct during
the first 6 months of life (Rutayisire et al., 2016).

Breastfeeding is another key factor in determining the
microbiota composition during early childhood (Ho et al.,
2018; Ossa et al., 2018). A recent study showed that receiving
breast milk (either exclusive or partial) was the most significant
factor associated with gut microbiota structure from months
3 to 14 of life, and was associated with the presence of
Bifidobacterium species and the species Lactobacillus rhamnosus
and Staphylococcus epidermidis (Stewart et al., 2018). Both
Bifidobacterium and Lactobacillus spp. are present in human
milk and S. epidermidis colonize maternal skin; and their
metabolic functions in falta una palabra aqui are related to
breastfeeding, as Bifidobacterium species metabolize human milk
oligosaccharides (HMOs) (James et al., 2019) and Lactobacillus
species including L. rhamnosus can metabolize lactose (Lubiech
and Twaruzek, 2020). Cessation of breastfeeding seems to be the
major determinant in the “maturation” of the gut microbiota,
characterized by an increase in Firmicutes (Stewart et al., 2018),
concordant with other studies showing an increase specifically
in the Lachnospiraceae and Ruminococcaceae families (Laursen
et al., 2016), which can metabolize plant-derived complex
carbohydrates introduced with solid foods (Flint et al., 2012).
After 6 months of age, the composition of complementary diet
also determines the BGM evolution, e.g., the progression to a
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TABLE 1 | Definition of relevant terms included in microbiota studies, and acronyms used in this review.

Term Definition References

Relative
abundance

Quantitative measure of the number of organisms, operational taxonomic units (OTUs), operational
phylogenetic units (OPUs), amplicon sequence variants (ASVs) or sequences detected in a sample
in relation to all others in that sample (e.g., If there are 100 organisms in a sample, and 20 are
identified as E. coli, the relative abundance of E. coli is 20%)

Tyler et al., 2014; Yarza et al., 2014;
Callahan et al., 2017

Richness Number of unique organisms detected in a specific sample. Tyler et al., 2014; McBurney et al., 2019

Diversity Estimate incorporating species richness and abundance to measure the microbial variability either
within (α) or between (β) samples.

Tyler et al., 2014

Enterotype Classification of organisms into categories or clusters based on a process of stratification of
microbiota to reduce global variation into a few categories driven by discriminative genera.

Cheng and Ning, 2019

Healthy
microbiota and
dysbiosis

A healthy microbiota can be described in terms of ecological stability (i.e., the ability to resist
community structure change under stress or to rapidly return to baseline following a stress-related
change) and by an idealized (presumably health-associated) composition or a desirable functional
profile. Dysbiosis can be defined as an alteration in the microbiome from the normal or healthy
state. For the purpose of this review, as microbiota composition is dependent on multiple variables,
a healthy microbiota is considered to be the group cataloged as “healthy controls” in each study
discussed.

Backhed et al., 2012; Tyler et al., 2014;
McBurney et al., 2019

Acronym Meaning

ALRI Acute lower respiratory infection

AMP Antimicrobial peptides

AMR Antimicrobial resistance

ARI Acute respiratory infection

AURI Acute upper respiratory infection

BGM Bacterial gut microbiota

CD Clostridiodes difficile

DEC Diarrheagenic Escherichia coli

EAEC Enteroaggregative E. coli

EHEC Enterohemorrhagic Escherichia coli

EIEC Enteroinvasive E. coli

EPEC Enteropathogenic E. coli

ETEC Enterotoxigenic E. coli

GF mice Germ free mice

GM Gut microbiota

IFN Interferon

LPS Lipopolysaccharide

MAMP Microbiota- associated molecular patterns

NEC Necrotizing enterocolitis

NV Norovirus

OPU Operational phylogenetic unit

OTU Operational taxonomic unit (OTUs)

PAMP Pathogens-associated molecular patterns

PRR Pattern recognition receptor

RSV Respiratory syncytial virus

RV Rotavirus

SCFA Short chain fatty acids

SFB Segmented filamentous bacteria

STEC Shiga toxin-producer Escherichia coli

TLR/NLR Toll-like receptor/NOD-like receptor

higher protein and fiber diet is associated with an increase in
microbial α-diversity (Laursen et al., 2016).

Overall, a history of breastfeeding seems to be more influential
than the mode of delivery in determining long-term BGM
composition, e.g., the lack of breastfeeding during infancy is
associated with higher degrees of the genus Bacteroides in stool

during childhood and adolescence (Cioffi et al., 2020). However,
the impact of these findings on a child’s clinical outcomes is not
entirely elucidated.

Maternal diet may also influence the composition of infant
gut-microbiota during the first 6 weeks of life, especially in the
case of a high-fat maternal diet (Chu et al., 2016), fruit intake and
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dairy intake (Lundgren et al., 2018; Maher et al., 2020). Maternal
diet is also associated with changes in mother’s milk microbiota,
which may influence the BGM in the child (Babakobi et al., 2020).
Overall, these changes in BGM composition reflect a gradual
functional specialization in parallel to the nutritional changes
over time, in order to deal with the substrates provided
by changing diets, as extensively reviewed by other authors
(Derrien et al., 2019).

Geographic differences in BGM composition during the
first years of life have been described, most likely due in
part to differences in diet and socioeconomic status; e.g., 6-
month-old children from Malawi have increased abundance
of Bifidobacterium group, Bacteroides-Prevotella group, and
Clostridium histolyticum group compared to children from
Finland (Grzeskowiak et al., 2012); while 1–6 years old children
from Burkina Faso have enrichment in Bacteroidetes and
depletion in Firmicutes compared to European children (De
Filippo et al., 2010). African children have a diet based primarily
on fiber and complex carbohydrates, which results in higher levels
of fecal short-chain fatty acids (SCFA), likely reflecting the ability
of their microbiota to degrade these complex carbohydrates.
Conversely, European children have a characteristically “western
diet” (high in animal protein, sugar, starch, fat, and low in fiber),
associated with low fecal SCFA levels; thus they develop a BGM
more suited to metabolize simple carbohydrates, animal fat and
protein (De Filippo et al., 2017). These differences suggest a tight
relationship among BGM evolution, diet and functionality.

Exposure to antibiotics can modulate BGM composition
from gestation onwards. The use of intrapartum antibiotics
for prophylaxis against group B Streptococcus infection was
associated with lower bacterial diversity, lower abundance
of Actinobacteria and Bacteroidetes phyla; and higher
abundance of Proteobacteria phylum and Enterobacteriaceae or
Streptococcaceae families in the BGM of newborns, compared to
those delivered by mothers not receiving antibiotic prophylaxis
(Aloisio et al., 2016). These changes seem to be more prominent,
lasting up to day 30 of life in breastfed infants (Mazzola et al.,
2016). When the delivery mode is concomitantly analyzed,
intrapartum antibiotic use is associated with a lower abundance
of the genus Bacteroides and Parabacteroides and higher
abundance of Enterococcus and Clostridium levels at 3 months of
life irrespective of delivery mode; changes are more prominent
and persist up to 12 months of life in children born by emergency
cesarean section, especially in those who did not receive exclusive
breastfeeding during first 3 months of life (Azad et al., 2016).

The use of systemic antibiotics during the neonatal period
has been associated with disruption of normal microbiota
colonization in both preterm and term newborns, with lower
rates of commensal bacteria such as the genus Bifidobacterium
(Tanaka et al., 2009) and phylum Bacteroidetes (Eck et al., 2020)
and increased rates of potentially pathogenic bacteria such as the
genus Enterobacter from the first weeks of life (Greenwood et al.,
2014). Changes in BGM diversity and composition related to the
early use of narrow-spectrum antibiotics persists up to 6 months
of life (Tapiainen et al., 2019). In addition, perinatal antibiotic
use is associated with increased antimicrobial resistance (AMR)
genes in stools of both preterm and term newborns (Gibson et al.,
2016; Tapiainen et al., 2019).

Throughout the first 3 years of life, children with repeated
short courses of oral antibiotics (prescribed mainly for
“respiratory infections”) have decreased BGM in terms of
both bacterial species and strains, and increased variability in
composition compared to children not receiving antibiotics
(Yassour et al., 2016). Expectedly, detection of AMR genes
increases after antibiotic intake; chromosomal genes increase
rapidly and decrease after antibiotics are ceased, while some
episomally codified AMR genes do not decrease until several
months after antibiotic consumption (Yassour et al., 2016).
Moreover, macrolides but not penicillin consumption has been
associated with a distinct microbiota composition at the phylum
level, characterized by an increased abundance of the phyla
Bacteroidota and Proteobacteria, and decreased abundance
of Actinobacteria (Korpela et al., 2016) in children 2–7 years
old. In addition, macrolide use was associated with a long-
term (12–24 months) reduction in microbial richness, but a
transitory effect on macrolide resistance genes and culture-based
macrolide resistance in the gut which increased immediately
after macrolide intake and returned to low levels at 6–12 months
(Korpela et al., 2016).

Interestingly, mass azithromycin distribution in biannual
courses in Nigerian preschool children (1–59 months) reduced
all-causes of mortality by 13.5% compared to placebo (Keenan
et al., 2018), and the effect on mortality was higher in children
1–5 months of age (24.9% lower mortality). Microbiota analysis
of these children showed that the relative abundances of two
Campylobacter species (which cause diarrhea and are susceptible
to azithromycin) along with another 33 gut bacteria were
significantly reduced at 24-months of follow-up. This suggests
a potential short-term benefit of macrolides in the control of
enteric infectious diseases; however, macrolide resistance genes
increased during the following 6 months (Doan et al., 2019).

In summary, normal BGM colonization begins in utero
or during birth, and evolves during the first years of life
influenced by several environmental and host factors which
finally determine a BGM’s individual pattern. As recently
described in a large Swedish cohort, BGM progression during this
period is characterized by increasing α-diversity as children get
older, with major shifts in composition between 4 and 12 months,
resembling a more adult microbiota as the children reach 3–
5 years of age (Roswall et al., 2021). Based on this cohort of
children, four characteristic trajectories were defined based on
relative abundance of single genera at different time points:
(1) a first peak at 4 months of Bifidobacterium, Enterococcus,
Streptococcus, Lactobacillus and Enterobacteriaceae; (2) a second
peak at 12 months, mainly in Ruminococcus abundance; (3) a
rapid increase in Bacteroides between 4 and 12 months of age
and relative stability after 3 years of age; and (4) an increase in
Methanobrevibacter, Desulfovibrio, Bilophila, and some Clostridia
after 12 months followed by additional increases after 3 years.
Noticeably, despite the fact that these major and critical changes
are observed during these first years of life, at 5 years of age
the childhood BGM composition was still significantly different
compared with their mothers and other unrelated adults (Roswall
et al., 2021), suggesting that the BGM continues to evolve during
childhood and future life. Whether these results are also observed
in other geographical regions, remains to be seen.
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MECHANISMS INVOLVED IN BACTERIAL
GUT MICROBIOTA–PATHOGEN
INTERACTIONS

The eubiotic BGM plays an important role in sustaining a
“state of good health” as well as in modulating pathogenesis of
several diseases, including susceptibility to infections and clinical
outcomes after infection has occurred (Harris et al., 2017b;
Gaufin et al., 2018; Libertucci and Young, 2019).

The pathophysiology behind BGM-infectious pathogen
interactions is influenced by host factors. Two fundamental
pathways are involved: one direct, mediated by microbiota
interactions with non-commensal agents, and another
indirect, via microbiota-mediated immune system modulation
(Libertucci and Young, 2019).

Microbiota–Pathogen Interactions
Commensal bacteria limit (or enhance) pathogen colonization
through direct bactericidal/bacteriostatic or stimulatory effects
(by direct binding or mediated by metabolites), as well as through
competition for nutrients and specific resources required for
infection, in addition to modification of gut mucosa sugars
and/or receptors. Key factors involved in microbiota–pathogen
interactions are summarized in Table 2.

Microbiota-Mediated Immune System
Modulation
Experiments in germ-free (GF) mice have provided significant
information on the role of the BGM in the development and
functionality of the immune system, as summarized in Table 3.
The microbiota and key components of the innate and adaptive

immune system interact in a bidirectional manner, e.g., the
BGM composition determines the development of either effective
or defective innate and adaptive immune system components,
and, specific components of the immune system contribute to
either maintain or break BGM homeostasis. Development of
the BGM is related to immune system maturation, and the first
weeks of life seem to be critical as evaluated in animal models.
Based on the age-dependant effect of the BGM restoration
in GF animals on several immune components (iNKT, Treg,
IgE, and TLR signaling on epithelial cells), Gensollen et al.
(2016) postulated the term “window of opportunity” related
to the period during early infancy where BGM can still be
modified, otherwise resulting in permanent immune alterations.
In humans, this model could explain the association of BGM
alterations during early childhood with future immune-mediated
chronic diseases including allergy, asthma, undernutrition, or
obesity and inflammatory bowel disease (Arrieta et al., 2014). In
the following sections, we will analyze the association of BGM
composition during this apparently critical period with common
infections during childhood.

GUT MICROBIOTA AND SPECIFIC
GASTROINTESTINAL INFECTIOUS
DISEASES

Necrotizing Enterocolitis
Necrotizing enterocolitis is characterized by intestinal
inflammation and necrosis that can progress to systemic
infection, multiorgan failure, death (Tanner et al., 2015),
and long-term neurological complications (Rees et al., 2007).

TABLE 2 | Mechanisms involving direct interaction between the gut microbiota and pathogens.

Mechanism Description References

Availability of host sugars − Pathogens, such as Salmonella typhimurium and Clostridioides difficile, catabolize free sialic
acid and fucose in the colonic lumen as a source of energy. Commensal Bacteroides
thetaiotaomicron codifies sialidases, promoting free sialic acid production and the release of
fucose from mucus. These microbiota-liberated host sugars facilitate post-antibiotic expansion
of S. typhimurium and C. difficile in mice models.

Pacheco et al., 2012; Ng
et al., 2013; Baumler and
Sperandio, 2016

− Enterohemorrhagic Escherichia coli (EHEC) can sense fucose released by the effect of
B. thetaiotaomicron. Fucose-sensing mechanisms allow EHEC to express virulence factors and
colonize the intestine.

Gut microbiota- mediated glycan
modification

− Soluble factors produced by Lactobacillus casei and B. thetaiotaomicron can alter cell surface
glycoproteins, which results in decreased binding of rotavirus (RV) to intestinal cells.

Varyukhina et al., 2012

Direct binding of gut microbiota
bacteria and viral pathogens

− Norovirus (NV) binds to HBGA-like carbohydrates expressed on the surface of the gut bacteria
E. coli and Enterobacter cloacae. This binding allows NV infection of target cells (B cells), and
also protects NV from heat stress in in vitro models.

Miura et al., 2013; Jones
et al., 2014; Li et al.,
2015; Shi et al., 2019

− Rotavirus (RV) infectivity is reduced by segmented filamentous bacteria in in vitro studies.

Direct effect of microbiota- derived
metabolites on pathogens

− Exposure of Salmonella typhimurium to short chain fatty acid (SCFA) acetate concentrations
found in the ileum enhances type III secretion system (T3SS) expression; while propionate and
butyrate levels in the colon inhibit expression. In EHEC infections, colonic butyrate levels
enhance T3SS expression.

Baumler and Sperandio,
2016; Li Z. et al., 2018

− Bacteriocins produced by the microbiota act directly on pathogens by limiting infection (e.g.,
Nisin produced by Lactococcus lactis is a pore-forming bacteriocin for Salmonella enterica,
Staphylococcus aureus, and Bacillus cereus).

− Other gut microbiota metabolites (such as microbial amino acids, vitamins, and quorum sensing
autoinducers) act on pathogens by limiting or promoting infection.
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TABLE 3 | Recognized interactions between the immune system and the gut microbiota.

Immune
system
component

Function Interactions with the microbiota References

Innate immune response

Mucus Physical barrier − Germ-free (GF) mice display alterations in the composition and
structure of the mucus layer compared to normally-colonized mice.

Petersson et al., 2011;
Johansson et al., 2015;
Paone and Cani, 2020− Bacterial factors (LPS, peptidoglycan) promote mucus secretion

and restoration in GF mice.

− Host glycosylation patterns influence the composition of
mucus-associated bacteria.

− “Mucolytic bacteria” use mucins as nutrients.

Tight junctions Restrict paracellular permeability to pathogens Gut microbiota perturbation induced by a high fat diet and antibiotic
use is associated with reduced expression of tight junction proteins
in mice, and increased intestinal permeability.

Cani et al., 2009; Ahmad
et al., 2017; Feng Y. et al.,
2019

Pattern
recognition
receptors (PRR)

Innate immune-system receptors recognizing
pathogens or microbiota- associated molecular
patterns (PAMPs-MAMPs) activating immune
responses or maintaining gut homeostasis.

− There are bidirectional interactions between the microbiota PAMPs
and PRRs.

Bouskra et al., 2008;
Petnicki-Ocwieja et al.,
2009; Chassin et al., 2010;
Stockinger et al., 2011;
Carvalho et al., 2012

− Microbiota recognition by PRRs is essential in immune system
development [e.g., antimicrobial peptide (AMP) production,
epithelial proliferation and gut-associated lymphoid tissue
development].

− PRR interactions with the microbiota maintain microbiota
homeostasis (e.g., NOD1-defficient mice display an increase in
Clostridiales, Bacteroides and Enterobacteriaceae; NOD2-deficient
mice display an increase in ileal Bacteroidota and Firmicutes).

− Altered PRR detection in the gut microbiota is associated with
increased intestinal inflammation in response to pathogens, and
may lead to chronic inflammation-associated diseases, such as
cancer and metabolic syndromes.

− In vaginally delivered newborn mice, downregulation of Toll-like
receptors (TLR) signaling in intestinal epithelial cells is critical in
stablishing gut tolerance to bacteria during this period, which allows
the gut colonization.

Antimicrobial
peptides (AMP)

Limit pathogen interaction with the epithelia − BGM (e.g., Bacteroides thetaiotaomicron) enhance AMP production
by epithelial cells. Flagellin stimulate TLR-5 in dendritic cells and
epithelial cells to enhance the epithelial expression of AMPs.

Cash et al., 2006;
Kinnebrew et al., 2010;
Levy et al., 2015; Sivieri
et al., 2017; Zhao et al.,
2018

− SCFA (mainly butyrate, acetate, and propionate) are metabolites
produced by certain gut-microbiota components from metabolism
of dietary fiber. SCFAs produced by the microbiota induce intestinal
epithelial cell production of AMPs.

− AMPs regulate the quantity and composition of intestinal
microbiota.

Adaptive immune response

IgA- B cell
response

Secretory immunoglobulin − Enteric microbiota induce mucosal immune system maturation and
production of high levels of secretory IgA.

Pabst et al., 2016

− In pIgR-deficient mice (deficient in all secretory Igs): presence of
secretory IgA affects microbial fitness and thereby microbiota
composition.

IgE - B cell
response

Immunoglobulin E, related to Th2 and allergic
response.

− Germ-free mice have an elevated systemic IgE response, driven by
a B-cell isotype change in mucosal lymphoid tissues, in a LTCD4
and IL-4-dependant manner.

Cahenzli et al., 2013

− Colonization of GF mice during the first 2 weeks of life (but not after)
restores IgE levels permanently until adulthood. This is dependent
on a high BGM diversity.

Regulatory T
cell (TReg)
response

Maintains immune balance by limiting effector
immune cell responses. In infections, they can
have either a potentially protective role, by
limiting pathogen-induced immunopathology, or
detrimental by limiting effector cell-mediated
eradication of pathogen.

− Microbiota can induce differentiation of naïve-T cells to peripheral
TReg cells, mediated by SCFA production from dietary fiber
metabolism (e.g., by Clostridia clusters XIVa, IV, and XVIII), or by
bacterial polysaccharides (e.g., from Bacteroides fragilis).

Belkaid, 2007; Arpaia et al.,
2013; Furusawa et al.,
2013

(Continued)
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TABLE 3 | (Continued)

Immune
system
component

Function Interactions with the microbiota References

Th17 cell
response

Potentially protective mainly against bacterial
and fungal, extracellular infections.

− Segmented filamentous bacteria (and their flagellin) from gut
microbiota induce Th17 cell differentiation.

Ivanov et al., 2009; Honda
and Littman, 2016; Wang
et al., 2019

Invariant natural
killer T cells
(iNKT)

Subset of T lymphocytes, harboring T-cell
receptors (TCR) recognizing glycosphingolipid
presented by CD1d. iNKT activation can
produce either a Th1 or Th2 cytokine response.

− GF mice have diminished and hyporesponsive iNKT in peripheral
tissues, but augmented colonic iNKT associated with colitis.

Olszak et al., 2012;
Wingender et al., 2012; An
et al., 2014; Hapil and
Wingender, 2018

− Colonization with complete BGM, Bacteroides fragilis or its related
sphingolipids during first 2 weeks (but not thereafter) reverts iNKT
accumulation in colon.

− Several commensal bacteria have sphingolipids that activate iNKT,
including Lactobacillus casei, Prevotella copri, Bacteroides fragilis,
and Bacteroides vulgatus.

Prematurity is the main risk factor, and additional factors include
lack of human milk feeding (Cacho et al., 2017), meconium
aspiration syndrome, postnatal asphyxia, congenital heart
disease (Lu et al., 2017), and aberrant microbial colonization
and infections (Neu and Pammi, 2018). Microorganisms that
potentially play a role include: Gram-negative enteric bacteria
(Escherichia coli, Klebsiella spp., and Pseudomonas aeruginosa),
Gram-positive bacteria (Enterococcus, Staphylococcus aureus,
and S. epidermidis), Viruses (rotavirus, norovirus, astrovirus,
cytomegalovirus, and echovirus), and fungus (Candida spp.)
(Coggins et al., 2015). Studies based on several different animal
models have shown that key factors in NEC pathogenesis are
immune response and the coexistence of multifactorial dysbiosis
and an altered gut barrier. This alteration is characterized
by an increased TLR4 response to gut bacteria, decreased
AMPs and mucin production, and impaired production
of certain growth factors and cytokines (epidermal growth
factor, TGF-β and IL-10, among others). The result is
intestinal bacterial translocation, a local and systemic pro-
inflammatory response, and gut mucosal damage and necrosis
(Tanner et al., 2015).

In humans, prematurity itself is related to an altered BGM
development pattern compared with term infants. This altered
development pattern is also influenced by other prematurity-
related factors, e.g., gastrointestinal and immune system
immaturity, early antibiotics use, long-term hospitalization,
mechanical ventilation and parenteral nutrition (Tirone et al.,
2019). In comparison to term infants, the preterm BGM displays
an evolutionary pattern characterized by an initial predominance
of the class Bacilli, followed by predominance of the class
Gammaproteobacteria, and later on by Clostridia (La Rosa et al.,
2014); in a minor taxonomic level, a progression in four phases
characterized by dominance of Staphylococcus, Enterococcus,
Enterobacter (Korpela et al., 2018) and finally Bifidobacterium
genera, respectively (Korpela et al., 2018; Tauchi et al., 2019).

In preterm infants, patterns of BGM development differ
between infants who develop NEC compared to healthy controls:
with a higher abundance of Clostridia (mainly Clostridioides
sensu stricto) among infants developing early-onset NEC (NEC
onset <23 days of life), and of Gammaproteobacteria (E. coli
and Shigella) in those developing late-onset NEC; in both

groups, changes were observed beginning 6 days prior to NEC
onset (Zhou et al., 2015). These changes reflect the absence
of one common gut bacterial pattern associated with NEC,
which varies according to the age of infants developing NEC.
In another study, BGM in preterm infants developing NEC
tended to be less diverse from days 17–22 postpartum, with a
higher abundance of E. coli; while metagenomic analysis showed
that detection of uropathogenic E. coli was a risk factor for
both NEC and mortality (Ward et al., 2016). In cohorts of
low birth weight infants (<1,500 g) followed by Warner et al.
(2016) differences in BGM composition between children with
NEC and controls were observed after 30 days postpartum,
with increased proportions of Gammaproteobacteria and lower
proportions of Negativicutes and the class Clostridia. Yet
another study, reported similar overall diversity between preterm
infants over 28 weeks of gestational age with NEC and
preterm controls, albeit specific differences were observed
with increased abundance of Propionibacterium among infants
with NEC, while Lactobacillus, Phascolarctobacterium, and
Streptococcus salivarius were more abundant in controls; in
addition, functionality inference analysis showed that NEC cases
had lower xenobiotic biodegradation and metabolic activity
compared to controls, suggesting not only an altered composition
pattern but also a functionally altered microbiota (Feng J.
et al., 2019). In these infants, reduced xenobiotic detoxification
by BGM may be related to an inflammatory response in the
gut, as described in inflammatory bowel disease (Langmann
et al., 2004). Modifications of the microbiota composition are
observed not only in advanced NEC stages (Bell’s grades II–
III), as in the above studies, but also in grade I stage with
changes in the microbiota composition varying according to
days of life: e.g., increased abundance of Streptococcus during
the second 10-days of life, and Staphylococcus during the
third 10-days of life compared to controls, and of Raoultella
in NEC stage I cases during the second month of life
(Brehin et al., 2020).

Altogether, current evidence suggests that the BGM
composition is altered in preterm infants developing NEC
compared to preterm controls, characterized largely by a
less diverse microbiota, enrichment in certain components,
especially Gammaproteobacteria, with a potential influence
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of specific bacterial components (uropathogenic E. coli) in
disease outcome. Gram-negative bacteria in mouse models of
hypoxia-induced NEC are associated with early histological
damage (Carlisle et al., 2011), while members of Clostridia and
Bifidobacteriales are producers of SCFA, which in physiological
amounts are protective against enterocytes injury (Zheng et al.,
2020). Thus, the described disbalance of these BGM components
in preterm infants could partially explain NEC development.
BGM composition in environments such as NICUs is affected
by various factors, e.g., by antibiotic use more than by disease
states such as NEC or sepsis itself (Wandro et al., 2018). Large,
prospective studies are required to clarify the specific timing
at which BGM dysbiosis is initiated, in order to potentially
modulate the BGM in order to increase protective bacteria or
limit expansion of pathogenic bacteria before NEC onset.

Rotavirus and Norovirus Infections
Diarrheal disease is an important cause of mortality in children
under 5 years of age in low-income countries, and an important
cause of medical resource utilization in middle-high income
countries (Florez et al., 2020). The leading causes of diarrhea
in children are viruses (70–90%). Historically RV was the
leading cause of viral diarrhea in children, however, following
the introduction of RV vaccines, norovirus (NV) has become
the primary cause of moderate-severe diarrhea in several of
those countries (Hemming et al., 2013; Bucardo et al., 2014;
McAtee et al., 2016). Viruses produce diarrhea through several
mechanisms, including damage or death of epithelial cells,
altered epithelial absorption, intestinal hypermotility by effects
on the enteric nervous system (Crawford et al., 2017), and
secretion mediated by viral factors, such as the rotavirus non-
structural protein NSP4 (Beau et al., 2007). Immune response
to enteric viral infections is mediated by both the innate
immune system (including PAMPs-PRR interaction, antiviral
IFN-I and II responses) (Villena et al., 2016) and adaptive
immunity, including humoral responses (both local IgA and
systemic IgM/IgG responses) (Blutt et al., 2012) and cellular
responses (LTCD8, LTh1, LTh2, and LTreg) (Malm et al., 2019;
Schorer et al., 2020); although the role of cellular response
has been less characterized. Studies in animal models have
provided insights on the interaction of enteric pathogens
and the BGM. RV infection altered the BGM in neonatal-
mice, with a time-dependent decrease of Lactobacillus and
an increase in the mucin-degrading bacteria Bacteroides and
Akkermansia associated with an increased glycan availability
in the ileum; yet no changes were found in other intestinal
segments (Engevik et al., 2020). Glycan degradation by these
bacteria decreases RV decoy-binding to mucins, suggesting
that changes in BGM promote RV infection by affecting the
protective role of mucus (Engevik et al., 2020). A recent
study in neonatal germ-free piglets transplanted with a human
child’s microbiota reported bidirectional interactions between
the BGM and RV infection, e.g., colonized piglets had reduced
RV-induced diarrhea and viral shedding compared to germ-
free controls, and RV infection caused alterations in the BGM
(Kumar et al., 2018). In addition, a recent study showed
that spontaneous resistance to RV infection in mouse colonies

was determined by specific BGM composition, specifically
by segmented filamentous bacteria, which increase epithelial
turnover, protecting against infection (Shi et al., 2019). However,
a previous study showed that BGM ablation through antibiotic
treatment in mice delayed RV infection and reduced infectivity in
mice, enhancing specific antiRV humoral immunity (Uchiyama
et al., 2014). NV infection can also alter the BGM in mice,
increasing the Bacteroidetes/Firmicutes ratio (Hickman et al.,
2014), although this finding has not been consistent (Nelson
et al., 2013). On the other hand, antibiotic-induced gut
dysbiosis prevents persistent NV infection in mice (Baldridge
et al., 2015), which suggests a crucial role of the BGM in
promoting NV infection.

The above findings lead to the conclusion that the BGM
has bidirectional interactions with RV and NV infections,
where BGM composition can either protect against or
predispose the host to infection; an infection which in turn
can alter the BGM.

While several studies have evaluated BGM composition
during acute diarrhea in children (Supplementary Tables 1, 2),
there is limited evidence for BGM during diarrheal disease caused
specifically by RV and NV in children. A reduction of BGM
α-diversity, considered broadly as an “unhealthy microbiota,”
was observed in children suffering from RV and NV diarrhea
episodes compared to healthy controls (Chen et al., 2017; Xiong
et al., 2021); this reduction was more prominent in RV-caused
diarrheas (Chen et al., 2017). However, an increase in bacterial
abundance (Chao1 index) was found in NV-caused diarrheas
compared to healthy controls (Xiong et al., 2021). This is
concordant with studies in animal models, where NV requires
the presence of determined components of BGM to produce
infection, while dysbiosis (e.g., loss of diversity) predisposes
the host to RV infection in most studies. Cohort studies in
children are needed to assess if these differences in the BGM
under stable conditions, differentially predispose the host to
either RV or NV infection, and whether these BGM variations
persist during diarrhea episodes as observed in cross-sectional
studies. RV diarrhea episodes tend to be more severe than those
caused by NV (Chen et al., 2017; Xiong et al., 2021), which
has also been correlated with decreased α -diversity compared
to mild diarrhea episodes (Chen et al., 2017). Beyond diversity,
BGM composition is consistently altered during episodes of
RV and NV diarrhea compared to healthy controls, but which
specific taxa are increased or decreased varies among studies
(details in Tables 4, 5). RV-caused diarrhea episodes tend
to have a predominance of Bifidobacterium, Streptococcus,
Enterococcus, and Lactobacillus at the genus level compared
to healthy controls, and NV-caused diarrhea episodes have a
predominance of Streptococcus and Enterococcus compared to
healthy controls (Xiong et al., 2021). Enterococcus can bind to
NV in vitro and predispose the host to infection (Almand et al.,
2017); thus the predominance of this taxa during NV-caused
diarrhea may indicate a previous predisposition to infection.
Interestingly, Bifidobacterium and Lactobacillus are widely used
as probiotics to restore BGM composition, reduce the duration of
diarrhea episodes, and to promote an antiviral immune response
(Lee et al., 2015); an increase in these “beneficial” bacteria
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TABLE 4 | Abundance of the gut microbiota’s main phyla and their components during diarrhea episodes compared to healthy controls.

Description References

Proteobacteria abundance − Higher relative abundance of the phylum Proteobacteria and/or its subtaxas
(mainly Escherichia) compared to healthy controls.

Pop et al., 2014; Braun et al., 2017;
Castano-Rodriguez et al., 2018; Kieser et al.,
2018; The et al., 2018; Mizutani et al., 2021

− Infants with viral diarrhea (RV or NV) had lower relative abundance of
Proteobacteria compared to healthy children in one study.

Xiong et al., 2021

− Escherichia coli was diminished in diarrheal samples compared to controls in
one study.

Samb-Ba et al., 2014

Firmicutes abundance Higher abundance in healthy controls compared to children with diarrhea,
especially those specific components considered markers of a healthy gut
microbiota:
• Families Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae.
• Members of the Clostridiaceae family: Faecalibacterium, and other specific

Clostridiales.

Pop et al., 2014; Chen et al., 2017; Gallardo
et al., 2017; Gigliucci et al., 2018; Kieser et al.,
2018; The et al., 2018; Mizutani et al., 2021

− Bacterial genera of the Lactobacillales order such as Streptococcus were
abundant in infectious diarrheas irrespective of their etiology, and in
STEC-associated diarrheas.
− Streptococcus and Enterococcus had higher abundance in RV and NV diarrhea

compared to healthy controls.

Pop et al., 2014; Becker-Dreps et al., 2015;
Gigliucci et al., 2018; Kieser et al., 2018; The
et al., 2018; Mathew et al., 2019; Xiong et al.,
2021

− A Faecalibacterium-predominant enterotype in diarrhea episodes occurring in
children and adults has been described

Castano-Rodriguez et al., 2018

Bacteroides abundance − Bacteroidota were increased in diarrheal samples of children irrespective of their
etiology, and in children with diarrhea caused by diarrheagenic Escherichia coli
(DEC) compared to healthy controls

Becker-Dreps et al., 2015; Gallardo et al.,
2017, 2020; Castano-Rodriguez et al., 2018

− The genus Bacteroides constituted a specific enterotype in children from
Vietnam with diarrhea irrespective of etiology; while a diminished abundance
was observed in children and adults from Bangladesh and in children from
Senegal and China with RV-diarrhea compared to controls.

Samb-Ba et al., 2014; Chen et al., 2017; Kieser
et al., 2018; The et al., 2018

− The genus Parabacteroides was reduced in RV-diarrhea compared to controls Chen et al., 2017

− The genus Prevotella was increased in RV-bacterial co-infections, and in
children from Chile with DEC, but was diminished in children with diarrhea from
Bangladesh and South Africa irrespective of etiology compared to controls.

Pop et al., 2014; Kieser et al., 2018; Mathew
et al., 2019; Gallardo et al., 2020

may facilitate restoration of gut homeostasis in RV-induced
diarrhea. In linear discriminant effect-size analysis [which aims
to determine those taxa that explain the differences between
microbial communities (Segata et al., 2011)] – Bacillus spp. was
the most characteristic taxa in both RV and NV-caused diarrheas
compared to healthy controls (Xiong et al., 2021). Bacillus spp. are
spore-forming bacteria with probiotic properties which reduce
duration of diarrhea in children (Ianiro et al., 2018). In a cellular
model of RV infection, a mix of Bacillus clausii strains prevented
RV-induced epithelial cell barrier disruption and inhibited the
expression of proinflammatory cytokines including IFN-Beta
(Paparo et al., 2020). In murine NV infection, the use of Poly-
gamma-glutamic acid (γ-PGA) – an extracellular polypeptide
produced by Bacillus species- induced a systemic and intestinal
IFN-beta response without inducing other proinflammatory
cytokines, which was associated with later prevention of NV
infection (Lee et al., 2018). Thus, the enrichment of this genus
during diarrhea episodes in children may reflect a protective self-
regulatory response, if this impacts on immune response and
clinical outcome, or if there are different effects on RV and NV-
caused diarrheas remains unknown.

Clinical manifestations related to viral diarrhea are also
associated with specific BGM taxa, e.g., abdominal pain was
related to the abundance of Prevotella (Chen et al., 2017), which
is associated with a proinflammatory response in several chronic

diseases (Larsen, 2017), but also to a lack of effective response
to the RV vaccine (Harris et al., 2017a); convulsions were related
to a substantial decrease in Faecalibacterium (Chen et al., 2017),
a SCFA producer important in the maintenance of regulatory
intestinal immunity (Alameddine et al., 2019). Whether specific
BGM components influence clinical outcomes in viral diarrhea
episodes through immune mechanisms, as postulated here,
remains to be clarified. Functional predictions of the BGM in RV
and NV diarrhea episodes showed an increase in chloroplast and
photosynthesis pathways compared to healthy controls, which
may be explained by incomplete BGM-dependant digestion of
plant food in the gut during diarrhea (Xiong et al., 2021).

Enteric Bacterial Infections With a Focus
on Diarrheagenic E. coli
Bacteria cause approximately 10–20% of diarrhea episodes in
children, of which Shigella, Salmonella, Campylobacter, and
enterotoxigenic E. coli (ETEC) predominate; less common causes
include enteroinvasive E. coli (EIEC) (Florez et al., 2020). Shiga-
toxin producing E. coli (STEC) is particularly important in
children, as it is the most common cause of hemolytic uremic
syndrome (HUS) (Exeni et al., 2018). Bacteria produce diarrhea
through both common and specific mechanisms: inflammation
occurs during infections with cytotoxin-producing bacteria
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TABLE 5 | Differences in the gut microbiota composition during childhood infectious diarrhea according to etiology.

Description References

Bacterial v/s viral
diarrheas

In children from Bangladesh, the abundance of Escherichia coli was increased compared to controls, except in
patients with RV infection compared to bacterial pathogens (DEC, Aeromonas, Vibrio, Campylobacter, and
Shigella); other viruses were not analyzed.

Kieser et al., 2018

In children from Vietnam with diarrhea, when cluster analysis based on β -diversity data was performed, samples
were segregated into 4 community-structure types (or Enterotypes). The Streptococcus-dominant enterotype
was more common in samples with a bacterial pathogen detected (Campylobacter, Salmonella, and Shigella)
compared to the Bifidobacterium-dominant, Bacteroides-dominant, and Escherichia-dominant enterotypes.

The et al., 2018

In children from Chile, DEC infection was associated with a higher proportion of Proteobacteria and a lower
proportion of Firmicutes at the phylum level, a greater abundance of Enterobacteriaceae at the family level, and
a greater abundance of the genus Escherichia-Shigella compared to viral infections (RV, NV, Adenovirus,
Astrovirus, and Sapovirus).

Gallardo et al., 2017

Viral v/s virus-bacteria
co-infection

In children from Qatar with RV or NV-diarrhea, co-infection with bacteria was associated with differences in
microbiota composition: RV co-infection with EAEC was associated with a predominance of Streptococcus and
Escherichia, while co-infection with EAEC and EPEC was associated with an abundance of Prevotella and
Escherichia; NV co-infection with EAEC and EPEC was associated with a dominance of Streptococcus,
Escherichia, and Clostridium genera, and a lower abundance of Enterococcus and Veillonellaceae compared to
viral-only infections.

Mathew et al., 2019

Different viral
pathogens

In children from Chile with viral diarrhea, microbiota composition of samples with different enteric viruses
clustered together.

Gallardo et al., 2017

In children from Taiwan with viral diarrhea, children with RV infection had a significantly lower α-diversity score
compared to children with NV, and the latter was no different from controls.

Chen et al., 2017

In children from China with viral diarrhea, the RV group had lower α-diversity (Simpson index) than the NV
group. The RV group exhibited higher abundances of Actinobacteria and Verrucomicrobia at the phylum level,
and higher abundances of Veillonella and Bifidobacterium at the genus level compared to NV group; the NV
group had a higher abundance of Fusobacteria at the phylum level, and Enterococcus, Clostridium, and
Fusobacterium at the genus level compared to the RV group.

Xiong et al., 2021

Different bacterial
pathogens

In a group of adults and children with bacterial infections (Campylobacter, Salmonella, Shigella, and STEC)
microbiota composition did not vary significantly between different etiologies. In children from Chile with
DEC-associated diarrhea, when a community structure analysis was performed, microbiota composition of
samples with different DEC pathotypes were clustered in independent groups

Singh et al., 2015;
Gallardo et al., 2017

(Shigella and STEC) and in the case of bacteria that invade
and disrupt intestinal mucosa (Salmonella, Campylobacter). This
leads to inflammation and necrosis of the epithelium and
sub epithelium microabscesses (Florez et al., 2020). Secretory
diarrhea occurs when bacteria producing toxins increase
intracellular cAMP or cGMP levels (e.g., Vibrio cholerae and
ETEC) (Thiagarajah et al., 2015). Interaction between the BGM
and bacterial enteric pathogens has been evaluated in animal
models, with Citrobacter rodentium infection widely used to
mimic human diarrheagenic E. coli in mice. C. rodentium
induces time-dependant changes in BGM with a rapid decrease
in colonic Mucispirillum during the early phases, and increases
in members of the Clostridiales and Lactobacillales families
followed by successful resolution of colitis (Belzer et al., 2014).
On the other hand, the BGM (butyrate-producing bacteria)
appear to be essential in protecting against C. rodentium
infection (Wlodarska et al., 2011; Osbelt et al., 2020), again
demonstrating the bidirectional interaction between enteric
bacterial pathogens and the BGM.

In children with DEC-caused diarrhea, changes in
BGM composition during bacterial pathogen infections are
characterized by an increase in Proteobacteria and a decrease
in Firmicutes (Gallardo et al., 2017), also observed in other
bacterial pathogens in children and adults along with a decrease
in α-diversity (Singh et al., 2015). Increases in Proteobacteria
can be partially explained by an increase in Escherichia/Shigella

species as the cause of diarrhea, but also by other members
of Enterobacteriaceae, such as Citrobacter and Enterobacter
(Gallardo et al., 2017). These changes in BGM composition
are associated with specific metabolic functions, as DEC
samples display enrichment in pathways involved in histidine
degradation, while healthy controls were enriched in L-ornithine
and L-histidine biosynthesis pathways, correlating with higher
levels of histamine (an histidine-degradation product) and
lower levels of ornithine, explained mainly by the presence
of Enterobacter hormaechei, Citrobacter werkmanii/freundii,
Shigella spp., and Bifidobacterium stercoris (Gallardo et al.,
2020). Histamine production is induced by proinflammatory
environments and associated with E. coli adherence, while
ornithine is associated with a healthy microbiota and the
maintenance of an unscathed intestinal barrier; these findings
suggest that microbiota metabolites may be related to DEC
pathogenesis (Gallardo et al., 2020). Whether this determines
the clinical impact of infection needs to be explored further.
The decrease in Firmicutes during STEC-caused diarrhea
episodes is primarily explained by decreases in Clostridiales
(including the genera Lachnospiraceae and Ruminococcaceae)
compared to healthy controls (Gigliucci et al., 2018). This occurs
alongside a decrease in Bifidobacteriales, all recognized as SCFA
producers, metabolites which can modulate the expression of
flagellin, chemotaxis proteins and adhesins either promoting or
limiting pathogenicity depending on SCFA concentrations in
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the intestinal lumen (Tobe et al., 2011; Navarro-Garcia, 2014;
Lackraj et al., 2016). Whether the reduction of these bacteria
during STEC-diarrhea is accompanied by changes in SCFA
levels, and how this may influence the immune response and
clinical outcomes in children remains undetermined.

In comparison to viral only infections, co-infection with
DEC is associated with higher clinical severity scores (Mathew
et al., 2019) and with changes in BGM composition, which is
dependant on the DEC pathotype, e.g., RV + EAEC co-infection
is associated with higher Streptococcus abundance, which is not
observed in RV + EPEC co-infections. Interestingly, an increase
of the potentially beneficial Bifidobacterium, previously described
in viral diarrheas, is more marked in virus-DEC co-infections
(Mathew et al., 2019) which have higher clinical severity scores.
This indicates that BGM changes during diarrhea episodes are
variable between studies, and it is important to assess BGM
composition separately in different diarrheal etiologies, as the
role of the BGM during acute diarrhea seems to be pathogen-
dependent.

Thus far, we have summarized studies in children focused
on specific pathogens. In Supplementary Table 2 we describe
studies that do not determine diarrhea etiology, and/or do
not clearly separate their analysis according to etiology or age
groups. Considering the global data, we can conclude that
the BGM composition is altered during episodes of infectious
diarrhea in children, characterized by decreased α-diversity and
modifications in predominant bacteria, with an increase in
Proteobacteria (mainly Escherichia) and a decrease in Firmicutes,
while changes in Bacteroides and other groups are variable
(Figure 1 and Table 4). In addition, the etiologic agent is
associated with differences in BGM composition, e.g., bacterial
only vs. virus-bacteria co-infections tend to display different
microbiota patterns compared to those caused by viruses in the
absence of bacteria (Table 5). Overall microbiota recovery toward
a “healthy-status microbiota” begins several weeks after diarrhea
resolution (Becker-Dreps et al., 2015; Singh et al., 2015), which
is influenced by the etiologic agent and other potential but less
explored factors, such as diarrhea severity, social context, and age.

Clostridioides difficile Infection
Clostridioides difficile is present in the gut microbiota of around
30% of healthy infants <1 month of age; this decreases to
approximately 10% at 12 months and 0–3% at 3 years of age
(Jangi and Lamont, 2010). Why infants with CD in their BGM
do not develop disease is unknown. Studies in newborn rabbits
suggest that the lack of toxin receptors on the surface of epithelial
cells may play a role (Eglow et al., 1992). In certain situations CD
can cause mild to severe disease, especially in children suffering
a malignancy, recent surgery, antibiotic exposure, or solid organ
transplantation (Nicholson et al., 2015; Anjewierden et al., 2019).
These situations may lead to characteristic disruptions in the
BGM and the absence of an efficient immune response to CD-
infection (Buonomo and Petri, 2016). The pathogenicity of CD
is attributed to its production of the toxins A (enterotoxin)
and B (cytotoxin), which inactivate GTP-binding proteins,
causing cytoskeleton disruption and apoptosis of colonic cells
(Abt et al., 2016). Disruption of the epithelial barrier causes

bacterial translocation from the gut and access to other tissues.
This disruption and translocation activates an inflammatory
response (pro-inflammatory cytokines, chemokines, recruitment
of innate and adaptive immune cells, reactive oxygen species
production) that can limit the systemic spread of CD (Abt et al.,
2016). However, an exaggerated inflammatory response can be
detrimental in exacerbating epithelial damage and increasing the
severity and duration of disease, as shown in mouse models
(Buonomo et al., 2013). Animal models of CD infection have been
constructed dominantly of mice treated with antibiotics, which
causes gut dysbiosis characterized by a decrease in richness,
a decrease in Bacteroidetes and an increase in Proteobacteria
or Enterobacteriaceae (Theriot and Young, 2015), with specific
differences between studies possibly related to the administration
of different antibiotics. These changes in the BGM are related to
susceptibility to CD-caused disease and the restoration of this
microbiota using specific strains e.g., a mix of Staphylococcus
warneri, Enterococcus hirae, Lactobacillus reuteri, Anaerostipes
sp. nov., Bacteroidetes sp. and Enterorhabdus sp. resolves CD-
recurrent disease in mice (Lawley et al., 2012).

CD-associated diarrhea (CDAD) is uncommon in children,
especially during the first years of life, and only a few studies
have analyzed BGM composition during CD infection in
this age group. In children from China with CDAD, α-
diversity was decreased compared to healthy controls. In
these children, differences in microbiota composition at the
phylum level (higher abundance of Firmicutes, Actinobacteria,
Proteobacteria and Acidobacteria, and lower abundance
of Bacteroidetes), as well as the genera level (increase in
Enterococcus, Streptococcus, Escherichia/Shigella, Klebsiella,
Stenotrophomonas and Haemophilus, and decrease in Bacteroides,
Faecalibacterium, Parabacteroides, Lachnospiracea incertae sedis,
Dialister, and Alistipes) were observed when compared to
healthy controls (Ling et al., 2014). In hospitalized children
from the United Kingdom with acute diarrhea, CD carriage
(detected by culture and lateral flow test) was associated with
a higher α-diversity index, and a higher abundance of the
families Lachnospiraceae and Ruminococcaceae compared to
culture-negative children (Lees et al., 2020). These findings are
contrary to those described by Ling et al. (2014) in Chinese
children; in this study detection of CD was associated with
a decrease in the abundance of butyrate-producing bacteria
from the Ruminococcaceae and Lachnospiraceae families.
This coincides with results from adults with CD-associated
diarrhea (Antharam et al., 2013). A protective role of butyrate
in preventing CD disease has been described in animal models,
given that antibiotics that predispose the host to CD-infection
deplete butyrate levels (Theriot et al., 2014), and butyrate
reduces intestinal epithelial permeability, inflammation and
bacterial translocation in infected mice (Fachi et al., 2019). The
potential role of differences in the abundance of BGM butyrate-
producing bacteria in relation to different clinical outcomes has
not been characterized; metabolomic studies in children with
CD-associated diarrhea would be useful in determining the
validity of this hypothesis.

The toxigenic status of CD also determines differences
in microbiota composition. In children from China with
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FIGURE 1 | α-diversity and relative abundance of main taxa in children with acute diarrhea compared to healthy controls. Red represents higher diversity or
abundance in children with diarrhea, and blue represents higher values in healthy controls.

CD-associated diarrhea, α-diversity was lower in those with CD
producing both toxins A and B (A+B+) compared to those
producing only toxin B (A−B+); CD A+B+ was associated with
increased abundance of Firmicutes and Acidobacteria at phylum
level, increased abundance of Lactobacillales at order level and
Enterococcaceae at the family level compared to CD A−B+ (Ling
et al., 2014). In the cohort from the United Kingdom, the presence
of toxigenic CD was associated with an increased abundance
of Proteobacteria and a decreased abundance of Firmicutes and
Bacteroidota at the phylum level, and an increased abundance
of Klebsiella at the genus level compared to non-toxigenic
CD carriers and culture-negative children (Lees et al., 2020).
Differences in both studies may be partially explained by the age
of children studied, as Chinese children ranged from 2 to 4 years
of age while children from United Kingdom ranged from 0 to
16 years of age.

In animal models, metabolism of bile acids driven by the
BGM has a protective role by inhibiting spore germination
and overgrowth of CD-vegetative cells (Theriot et al., 2014);
whether this (or other) mechanisms explain why some children
are asymptomatic carriers of inactive forms of CD, while others
are toxin-producers and can develop CD-associated disease
is still unknown.

The fact that fecal transplantation, which aims to restore a
“healthy gut microbiota,” has proven effective in the treatment of
recurrent CD in adults and children, supports that gut microbiota
disruption is a key factor in the development of CD-disease.

In children, fecal transplantation causes an increase in α-
diversity (which was particularly reduced in children requiring
multiple transplants to achieve clinical success), a decrease in
Proteobacteria and an increase in Bacteroidota, evolving toward
a “healthy microbiota” in parallel with clinical improvement
(Fareed et al., 2018; Li X. et al., 2018). Metabolite-mediated
mechanisms related to BGM restoration have been described
in FMT (Martinez-Gili et al., 2020). Bile salt hydrolases (BSH)-
producing bacteria present in adult donor samples have been
associated with a decrease of taurocholic acid (TCA) in recipient
stools, a conjugated bile acid that triggers CD germination
(Mullish et al., 2019). Also, a restoration of SCFA levels is seen
in FMT adult recipients (Seekatz et al., 2018), which might be
partially explained by changes in diet after FMT or antibiotic
cessation post resolution of recurrent CD-disease as discussed by
other authors (Martinez-Gili et al., 2020). In an in vitro model
of CD infection, the SCFAs succinate, butyrate, acetate, and
isobutyrate, decrease when antibiotics are discontinued, and are
not affected by a later FMT. However, recovery of valerate levels is
only seen after FMT, which is related to inhibition of CD growth
(McDonald et al., 2018). As we previously described, SCFA have
anti-inflammatory effects which can participate in CD-recovery
after FMT by other mechanisms beyond inhibition of CD growth.
It is important to consider that FMT is associated with changes
in gut virome and mycobiome (Fujimoto, Zhang), which is
not intended to be discussed in this review, but highlights the
fact that even when BGM disruption seems to be a key factor
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in CD-disease, the FMT effects are multifactorial and most
likely only partially mediated by the restoration of BGM and
bacterial metabolites.

GUT MICROBIOTA AND RESPIRATORY
INFECTIONS DURING EARLY
CHILDHOOD

Acute respiratory infections (ARIs) are a major source of
morbidity and mortality in children worldwide (United Nations
Inter-agency Group for Child Mortality Estimation, 2019),
representing the second leading cause of years of life lost due
to premature mortality and one of the most frequent causes of
hospitalization (Nair et al., 2013). These infections can range
from mild upper ARIs (AURIs), such as the common cold, to
life-threatening conditions including lower ARIs (ALRIs), such
as pneumonia and bronchiolitis. ARIs are the most frequent
type of infection during the first 3 years of life, with a median
of 10 episodes per child (with up to 90% corresponding to
AURIs) (Vissing et al., 2018). Viruses are the primary cause of
both AURIs and ALRIs in children, with rhinovirus the most
common cause of AURI (Kwiyolecha et al., 2020) and respiratory
syncytial virus the most common cause of ALRI (O’Brien
et al., 2019; Li et al., 2021). Influenza virus causes seasonal
global epidemics, representing an important cause of ALRIs
associated with hospitalization and severe outcomes in children
aged <5 years as compared to older children and adults (Ruf
and Knuf, 2014; Wang et al., 2020). Adenovirus, parainfluenza,
metapneumovirus, and enterovirus (among others) also cause
ARIs in children, however, they are less common (Benet
et al., 2017; Chen J. et al., 2018). Bacteria are also a major
cause of ALRIs, with Streptococcus pneumoniae causing the
majority of infections despite global vaccination efforts, resulting
in significant morbi-mortality in children <5 years of age
(Wahl et al., 2018).

The RSV pathogenesis has been studied thoroughly. The
virus replicates in the airway epithelium, which can result in
lower airway inflammation, alveolar epithelial cell apoptosis,
bronchial epithelial necrosis, multifocal acute alveolitis, intra-
alveolar edema, and hemorrhage. An intense neutrophil response
during this early phase is positively correlated with tissue
damage and disease severity (Russell et al., 2017; Sebina and
Phipps, 2020). Activation of adaptive immunity characterized
by cytotoxic cells and Th1 cells are protective, mediating viral
clearance; Th2-skewed responses on the other hand appear to
be deleterious and are associated with severe disease outcome
(Caballero et al., 2015) and may be related to a future risk of
asthma development (Restori et al., 2018).

Linking the Gut Microbiota and
Respiratory Infections: The Gut-Lung
Axis
There is extensive evidence that the BGM may influence
immunity at the respiratory tract level, resulting in protection,
predisposition or modification of respiratory infection/disease.

The mesenteric lymphatic system can translocate intact bacteria,
fragments, or metabolites from the intestinal lumen to systemic
circulation, reaching the respiratory tract and modulating
the immune response at this level (Enaud et al., 2020). The
gut-lung axis has been extensively reviewed by other authors
(Budden et al., 2017; Dumas et al., 2018; Enaud et al., 2020;
Sencio et al., 2021). We summarize the main components
mediating BGM modulation over lung immunity in Table 6.

Gut Microbiota During Acute Respiratory
Infections in Children and Mouse Models
Lung infections can induce changes in the gut microbiota,
establishing a bidirectional axis between the respiratory tract and
the gut microbiota.

Four microbiota profiles were identified among children
hospitalized with bronchiolitis (65% with RSV and 23% with
Rhinovirus) and healthy controls, e.g., Escherichia-dominant,
Bifidobacterium-dominant, Enterobacter/Veillonella-dominant,
and Bacteroides-dominant. The proportion of children with
bronchiolitis was significantly higher in the Bacteroides-
dominant profile; these children also had increased bacterial
richness and α-diversity. The Enterobacter/Veillonella-dominant
profile had the lowest proportion of children with bronchiolitis
(Hasegawa et al., 2017). In addition, functional predictions
based on taxonomy indicated that the BGM of children with
bronchiolitis had increased abundance of gene functions related
to sphingolipid metabolic pathways compared to controls,
which may be associated with an immunomodulatory response
(Hasegawa et al., 2017). In hospitalized children with RSV
bronchiolitis, diminished α-diversity was observed in the
BGM compared to healthy controls; additionally, alterations
in composition were observed, characterized by enrichment
in Proteobacteria and Bacteroidota at the phylum level and
enrichment in Bacteroides and Streptococcus at the genus level,
as compared to healthy children. Conversely, the oropharyngeal
microbiota in children with bronchiolitis was enriched in
Firmicutes and depleted in Bacteroidota and Proteobacteria
compared to healthy controls. Both the fecal and oropharyngeal
microbiota remained relatively unchanged 7–10 days after
admission (Hu et al., 2017). The quantity of Bifidobacterium was
decreased in fecal samples of wheezing children hospitalized
with bronchiolitis or asthma of unknown etiology, which was
in turn associated with lower serum levels of Th1 cytokines and
higher levels of serum Th2 and Th17 cytokines, as compared to
controls (Liwen et al., 2018).

In summary, relatively limited data suggests that the BGM is
altered in children with bronchiolitis or wheezing episodes when
compared to healthy age-matched controls, with a reduction in
α-diversity, an increase in the phylum Bacteroidota (possibly
associated with specific sphingolipid metabolic pathways) and
a reduction in Bifidobacterium (possibly associated with serum
Th2/Th1 imbalance). As these studies are cross-sectional, the
question as to whether these alterations in the BGM are the
result of or the cause of the host’s predisposition to ARIs is
unclear. The latter theory is supported by a recent birth-cohort
study from The Netherlands aimed at assessing the impact of
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TABLE 6 | Key factors involved in the modulation of lung immunity through the Gut-Lung axis.

Gut microbiota
component

Description Interaction with respiratory tract immunity Effect on lung
immunity

References

SCFA Metabolites derived from gut
microbiota fermentation of
undigested dietary fibers.
Propionate, acetate, and
butyrate are the main SCFA.

− SCFA translocate from gut to the systemic circulation and reach
the bone marrow, where they promote hematopoiesis and
differentiation of different lineages depending on context (e.g.,
during influenza infection they induce monocytes and dendritic
cell progenitors differentiation and increase of patrolling
macrophages which reach the lung).

↑ or ↓ Arpaia et al., 2013;
Trompette et al., 2014;
Antunes et al., 2019

− Acetate promotes a type I-IFN response in pulmonary epithelial
cells, in a Gpr43 receptor-dependent manner.

− During influenza infection, SCFAs have a direct effect on LTCD8
activation by enhancing cellular metabolism in a GPR41 (G
protein coupled receptor) dependent manner.

− SCFAs promote an extrathymic peripheral Treg cell pool,
associated with decreased allergic airway diseases through
histone deacetylase inhibition.

Segmented
filamentous
bacteria (SFB)

Commensal gut microbiota
belonging to the Firmicutes
phylum; colonization in humans
occurs during the first 2 years
of life, with an important
decrease after 36 months.

− SFBs promote differentiation of TCD4 to Th17 in a
IL1R-dependent manner during pulmonary fungal infections in
mice.

↑ Yin et al., 2013; Chen
B. et al., 2018

− Th17 response induced by SFB is involved in lung autoimmune
disease in mice.

Desaminotyrosine Degradation product of
flavonoids, plant-derived
polyphenol compounds with
intestinal and systemic
anti-inflammatory effects.

− Desaminotyrosine produced by Clostridium orbiscindens in the
gut promotes a pulmonary type 1 IFN response, protective
against Influenza infection.

↑ Steed et al., 2017; Wei
et al., 2020

PRR agonists Activation of PRR, including
Toll-like receptors (TLR) and
Nod-like receptor (NLR) by
gut-bacterial ligands enhance
antiviral respiratory immune
responses.

−Gut TLR4 activation by LPS induces protection against E. coli
pneumonia in mice by promoting a NFKB response and
activation of alveolar macrophages.

↑ Chen et al., 2011;
Ichinohe et al., 2011;
Clarke, 2014

− Gut (NLR) activation by their ligands determines an effective
lung immunity to Klebsiella pneumoniae by promoting alveolar
macrophage ROS-mediated bacterial killing.

− Rectal inoculation of TLR agonists CpG (TLR9 agonist), Poly I:C
(TLR3 agonist), peptidoglycan (TLR2 agonist), and LPS (TLR-4
agonist) restore immunity to influenza virus in antibiotic-treated
Mice. TLR-5 activation by Flagellin is necessary for antibody
responses against influenza virus vaccination in mice.

delivery mode on the gut microbiota and health during the first
year of life. This study concluded that there is an association
between microbiota composition during the first week of life
and the number of ARIs later in life; specifically the presence of
Bifidobacterium was associated with fewer ARIs and the presence
of Klebsiella and Enterococcus with more ARIs over the first
year (Reyman et al., 2019). The fact that a “healthy” BGM has
protective effects in the case of ARIs is also supported by studies
in mouse models, e.g., the transfer of a “healthy” BGM from
wild mice to laboratory mice resulted in reduced inflammation
and increased survival following influenza infection (Rosshart
et al., 2017); furthermore, gut microbiota-derived SCFAs (acetate)
protected mice against RSV infection, through the promotion of
type I IFN in pulmonary epithelial cells (Antunes et al., 2019).
Conversely, experimental RSV and influenza infections in mice
caused an alteration in their gut microbiota, with an increase
in Bacteroidota (mainly due to Bacteroidaceae) and a decrease
in Firmicutes (mainly Lachnospiraceae and Lactobacillaceae
families) (Groves et al., 2018). Also, RSV infection altered
lipid metabolism, increasing fecal abundance of sphingolipids,

polyunsaturated fatty acids, and the SCFA valerate (Groves
et al., 2020), supporting the gut microbiota metabolic functional
prediction in children cited before (Hasegawa et al., 2017).
Nevertheless, the theoretical impact of these changes on anti-
inflammatory responses remains unclear.

For the purpose of this review, we were not able to find
publications on the relationship between the BGM and other
ARIs such as influenza or pneumococcal pneumonia, but there
is rising evidence coming from animal models. Studies in mice
focusing exclusively on the effect of viral influenza on the BGM
describe an association with dysbiosis, primarily characterized by
an increase in Proteobacteria or Enterobacteriaceae (Wang et al.,
2014; Deriu et al., 2016; Bartley et al., 2017) and a decrease in
Bacteroidetes (Yildiz et al., 2018) and/or Firmicutes (Wang et al.,
2014). BGM alterations seem to be mediated by the inflammatory
response initiated in the respiratory tract and through a systemic
release of cytokines, type I-IFN (Deriu et al., 2016) and IFN-
gamma (Wang et al., 2014), leading to intestinal imbalances that
predispose the host to invasion by bacterial pathogens (Deriu
et al., 2016; Yildiz et al., 2018).
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FIGURE 2 | Bidirectional interactions between the gut microbiota and gastrointestinal or respiratory tract infections in childhood.

A healthy BGM seems protective against Streptococcus
pneumoniae infection in mice, as antibiotic-induced depletion
of the gut microbiota was associated with worse outcomes
compared to controls, partially mediated by decreased lung
macrophage phagocytosis capacity (Schuijt et al., 2016).
Segmented filamentous bacteria protected against pneumococcal
pneumonia in immunocompromised mice Rag -/- by promoting
neutrophil resolution following lung infection (Felix et al., 2018).
Whether these findings have potential correlations in children,
remains unclear.

DISCUSSION AND THERAPEUTIC
PROJECTIONS

The development and the dynamics of BGM composition
are closely related to the development of the immune system
during first years of life, modulating protection or predisposition
to infections. Studies in animal models and humans, mainly
children, allow us to conclude that bidirectional interactions
between infectious microorganisms and the gut BGM are
common (Figure 2). One example is the process of gut
commensal bacteria development and metabolite production,
which interact directly with the offending bacteria or indirectly
through immune-stimulated interactions. In the opposite
direction is the effect of infection on modifications of the
pre-existing BGM, resulting in dysbiosis, which progressively
returns to a “healthy” BGM after the pathogen is cleared.
Although there are direct interactions between components

of the BGM and gastrointestinal pathogens (Table 3), host
immune system stimulation seems to be the key mediator
as exemplified by the “gut-lung” axis model. This immune
modulatory role is further supported by several studies on
immune response to vaccines, not reviewed here (Lynn et al.,
2021), where the microbiota component is associated with
differential immune responses to several vaccines in children
in various populations, including the RV, the BCG, and the
influenza vaccines.

The specific components of the microbiota, immune system,
and infectious agents that play a role in these interactions remains
a matter of active research. Studies in children reviewed here have
primarily been performed during acute infections, hindering
assessment as to whether any differences could be explained by
the infection itself, or rather pre-existing dysbiosis. Large cohort
and longitudinal studies in healthy children are needed to better
understand the intra-individual evolution from a developing
healthy gut microbiota to an altered gut microbiota during an
infectious episode, including possible convalescence.

Several attempts to modulate or modify the BGM in order
to protect against infectious diseases have been explored, of
which probiotics have been the most deeply studied. Clinical
efficacy of this strategy in reducing the duration and intensity
of gastroenteritis symptoms is weak (Szajewska et al., 2020),
partially because studies have used diverse probiotic strains.
In children with non-specific acute diarrhea, treatment with
Lacticaseibacillus rhamnosus was associated with modulation of
the gut microbiota, characterized by the attenuation of dysbiosis,
higher fecal IgA levels, lower intestinal inflammatory markers
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(lactoferrin and calprotectin), and improved clinical outcomes
compared to non-treated children (Lai et al., 2019). In children
with acute RV-diarrhea, administration of S. boulardii was
associated with reduced α-diversity and altered composition (an
increase in Proteobacteria and a decrease in Firmicutes) during
first 5 days of the diarrhea episode, but not at days 10–30, as
compared to healthy controls; although a non-treated group
was not evaluated in this study to corroborate if probiotics
had a benefit in the recovery of the gut-microbiota (Dinleyici
et al., 2018). In children with infectious diarrhea of any cause,
administration of S. boulardii was associated with the recovery
of α- and β-diversity over the 15 days following treatment to
levels comparable to healthy controls, which was not observed
in non-treated children with diarrhea (Toro Monjaraz et al.,
2021). It is noteworthy that the effect of probiotics on BGM
composition during diarrhea has been assessed using S. boulardii,
a fungus closely related to Saccharomyces cerevisiae, which is
detected in stools of healthy children (Strati et al., 2016). The
mechanisms related to this specific probiotic include direct
binding to pathogens, induction of antimicrobial peptides and
immunomodulatory effects, among others (Pais et al., 2020),
similar to mechanisms of interaction between bacterial BGM
and pathogens previously discussed in this review. Though
mycobiome was not assessed in this article, these findings
highlight the complex equilibrium and interactions between
different components of the microbiota and the host. For NEC
prevention in preterm infants, clinical guidelines recommend
specific probiotic strains with little evidence of efficacy (van
den Akker et al., 2020). The clinical benefit of certain strains
in preterm infants seems to be dependent on their effects on
the BGM, e.g., Bifidobacterium breve strain BBG-001 did not
affect NEC incidence in a multicenter, randomized, controlled
phase 3 trial including preterm infants (PiPS trial). There
was no difference in microbial richness and diversity of the
gut microbiota in the probiotic and placebo groups (Millar
et al., 2017). Conversely, a combination of 3 probiotic strains
(Bifidobacterium longum subsp. infantis BB-02, Streptococcus
thermophilus TH-4, and Bifidobacterium animalis subsp. lactis
BB-12) was associated with a 54% reduction in Bell stage 2
or greater NEC, with significant changes in the gut microbiota
compared to placebo (increased in Bifidobacterium and decreased
in Enterococcus) (Plummer et al., 2018). Probiotics have been
associated with some protective effect in preventing and reducing
the duration of ARIs in children (Wang et al., 2016; Laursen
and Hojsak, 2018); but to our knowledge there are no studies
simultaneously evaluating their effect on the BGM.

Prebiotics, defined as “substrates selectively utilized by host
microorganisms conferring a health benefit” (Gibson et al., 2017),
synbiotics, defined as “mixture comprising live microorganisms
and substrates selectively utilized by host microorganisms that

confers a health benefit” (Swanson et al., 2020), and more recently
postbiotics, defined as “preparation of inanimate microorganisms
and/or their components that confers a health benefit” (Salminen
et al., 2021) are additional potential therapeutic tools that may
influence infections by action on the microbiota-immune system
axis. A deeper understanding of the associated mechanisms
and their clinical relevance in pediatric infectious diseases will
be required before advancing these and other preventive or
therapeutic interventions. Finally, the use of fecal transplantation
to restore a “healthy BGM” beyond CD infection, e.g., for
prevention of multi-drug resistant infections in colonized
patients has been proposed but unexplored in children (Gurram
and Sue, 2019). Whether the use of these therapeutic or
preventive BGM-related tools during certain periods of early
childhood within a “window of opportunity” can significantly
affect the predisposition to, or clinical outcomes of infections
during adolescence and adulthood is still not completely
understood and requires large cohort studies.

This review has focused on the role of the bacterial gut
microbiota on the most common infections in childhood (acute
diarrhea and acute respiratory infections) and characteristics
of infection-related gastrointestinal entities (necrotizing
enterocolitis and C. difficile infection). However, several aspects
of the interaction between the BGM and infections have not
been explored in depth, including the influence of the BGM on
vaccine response (Lynn et al., 2021) and its role in antimicrobial
efficacy, acting as reservoirs for AMR genes (Anthony et al.,
2021) or even modulating the metabolism and pharmacokinetics
of antimicrobials (Zimmermann et al., 2019; Klünemann et al.,
2021). Finally, there is increasing evidence about the importance
of viruses, fungus, archaea and parasites in maintaining the gut
homeostasis which was not included in this review. The role of
these microorganisms in dysbiosis during common childhood
infections, and how variations in these components affect the
bacterial GM composition are matters to be assessed.
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