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Abstract

Non-alcoholic fatty liver disease and the risk of progression to steatohepatitis, cirrhosis and

hepatocellular carcinoma have been identified as major public health concerns. We have

demonstrated the feasibility and potential value of measuring liver fat content by magnetic

resonance imaging (MRI) in a large population in this study of 4,949 participants (aged 45–

73 years) in the UK Biobank imaging enhancement. Despite requirements for only a single

(�3min) scan of each subject, liver fat was able to be measured as the MRI proton density

fat fraction (PDFF) with an overall success rate of 96.4%. The overall hepatic fat distribution

was centred between 1–2%, and was highly skewed towards higher fat content. The mean

PDFF was 3.91%, and median 2.11%. Analysis of PDFF in conjunction with other data fields

available from the UK Biobank Resource showed associations of increased liver fat with

greater age, BMI, weight gain, high blood pressure and Type 2 diabetes. Subjects with BMI

less than 25 kg/m2 had a low risk (5%) of high liver fat (PDFF > 5.5%), whereas in the higher

BMI population (>30 kg/m2) the prevalence of high liver fat was approximately 1 in 3. These

data suggest that population screening to identify people with high PDFF is possible and

could be cost effective. MRI based PDFF is an effective method for this. Finally, although

cross sectional, this study suggests the utility of the PDFF measurement within UK Biobank,

particularly for applications to elucidating risk factors through associations with prospec-

tively acquired data on clinical outcomes of liver diseases, including non-alcoholic fatty liver

disease.

Introduction

The UK Biobank imaging enhancements provide an ideal resource with which to investigate

the UK prevalence of liver steatosis, non-alcoholic fatty liver disease (NAFLD) and associated

pathologies. NAFLD is defined as an accumulation of fat in the liver (hepatic steatosis) in

greater than 5% of liver tissue in the absence of other causes (e.g. alcohol consumption,
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steatogenic medication) [1,2]. Estimates of the prevalence of NAFLD in the UK and other pop-

ulations vary; a large prospective study in the UK using ultrasound reported the incidence of

NAFLD to be 26.4% [3]. A recent meta-analysis examining world-wide prevalence of NAFLD

involving 8,515,431 subjects found that rates varied from 13.5–31.8% in different regions [4–

6], while prevalence in the USA has been estimated to be between 30% [7,8] and 46% [9].

Other studies have shown that obese and morbidly obese populations are particularly affected,

with between 70–91% of such patients suffering from NAFLD [10]. Although NAFLD alone is

a concerning condition, its roles as a risk or causal factor for non-alcoholic steatohepatitis

(NASH), hepatic cirrhosis or hepatocellular carcinoma (HCC) are arguably a greater worry

[11]. The biological mechanisms for this progression from NAFLD still are not well

understood.

Estimates as to the proportion of patients who progress from NAFLD to non-alcoholic stea-

tohepatitis (NASH) vary widely. One reason for this is the absence of universally accepted defi-

nitions for both NAFLD and NASH [12]. Existing clinical definitions rely on histology which

is invasive and expensive [13]. Histology can also be affected by sampling error and therefore

is often falsely negative [14]. Although several non-invasive diagnostic tools have been pro-

posed, they have limited agreement in diagnosing NAFLD and NASH [15], and have not

replaced histology as the clinical standard. A second reason is that most studies investigate dis-

ease progression in clinical cohorts rather than in the general population. This approach may

well overestimate the association and rate of progression, as these cohorts typically have more

risk factors for NASH than in addition to NAFLD [6,16].

The prevalence and risk of progression of NASH is better understood. The worldwide prev-

alence of NASH is reported to be between 1.5–6.45% [6]. It is estimated that 21–26% of NASH

sufferers progress to cirrhosis in 8.2 years [17] with 7% progressing to HCC in 6.5 years [12].

The presence of NASH carries a risk of advanced fibrosis of 68 per 1,000 person years [6].

NAFLD is linked to metabolic risk factors, and in particular type 2 diabetes. Hepatic insulin

resistance and NASH precede systemic insulin resistance in the development of diabetes, so

NAFLD is increasingly thought of as a precursor to type 2 diabetes [18]. One study reported

23% of patients with NAFLD, and 47% of those with NASH, also have diabetes (a similar preva-

lence of diabetes to that in obese subjects) [6]. Similarly, in patients with type 2 diabetes the

prevalence of NAFLD has been reported as 50% [19]. The combination of diabetes and NAFLD

is a risk factor for progression into NASH, cirrhosis and death [6]. NAFLD is clearly an impor-

tant cofactor in metabolic disorders. However, the understanding of how NAFLD relates to the

other features of metabolic disorders, and how it progresses to NASH and HCC has been lim-

ited. This is due to people only being screened when presenting with symptoms, and screened

using the invasive and limited method of tissue biopsy. Magnetic resonance imaging (MRI)

now provides a promising non-invasive diagnostic alternative that can be used for large scale

population studies and for serial follow up of patients at risk.

MRI and magnetic resonance spectroscopy (MRS) are now considered “gold-standard”

methods for quantitative fat measurement. Fat quantitative MRI methods, generally based on

Dixon or IDEAL pulse sequences, where the combination of different images can give fat and

water measurements [20–22]. MRS is considered the more robust and quantitative of the two

MR-based methods [23,24]. It shows good agreement with MRI but tends to be more sensitive,

particularly are very low levels of fat infiltration [25,26]; however, it is limited by technical

demands and availability, and therefore has been applied to relatively small studies in specialist

centres.

The UK Biobank is a rich resource for evaluating risk factors for later life chronic disease. It

includes lifestyle, clinical, biomarker and genomic data collected from a cohort of 500,000 UK

individuals, aged between 40–69 years. In depth phenotyping based on a variety of imaging
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techniques, including MRI, DEXA and ultrasound now is being carried out in a subset of the

participants (intended to include 100,000 by about 2022) [27]. The range of information avail-

able within the cohort provides an excellent opportunity to explore complex interaction of

liver fat with both liver-related outcomes, and metabolic disease. In particular, as the imaged

cohort increases in size, and the longer term patient outcome data becomes available, it will

provide a dataset with which to develop risk profiles for a range of liver related outcomes

based on liver biomarkers, as well as other biomarkers derived from genetic, epigenetic and

lifestyle factors. In this pilot study, we have investigated the prevalence of NAFLD in the UK

Biobank cohort for the first time and assessed the potential impact of age, gender and BMI on

hepatic fat deposition.

Methods

Study design

A prospective study of 4949 subjects from the UK Biobank imaging enhancement protocol

[27,28] acquired between August 2014 and October 2015. These 4949 subjects were those that

were scanned chronologically first and have had their scans made available from the UK Bio-

bank imaging enhancements, with no inclusion or exclusion criteria in addition to those used

by the UK Biobank imaging enhancements. Proton density fat fraction (PDFF) and patient

meta-data were obtained through UK Biobank Access Application number 9914. The UK Bio-

bank has approval from the North West Multi-Centre Research Ethics Committee (MREC),

and obtained written informed consent from all participants prior to the study.

Imaging protocol

Images were acquired at the dedicated UK Biobank imaging Centre at Cheadle (UK) using a

Siemens 1.5T MAGNETOM Aera. A multi-echo spoiled-gradient-echo acquisition was used

to calculate T2� and PDFF maps of the liver [20,21]. A single transverse slice was captured,

through the centre of the liver superior to the porta hepatis. The following parameters were

used: 40x40cm2 field of view, 160x160 acquisition matrix yielding a voxel size of 2.5mm x

2.5mm, 6mm slice thickness, 20˚ flip angle, 27ms TR, and 2 signal averages. Ten echo times

were selected such that the signals from fat and water were in phase and out of phase at 1.5T

(TE = 2.38, 4.76, 7.14, 9.52, 11.90, 14.28, 16.66, 19.04, 21.42, and 23.80 ms). The acquisition of

echoes needed for PDFF image construction occurred during a single expiration breath-hold,

without any contrast agent, and typically took� 3 minutes.

Post-processing

Raw MR images were sent to a central reporting laboratory, before being transferred to indi-

vidual Windows 7 workstations for analysis.

Image analysis

MR data were analysed using LiverMultiScan™ Discover software [29]. PDFF maps were con-

structed using the second, fourth, and sixth of the ten MR echoes, using a three-point DIXON

technique [20,21]. Image analysts were trained in abdominal anatomy, to allow them to reject

images where the liver was not clearly identifiable. Image analysts were also trained in com-

mon MR artefacts, allowing them to identify artefacts within the images, such as poor shim-

ming, motion, low signal, and fat swaps. Images with artefacts were referred to a team of

experienced MR physicists for evaluation. Fat-water swaps were corrected by subtracting the

measured PDFF value from 100%.

Liver fat in the UK Biobank cohort
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Three 15mm diameter circular regions of interest (ROIs) were selected on the PDFF

images. ROIs were selected to cover a representative sample of the liver parenchyma, avoiding

vessels, bile ducts and other organs. The reported PDFF was calculated from the mean of all of

the pixels within the three ROIs. Scans were anonymised and thus analysts were blinded to the

meta-data about each participant.

Inter- and intra-reader Variability

Inter- and Intra-reader variability has been previously reported [30]. Over different days, the

mean intra-reader correlation was 0.96 (SD = 0.01), and the mean inter-reader correlation was

0.997 (SD = 0.0001).

Statistical analysis

Summary data are presented as medians and quartiles. Comparison between groups was tested

using Kruskal-Wallis and two-sided Kolmogorov-Smirnov (KS) tests. Due to ties in the data,

p-values are approximated for the KS tests, with 2e-16 the lowest value that can be accurately

reported. A linear model was constructed using a natural log transformation to normalise the

fat distribution. The performance of the of the model was evaluated by analysis of residual

plots, and calculating the correlation between the parameter estimates and the variance infla-

tion factors [31]. Statistical analyses were undertaken using Python 2.7 [32] and R 3.1.1 [33].

Results

PDFF was successfully calculated from 4775 (96.8%) of the initial 4949 MRI datasets. Of the

174 images not used, 88 were rejected during a quality control process because of missing files,

44 had artefacts, in 21 cases the slice was incorrectly positioned such that it did not include the

liver and 19 files were corrupted not load. A further 158 (3.31%) could not be linked to meta-

data. This left a total of 4617 datasets (for example MRI images, see Fig 1). 18 of these datasets

had fat-swaps. 251 datasets had missing meta-data in one or more of the columns described in

Table 1, but these have been included in individual analysis where relevant data were available.

The demographics of the subjects included in the final dataset are described in Tables 2 and

3. Overall, the cohort was approximately balanced for gender (female: male ratio 53: 47), with

a median BMI of 26.09 kg/m2 (range 16.04–48.84 kg/m2), making this cohort marginally ‘over-

weight’ (>25 kg/m2) on average. The age range was 45–73 years, centred around a median of

Fig 1. Representative MRI images from the UKBiobank cohort, showing individuals with 1%, 18% and

28% PDFF. Clear differences in the intensity of the liver can be seen, with the liver appearing brighter as

PDFF increases.

doi:10.1371/journal.pone.0172921.g001
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62 years; more than 80% of the cohort was aged between 50–70 years. The cohort was predom-

inantly European ethnicity, with 95.8% reporting a white ethnicity.

The maximum of the overall hepatic fat distribution (Fig 2) was centred between 1–2%, and

was highly skewed towards higher fat content. The mean PDFF was 3.91%, and median 2.11%

(IQR 1.25–4.37). 19.9% of individuals (n = 921) had>5.5% PDFF, the commonly accepted

risk level for NAFLD [1], and 9.2% of the participants (n = 425) had a PDFF> 10%.

BMI

The upper end of the distribution was dominated by those with high BMI, with 90% of those

participants who had PDFF>5% having BMI > 25 kg/m2. By comparison, ‘healthy’ subjects

in the imaged cohort (BMI < 25 kg/m2, no diabetes diagnosed by doctor), had lower PDFF

values, (mean 1.97%, median 1.32%, IQR 0.99–2.06%). In addition, this subset had a smaller

spread, with standard deviation 2.33 and IQR 1.07 (Table 4). The 95% upper limit for ‘healthy’

participants was 5.21%. Our results showed that there is clearly a strong correlation between

higher liver fat and BMI (Fig 3). PDFF distributions of the cohort split into brackets of 5 BMI

units, showed a steady increase in median PDFF (less than 20 kg/m2: 0.98%, 20–25 kg/m2:

1.36%, 25–30 kg/m2: 2.54%, 30–35 kg/m2: 4.39%, and more than 35 kg/m2: 7.33%, see S1

Table). These data suggest that BMI can be used to stratify subjects in this population for risk

of a high PDFF; only 83 subjects (1.8%) had both a BMI less than 25 kg/m2 and a PDFF greater

than 5.5% (Fig 3).

Gender and age

We also observed a strong relationship between liver fat, gender and age (Table 5 and Fig 4).

Females (median 1.76%, IQR 1.14–3.54) had significantly lower liver fat than males (median

2.58%, IQR 1.48–5.47) (one-sided K-S test, p = 10−34). For the whole cohort, there was an

increase in liver fat with age, although this was more strongly present in the female participants

than the males. In females, the 40–49 year olds (median 1.36% IQR 0.98–2.46) had signifi-

cantly lower PDFF than the 60–69 year olds (median 1.88%, IQR 1.20–3.82, p = 2.4e-6) and

the 70–79 year olds (median 2.01%, IQR 1.21–4.48, p = 1.0e-5). Similarly, the 50–59 year olds

(median 1.57%, IQR 1.06–2.92) had significantly lower PDFF than the 60–69 year olds

(median 1.88%, IQR 1.20–3.82, p = 1.3e-4) and the 70–79 year olds (median 2.01%, IQR 1.21–

4.48, p = 2.1e-3). The 40–49 and 50–59 year-old female groups had significantly lower PDFF

values than all of the male age groups (all p-values in range 4e-4 – 1e-27). Conversely, there

was no significant difference between the distribution of PDFF in any of the male age groups

(40–49 years, 50–59 years, 60–69 years and 70–79 years), with all p-values in the range 0.24–

0.054 (two-sided K-S tests). Despite differences in the female and male distributions as a

Table 1. Details of UKBiobank data fields used in this analysis.

Field Field ID Instance Short name

Sex 31 NA Sex

Body mass index (BMI) 21001 2 –Imaging visit BMI

Diabetes diagnosed by doctor 2443 2 –Imaging visit Diabetes

Vascular/heart problems diagnosed by doctor 6150 2 –Imaging visit Vascular/heart problems

Alcohol drinker status 20117 2 –Imaging visit Alcohol drinker status

Ethnic background 21000 2 –Imaging visit Ethnic background

Weight change compared with 1 year ago 100540 2 –Imaging visit One year weight change

Age when attended assessment centre 21003 2 –Imaging visit Date of attending assessment centre

doi:10.1371/journal.pone.0172921.t001

Liver fat in the UK Biobank cohort
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Table 2. Cohort demographics.

Subjects (n) Subjects (%)

Gender

Male 2184 47.3

Female 2433 52.7

Age

40–49 yrs 334 7.2

50–59 yrs 1371 29.7

60–69 yrs 2146 46.5

70–79 yrs 567 12.3

Unavailable 199 4.3

BMI (kg/m2)

<20 kg/m2 133 2.9

20–25 kg/m2 1646 35.7

25–30 kg/m2 1952 42.3

30–35 kg/m2 657 14.2

>35 kg/m2 209 4.5

Unavailable 20 0.4

Ethnicity

White 4421 95.8

Mixed 28 0.6

Asian 52 1.1

Black 29 0.6

Chinese 13 0.3

Other 21 0.5

Unavailable 53 1.1

Vascular/heart problems

Angina 108 2.3

Heart attack 98 2.1

High blood pressure 1239 26.8

Stroke 58 1.3

None of the above 3204 69.4

Unavailable 52 1.1

Diabetes

Yes 226 4.9

No 4336 93.9

Unavailable 55 1.2

Alcoholic drinker status

Current 4263 92.3

Previous 160 3.5

Never 148 3.2

Unavailable 46 1.0

Self-reported weight change

Yes—loss 865 18.7

No 2635 57.1

Yes—gain 1017 22.0

(Continued )
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whole, the differences became smaller and less significant as individuals age. In the 70–79

year-olds, although there was a difference in the medians between females (2.01%, IQR 1.21–

4.48) and males (2.44%, IQR 1.36–5.45), their distributions are not significantly different (p-

value 0.16). In comparison, the 50–59 year-old groups have median PDFFs of 1.57% (IQR

1.06–2.92) and 2.54% (IQR 1.42–5.41), and had significantly different distributions (p-value

1.3e-18).

Other metabolic phenotypes

Diabetes, alcohol consumption, cardiovascular disease, and weight change are all factors that

affect, or are affected by, metabolic syndromes. Liver fat was associated with self-reported dia-

betes, weight loss and vascular disease (Fig 5). There was no clear relation between self

reported overall alcohol consumption and liver fat (p = 0.68, Kruskal-Wallis rank sum test).

All the groups that reported one of the cardiovascular problems had slightly higher PDFF

than those who did not. However, there were only three groups with a significant difference

from the group that reported no cardiovascular problems. Subjects with high blood pressure

Table 2. (Continued)

Subjects (n) Subjects (%)

Unavailable 100 2.2

The ‘unavailable’ rows include missing values, ‘don’t know’, and ‘prefer not to say’ responses. For vascular/

heart problems, subjects could have any number of labels (i.e. they could be in both the heart attack and

stroke groups). For all other phenotype, subjects could only have a single label.

doi:10.1371/journal.pone.0172921.t002

Table 3. Age and body mass index summary (BMI) statistics of cohort.

Median IQR 1st Quartile 3rd Quartile Min value Max value Mean

Age (years) 62 12 55 67 45 73 61.19

BMI (kg/m2) 26.09 5.34 23.61 28.95 16.04 48.84 26.65

doi:10.1371/journal.pone.0172921.t003

Fig 2. Distribution of PDFF in whole cohort. There are 84 individuals with PDFF > 20%, who are not shown

here. The darker part of each bar corresponds to the individuals with BMI > 25 kg/m2.

doi:10.1371/journal.pone.0172921.g002
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(median 3.03%, IQR 1.62–6.83) had the most different distribution (p< 10−16, two sided KS

test) to those who reported no cardiovascular illness (median 1.87%, IQR 1.18–3.62), while the

angina (median 2.53%, IQR 1.42–7.45) group had a less significant difference (p = 0.00012).

The stroke group (median 2.73%, IQR 1.51–4.98) although statistically significant (p = 0.013)

is unlikely to meet the threshold for significance after correction for multiple comparisons.

In terms of self reported weight change, the group reporting an increase in weight over the

last year (median 2.81%, IQR 1.56–6.72) had significantly higher liver fat than the group

reporting no change (p = 1.e-16) or loss of weight over the last year (p = 5.3e-13). However,

there was no significant difference (p = 0.39) between the PDFF distributions in the group

who reported no change (median 1.97%, IQR 1.19–3.97) and the group who reported a loss of

weight (median 1.88%, IQR 1.18–3.78).

In addition, there was a significant difference between the groups that reported having been

diagnosed with diabetes (median 5.49%, IQR 2.20–11.72), and those who do not (median

2.05%, IQR 1.23–4.10, p< 10−16, two sided KS test).

Combining all of these individually significant features (gender, age, BMI, high blood pres-

sure, angina, weight gain, and diabetes) into a single linear model, with a log transformation of

PDFF, yielded all but angina as significant features in the model (all p-values < 1.6 x10-6). S2

Table shows the regression coefficients, with BMI showing the most significant effect, followed

by gender, diabetes, high blood pressure, age and finally self-reported weight gain. As PDFF

was log transformed, regression coefficients relate to a relative increase in PDFF, so here a 1.10

times increase means a change in PDFF from 5–5.5% or 10–11%. The model suggested that

men have 1.21 times (95% CI: 1.16–1.26) greater PDFF than women. An increase in a decade

of age resulted in 1.071 times (95% CI: 1.040–1.103) the PDFF. Diabetes resulted in 1.42 times

(95% CI: 1.29–1.57) the PDFF, and an increase in one BMI unit increased PDFF by a factor of

Table 4. Summary statistics for whole cohort PDFF and for subset with ’healthy’ BMI.

Mean St. dev 5th Percentile 1st Quartile Median 3rd Quartile 95th Percentile

Whole cohort 3.91% 4.64% 0.78% 1.25% 2.11% 4.37% 14.01%

BMI < 25 kg/m2 and no Diabetes 1.97% 2.33% 0.68% 1.00% 1.32% 2.05% 5.21%

doi:10.1371/journal.pone.0172921.t004

Fig 3. Relationship between proton density fat fraction and body mass index. PDFF is plotted on a log

scale. 83 (1.8%) individuals are in the top left quadrant, 835 (18.1%) in the top right, 1983 (42.9%) in the

bottom right and 1696 (36.7%) in the bottom left quadrant.

doi:10.1371/journal.pone.0172921.g003
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1.099 (95% CI: 1.093–1.104). According to this model, a liver fat of 2% at BMI 20 kg/m2 would

increase to 5.13% liver fat, at BMI 30 kg/m2. These examples should be treated with caution,

however, as the model assumes that all the correlations are linear with log transformed PDFF.

The r-squared value for the linear model is 0.32, indicating that these factors explain less than

half of the variation in PDFF.

Although all of these features (age, gender, BMI, self-reported weight loss, cardiovascular

problems, diabetes) are correlated with liver fat, it is well known that they are also correlated

with one another. However, analysis of the correlation of the variables (see S3 Table) revealed

that the greatest correlation is 0.28 (between self-reported weight gain and BMI), and only two

other pairs of variables have correlation greater than 0.15. Similar results were seen from anal-

ysis of the correlation of the regression coefficients. Furthermore, although the variance infla-

tion factors [31] for each of the variables was greater than 1, BMI had the highest value, which

is only 1.17, well below the suggested limit of 2.

Diabetes, and the combination of diabetes and high BMI, were clear risk factors for fatty

liver—with positive predictive value (PPV) 0.500 (S4 Table) and 0.656 (S5 Table) respectively.

However, the prevalence of both of these is small within the cohort. Although higher PPV

could be obtained by using more of the predictors identified by the regression analysis, the

number of individuals with a combination of these predictors was too small for useful conclu-

sions to be drawn. BMI alone could be used to rule out high PDFF—with a negative predictive

value (NPV) of 0.95 (Fig 3, S6 Table), however this did not have high specificity (0.46), and so

has low PPV (0.30) for predicting high PDFF. Conversely, high BMI (> = 25kg/m2) and high

Table 5. Cohort summary divided by age and sex.

Female 40–49 yrs 50–59 yrs 60–69 yrs 70–79 yrs All

Median PDFF 1.36 (0.98–2.46) 1.57 (1.06–2.92) 1.88 (1.20–3.82) 2.01 (1.21–4.48) 1.76 (1.14–3.54)

Count 202 782 1099 275 2433

Male 40–49 yrs 50–59 yrs 60–69 yrs 70–79 yrs All

Median PDFF 2.28 (1.20–5.40) 2.49 (1.42–5.41) 2.68 (1.54–5.52) 2.44 (1.36–5.45) 2.58 (1.48–5.47)

Count 132 589 1047 292 2184

All 40–49 yrs 50–59 yrs 60–69 yrs 70–79 yrs All

Median PDFF 1.61 (1.07–3.17) 1.93 (1.17–3.97) 2.22 (1.33–4.57) 2.19 (1.27–4.72) 2.33 (1.21–4.10)

Count 334 1371 2146 567 4617

Median PDFFs are given with 1st and 3rd quartiles in brackets.

doi:10.1371/journal.pone.0172921.t005

Fig 4. Distribution of liver fat by age group and sex. The dashed line shows the population median PDFF

(2.11%). *** indicates p < 0.001 from a two-sided K-S test. Significance lines are only shown for p <0.001.

doi:10.1371/journal.pone.0172921.g004
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PDFF (> = 5.5%) had a high sensitivity (0.87) for predicting the presence of Diabetes (S7

Table). Only 29 of the 226 individuals with diabetes did not have both elevated PDFF and ele-

vated BMI.

Discussion

This work demonstrates that the measurement of hepatic steatosis, by MRI-derived PDFF, on

a large cohort is feasible and produces population level statistics relevant to epidemiology. The

imaging process achieved 96.8% success rate. The MR sequence is fast (� 3 minutes), and

requires no contrast agents.

The liver steatosis measurements from the Dallas heart study [1] has long been used to

define the normal range of liver steatosis. The Dallas cohort was mixed in its ethnicity (50%

Black, 30% White, 20% Hispanic), and younger than the UK Biobank (mean 46 years com-

pared to mean 61 years in this study). The 95% upper limit of a healthy subset (BMI< 25 kg/

m2, no diabetes or glucose intolerance, no excessive alcohol use and normal liver functions) of

the Dallas study was 5.5%, compared to 5.21% in this UK Biobank cohort (BMI < 25 kg/m2,

no diabetes). This indicates that using a steatosis level of 5.5% to identify at-risk subjects is a

reasonable measure for the UK population aged 40–70 years. The UK Biobank will, in time,

provide a good source of outcomes to further validate this number. The clear correlations

Fig 5. Box plots showing the distribution of PDFF for groups divided by several self-reported factors. Top left—Diabetes. Top right—Vascular

problems. Bottom left—self-reported weight change over the year prior to imaging visit. *** indicates p < 0.001 and ** indicates p < 0.01 from a two-sided

K-S test.

doi:10.1371/journal.pone.0172921.g005
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observed here with age and sex indicate that it may be more appropriate to additionally define

the ‘at risk’ threshold based on age and sex, rather than a single catch-all value of 5.5%

There was a clear correlation of liver steatosis with BMI, and BMI could be used clinically

to stratify people for risk of fatty liver (NPV 0.95). Further analysis to identify characteristics of

subsets of this ‘healthy’ population with clinically-significant hepatic steatosis is planned (e.g.

individuals with low BMI and high steatosis), particularly if they correspond to the thin-out-

side, fat inside (‘TOFI’) phenotype [34]. The TOFI phenotype is characterised by low BMI, but

high (or higher than expected) visceral fat.

There was a strong correlation between age and liver steatosis, as well as sex and steatosis.

The age correlation was driven predominantly by the females within the cohort—the different

male age groups do not show a significant difference. Menopause may have been the cause of

the greater change in hepatic fat in females, in particular changes in estrogen levels or body fat

percentage. The interaction of PDFF with other metabolic phenotypes is a reasonably complex

pattern to tease apart—a linear model showed that all of age, sex and BMI have a significant

effect on liver steatosis. It demonstrated that any further analysis of liver steatosis should

account for these effects in their models. The effect of age is also complicated by death, as

some older subjects are self-selecting for subjects who have not died. This will mean that older

subjects are, on average, healthier than younger subjects.

It is important to note that in this field of the UK Biobank, a distinction between type I and

type II diabetes is not made. However, as type 2 diabetics constitutes approximately 90% of

diabetics in the UK population [35], it is likely that the differences observed here are driven by

type 2 diabetes.

This study is not without limitations, and work is ongoing to improve the semi-automated

analysis process and the MRI technique used to measure PDFF. Furthermore the PDFF mea-

surements used in this study were derived from MRI images captured using the DIXON tech-

nique [20,21], however the IDEAL method [22] is now considered a more robust and accurate

method for measuring liver PDFF, therefore the acquisition sequences used by the UKBiobank

have been altered to reflect this.

There are many more cofactors that are known or postulated to affect liver steatosis, for

example ethnicity, but this cohort does not have sufficient numbers to allow detailed analysis

—95.8% of the cohort is ethnically white. More individuals are required to identify trends in

phenotypes that have less clear effects, such as ethnicity. As the imaging study progresses,

there will be an opportunity to investigate whether previously reported associations with these

and other factors are reproduced in the UK Biobank imaging cohort.

Conclusions

This study has characterised the epidemiology of hepatic steatosis in the UK Biobank cohort.

We have identified the normal range for the whole cohort, and a healthy (BMI< 25 kg/m2,

no diabetes diagnosed by doctor) subset. This demonstrates that analysis of hepatic steatosis

(PDFF) in a large cohort by MRI is feasible and can be completed with low failure rates

(~3.5%). The median PDFF in the whole cohort Is 2.11%, and the 95% upper limit of PDFF is

5.21% in a healthy subset of the cohort, which is consistent with previous studies.

We observed significant correlations of PDFF with age, sex, BMI, weight gain, high blood

pressure and diabetes. This is consistent with the current understanding of NAFLD as a meta-

bolic disorder. This analysis also reveals simple thresholds to stratify subjects for higher risk

PDFF of greater than 5%. Further analysis is required to identify whether genetic factors or

other phenotypic measures within the UK Biobank can contribute to prediction of PDFF with

even higher accuracy.
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With future follow up of incident diseases in the UK Biobank population, the cross-sec-

tional measures of PDFF will enable more accurate estimates of prospective risks of fatty liver

disease (NAFLD) for the associated phenotypes of NASH, hepatic fibrosis and hepatocellular

carcinoma. These conditions are on the rise, and are expected to have a significant impact on

public health in the coming decades.
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