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Abstract: Epithelial ovarian cancer (EOC) is one of the cancers most influenced by hereditary factors.
A fourth to a fifth of unselected EOC patients carry pathogenic variants (PVs) in a number of genes,
the majority of which encode for proteins involved in DNA mismatch repair (MMR) pathways. PVs
in BRCA1 and BRCA2 genes are responsible for a substantial fraction of hereditary EOC. In addition,
PV genes involved in the MMR pathway account for 10–15% of hereditary EOC. The identification of
women with homologous recombination (HR)-deficient EOCs has significant clinical implications,
concerning chemotherapy regimen planning and development as well as the use of targeted therapies
such as poly(ADP-ribose) polymerase (PARP) inhibitors. With several genes involved, the complexity
of genetic testing increases. In this context, next-generation sequencing (NGS) allows testing for
multiple genes simultaneously with a rapid turnaround time. In this review, we discuss the EOC risk
assessment in the era of NGS.

Keywords: ovarian cancer; hereditary; BRCA1/2 genes; poly(ADP-ribose) polymerase (PARP) inhibitors;
next-generation sequencing (NGS)

1. Introduction

Ovarian cancer is the fifth leading cause of cancer-related mortality in females [1].
Over two-thirds of women present with advanced stages of ovarian cancer, which leads
to an estimated 5-year survival rate of between 20–40% [2]. In contrast, those diagnosed
at an earlier stage (e.g., stage 1 disease) have a 5-year survival rate of over 90% [3]. The
GLOBOCAN study predicted a worldwide increase of 55% in ovarian cancer cases and
a 67% increase in deaths from the year 2012 to 2035 [4]. The median age of women at
diagnosis is 63 years [5]. Epithelial ovarian cancer (EOC) is a heterogenous disease further
classified into benign, borderline, and malignant [6,7]. Malignant EOC includes five main
histological subtypes: high-grade serous ovarian cancer (70–80%), endometrioid (10%),
clear cell (10%), mucinous (3%), and low-grade serous (<5%) [6,7]. Each subtype behaves
as a distinct disease with differences in clinical presentations, mutations, and responses to
treatment such as chemotherapy [8]. It is well-established that EOC develops according to
two different carcinogenic pathways. The vast majority of these tumours are high-grade
serous tumours that develop according to the type II pathway and present p53 and BRCA
mutations. In contrast, low-grade serous tumours are characterised by KRAS, BRAF, PTEN,
PIK3CA, CTNNB1, ARID1A, and PPP2R1A mutations and progress according to the type
I pathway [9]. Beyond EOC, there are also non-epithelial counterparts that are further
divided into germ cell (5%) and sex-cord stromal cell (5%) ovarian cancers [10–12]. Ovarian
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carcinosarcoma is even rarer; it is a biphasic, but challenging histologic subtype, accounting
for only 1–4% of all ovarian cancers [13].

Newly diagnosed high-grade serous EOC patients are treated with radical surgery
followed by adjuvant platinum and taxane combination chemotherapy. In EOC patients
where upfront surgery is contraindicated for medical reasons, or where complete cytore-
duction cannot be achieved, neoadjuvant chemotherapy prior to interval debulking surgery
followed by adjuvant chemotherapy is an alternative therapeutic option [14]. The treatment
of gestational ovarian malignancies depends on the histology, stage, and gestational weeks.
When possible, surgical excision is indicated; fertility-sparing surgery can be offered to
stage I EOC, germ cell ovarian, or sex-cord stromal ovarian tumours [15].

Approximately 20–30% of EOC occurs in females with an inherited predisposition;
most of these hereditary ovarian cancers are due to germline mutations in BRCA1 and
BRCA2 genes [16–19]. Lynch/hereditary nonpolyposis colorectal cancer (HNPCC) syn-
drome is also associated with an increased risk of ovarian cancer and is caused by germline
mutations in the mismatch repair (MMR) genes [20,21]. The BRCA1 and BRCA2 genes are
involved in the repair of double-strand DNA breaks (DSBs) through the homologous recom-
bination (HR) system [22]. Pathogenic variants (PVs) in these genes cause a dysfunction
in the BRCA proteins and the HR system, and increase the risk of ovarian cancer [22,23].
Carriers of germline mutations in BRCA1 and BRCA2 genes have a lifetime risk of ovarian
cancer of 35–60% and 12–25%, respectively, along with an increased risk of peritoneal
and fallopian tube malignancies [24–26]. Therefore, the identification of these germline
BRCA1/2 mutations has implications for the therapeutic management of EOC [16]. BRCA1/2
carriers respond well to platinum-based chemotherapy and poly(ADP-ribose) polymerase
(PARP) inhibitors [27–29]. New genes (RAD51C, RAD51D, and PALB2) have been identified
as increasing susceptibility to ovarian cancer, but further research is required to investi-
gate this [30–33]. In this review, we discuss susceptibility to EOC, testing, and EOC risk
assessments in the context of next-generation sequencing (NGS).

2. Molecular Landscape

DNA damage occurs daily in cells and there are complex repair pathways to prevent
the genomic instability that can be predisposed to cancer [34–36]. HR is a repair pathway
for complex DNA damage, including DSBs and DNA gaps [37]. BRCA1 and BRCA2 genes
are integral components of the HR repair pathway, acting as tumour suppressors and
preserving the chromosome structure [23,38]. As part of the HR pathway, the BRCA2
protein recruits the recombinase RAD51 to the DSBs by forming a BRCA1–PALB2–BRCA2
complex [39]. Germline mutations in both BRCA1 and BRCA2 can, therefore, lead to a defi-
ciency in the HR pathway and increase susceptibility to ovarian cancer [38]. Identifying
these mutations is significant as those with BRCA1/2 mutations are sensitive to a therapy
with PARP inhibitors [40–43]. Combinations of PARP inhibitors with drugs that inhibit HR
may sensitise EOC with a primary or secondary HR proficiency to PARP inhibitors and
potentially expand their use beyond HR-deficient ovarian cancers. Regarding this, PARP
inhibitors may be combined separately with anti-angiogenics and immune checkpoint
inhibitors as well as with phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mam-
malian target of rapamycin (mTOR), WEE1, mitogen-activated protein kinase (MEK), and
cyclin dependent kinase (CDK) 4/6 inhibitors, or even with standard chemotherapy [44].

If the HR repair pathway is impaired, synthetic lethality may be induced by a PARP
inhibition exclusively for the target tumour tissue and spare normal cells [2,29,45]. The
PARPs are a group of 18 multifunctional enzymes, the most active of which are PARP1 and
PARP2; these repair DNA single-strand breaks through a base excision repair [29,46,47].
PARP inhibition leads to accumulating single-strand DNA breaks (SSBs) and subsequently
leads to DSBs at DNA replication forks [29]. These breaks are usually repaired by a func-
tioning HR pathway [48]. Cells carrying the heterozygous BRCA1/2 mutation result in
tumours that carry a DNA mismatch repair (MMR) deficiency unlike normal cells [29].
Therefore, PARP inhibition can selectively target the tumour tissue and lead to unrepaired
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SSBs, which then leads to an accumulation of DSBs and collapsed replication forks as well
as chromosomal instability and consequent tumour cell apoptosis [29,49–51]. This synthetic
lethality—a phenomenon where multiple, concurrent genetic events lead to cell apoptosis
rather than a single event—allows the increased sensitivity of BRCA-mutated tumours
to PARP inhibitors and is a novel approach that has changed the treatment of ovarian
cancer [52,53]. Figure 1 provides a schematic of the roles of BRCA1 and BRCA2 in the DNA
repair mechanism.
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Figure 1. Overview of the roles of BRCA1 and BRCA2 in the DNA repair mechanism. (A). BRCA1
and BRCA2 loci on chromosomes 17 and 13, respectively. (B). The initiation of the double-stranded
DNA (DSBs) break correction starts with BRCA1 binding to the site of damage, thus initiating the
precise repair via homologous repair (HR) and preventing non-homologous end joining (NHEJ).

Apart from breast and ovarian cancer, several PARP inhibitors have been investigated
in metastatic castration-resistant prostate cancer patients [54]. They are particularly effective
in BRCA1/2 mutations with increased survival outcomes. Olaparib is used in this subset of
patients after a progression on novel hormonal agents, e.g., enzalutamide or abiraterone,
whilst rucaparib is considered in combination with androgen receptor-guided therapy and
paclitaxel-based chemotherapy [55]. Moreover, PARP inhibitor monotherapy induces an
objective anti-tumour activity in patients with PALB2, BRIP1, or FANCA aberrations. In
contrast, those with ATM and CDK12 alterations do not seem to benefit [56].

MMR genes are another class of genes that are linked to a susceptibility to ovarian
cancer [3]. The MMR system involves seven genes: MLH1, MSH2, MSH6, PMS2, PMS1,
MSH3 and MLH3; these act sequentially to identify MMR mutations and then form a protein
complex to correct them [57]. MSH2 and either MSH3 or MSH6 form a complex to identify
the mismatch; this then binds to a complex of MLH1 with either PMS2, PMS3, or MLH3
to repair the defect [57]. An impaired MMR function through MMR mutations leads to
microsatellite instability (MSI); this is characteristic of HNPCC, the third most common
hereditary ovarian cancer [57]. This autosomal dominant condition is most often associated
with germline mutations in the MSH6, MSH2, and MLH1 genes and increases the risk
of the endometrioid and clear cell subtypes of ovarian cancer [6,57–59]. The cumulative
lifetime risk of ovarian cancer in women with HNPCC is estimated at 4 to 12% and the
prognosis is linked to the MMR variants [6,57]. Furthermore, the mean age of diagnosis
with these germline MMR mutations is 9 to 13 years earlier than the general population
with sporadic tumours [60]. Increasing research to improve the knowledge of the genetic
mechanisms associated with hereditary ovarian cancer is, therefore, paramount for the
future of its management.

There are five major histologies of EOC: high-grade serous, low-grade serous, muci-
nous, endometrioid, and clear cell [61]. Mutations in the DNA repair genes differ across
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different histological subtypes. For example, mutations in BRCA1/2 genes are often found
in high-grade serous, but rarely in mucinous, endometrioid, and clear cell EOC [62–64].
The Cancer Genome Atlas project identified that 16% of high-grade serous EOC patients
had germline BRCA1/2 mutations [65]. Sugino et al., investigated these differences further
in high-grade serous, endometrioid, and clear cell EOC; a few of the common mutations are
summarised in Table 1 [62]. Furthermore, MMR mutations were also investigated in these
histologies. MMR mutations were found in 10% of endometrioid, 3% in clear cell, and 2% of
high-grade serous EOC [62]. Lheureux et al., also found that MMR mutations accounted for
10–15% of hereditary ovarian cancer, especially in endometrioid and clear cell histological
subtypes [66]. Norquist et al., found that mutations were similar in high-grade serous,
endometrioid, and clear cell EOC, but there was an overall lower mutation frequency in
low-grade compared with high-grade serous EOC (5.7% vs. 19.6%, respectively; p = 0.003)
and there were no ovarian cancer-associated mutations in the mucinous histology [18].

Table 1. Common mutations according to ovarian cancer histologies.

Genes Affected (%)
Histology

HGSOC EnOC CCOC

BRCA1 8.0 - -

BRCA2 4.0 5.1 5.1

ATM 4.0 9.1 17.9

BRIP1 2.0 2.0 -

PALB2 - 2.0 2.6

RAD50 - 1.0 2.6
HGSOC, high-grade serous ovarian cancer; EnOC, endometrioid ovarian cancer; CCOC, clear cell ovarian cancer.

3. Susceptibility to EOC

The parts of the gene responsible for an increased susceptibility or predisposition
to cancer in individuals are called PVs [67]. In the case of ovarian cancer, at least one of
these variations in the actionable genes was found in 49.2% of patients [67]. Moreover,
the prevalence of PVs is said to increase with the number of primary cancers (PCs): 13.1%
with 2 PCs, 15.9% with 3 PCs, and 18.0% with ≥4 PCs [68]. This shows that EOC has
a higher incidence compared with the general subset of malignant malformations. There
are plenty of well-established PVs in ovarian cancer that have been shown to have a signifi-
cant correlation with EOC such as BRCA1 and BRCA2 [69]. There are studies that show
promising results for other PVs that are connected to EOC and have shown a potential for
diagnostic and treatment use. Several of them include MMR genes; e.g., MSH6, MSH2,
and MLH1 [70,71].

3.1. Germline Predisposing Variants
3.1.1. BRCA1 and BRCA2 Genes

The highly penetrant genes BRCA1 and BRCA2 are associated with most of the iden-
tified germline mutations in EOC patients. These genes produce proteins involved in
fundamental cellular processes such as cell cycle checkpoint control, chromatin remod-
elling, transcriptional regulation, and mitosis [72]. Therefore, an HR deficiency caused by
these mutations is often utilised in the treatment of EOC with platinum-based chemother-
apy or PARP inhibitors [73]. Apart from EOC, these germline variants have been shown to
be associated with 22 first PCs [69]. However, these germline mutations are the strongest-
known genetic risk factors for EOC and are found in 6–15% of women with EOC [74]. The
BRCA1/2 status can be used by healthcare professionals for patient counselling regarding
expected survival as BRCA1 and BRCA2 carriers with EOC respond better than non-carriers
to platinum-based chemotherapies. This yields greater survival, even though the disease
is generally diagnosed at a later stage and higher grade [75]. Figure 2 provides the dis-



Int. J. Environ. Res. Public Health 2022, 19, 8113 5 of 14

tribution of germline PVs identified in unselected EOC patients. A fourth to a fifth of
these patients carried PVs in a number of genes, the majority of which encode for proteins
involved in the DNA repair pathways.
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Figure 2. Distribution of germline pathogenic variants (PVs) identified in unselected epithelial
ovarian cancer (EOC) patients. Among 21.5% of those PVs, 15% represent alterations to BRCA1/2
genes and 3.5% of genetic aberrations in other genes compromise the homologous recombination
(HR) pathway whilst 3% are PV genes involved in the DNA mismatch repair (MMR) pathway.

3.1.2. RAD51C, RAD51D, and BRIP1 Genes

Collectively, germline mutations in BRIP1, RAD51C, and RAD51D account for around
2% of ovarian cancer cases [76]. Despite significant evidence of a strong correlation with
EOC, the risk attributed to particular genes varies substantially among studies (odds ratio
(OR) values estimated for BRIP1 ~ 5–19, RAD51C ~ 5–15, and RAD51D ~ 6–12) [77–79].
BRCA1-interacting protein C-terminal helicase 1 (BRIP1), RAD51 homolog C (RAD51C),
and RAD51 paralog D (RAD51D) are all coding for proteins that interact with BRCA1/2
and support the MMR process. Hence, patients with germline mutations in BRIP1, RAD51C,
and RAD51D would also benefit from a therapy with PARP inhibitors.

RAD51C and RAD51D are essential for HR repair [30,80]. Mutations in these genes
have a higher likelihood of high-grade serous EOC in women aged between 40 and 49 years
old [60]. These genes have a few similarities with the BRCA1/2 genes, but there is little
evidence to suggest they also increase the risk of breast cancer as with BRCA1/2 [60]. Fur-
thermore, the location of their mutation is not variable as with BRCA1/2, which determines
the risk of ovarian cancer [81]. Mutations in RAD51C occur between amino acid 143 and 319,
which affect the RAD51B–RAD51C–RAD51D–XRCC2 and RAD51C–XRCC3 complexes;
mutations in RAD51D occur in the C-terminal region, which affect binding to RAD51C and
DSB repair [82].

Mutations in the BRIP1 gene have been found in the first two-thirds of the gene
between nucleotides 68 and 2508; these cut the protein before the BRCA1 binding do-
main [77]. This domain is found in proteins acting as checkpoints for DNA damage; losing
this interaction impairs the DNA damage repair in the epithelial cells in the ovaries or
fallopian tubes [83–85]. Furthermore, an increased risk of BRIP1 missense variants has
been associated with high-grade serous EOC [86]. Several countries have implemented
recommendations such as those for BRCA1/2 carriers where BRIP1, RAD51C, and RAD51D
mutation carriers are given an option of a salpingo-oophorectomy beginning at age 45–50 as
a prophylactic measure [77].

3.1.3. PALB2 Gene

Although there are studies that identify PLAB2 as one of the PVs in EOC, a meta-
analysis showed a non-significant increased risk of ovarian cancer (OR = 4.55; 95% confi-
dence interval (CI), 0.76–27.24; p = 0.10) [71]. Moreover, it showed that germline PALB2
mutations were rare; PALB2 mutation carriers were found in only 0.21% of the ovarian
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cancer patients analysed, which is not significantly different from the frequency in the gen-
eral population (0.05%) [84]. More research needs to be undertaken to further investigate
the connection.

3.1.4. MLH1, MSH2, MSH6, and PMS2 Genes

DNA MMR consists of three stages: initiation, excision, and resynthesis. MutS ho-
mologs (MSH2, MSH3, and MSH6) are a few of the proteins involved in the initiation
stage of MMR [87]. Lynch syndrome, also called HNPCC, is caused by mutations in these
variants (MLH1, MSH2, MSH6, and PMS2). EOC patients with Lynch syndrome are often
younger with a median age of diagnosis of 43 years; however, the prevalence of the disease
in this syndrome is small at 0.9–2.7% [88,89]. Pal et al., reported that clear pathogenic
germline MLH1, MSH2, and MSH6 mutations occurred in only 9/1893 (0.5%) of unselected
EOC patients [90]. A small number of studies have investigated the survival of women
with EOC due to MMR defects and the results are inconclusive [91]. This contrasts with the
research undertaken in colorectal cancer, where MMR mutations are wildly established.

4. Tumour Testing in EOC
4.1. NGS for Cancer Risk Assessments

NGS technology has rapidly evolved over the last few decades. This revolutionary
sequencing technique tests large genomic regions with a single test in a short period of
time without needing a prior knowledge of the gene sequence [92]. NGS has almost
replaced Sanger’s sequencing, which can only sequence a particular genomic region of
interest due to the large workload and high costs [67]. Nowadays, multigene panels that
analyse selected genes of interest are the most frequently used sequencing method in
clinical applications [93]. Commonly, the included genes for testing are highly penetrant;
however, they can also include moderate- and low-penetrance PV genes, depending on
the actionability and significance of the pathological variant [94,95]. It provides valuable
clinical information such as susceptibility to cancers and hereditary cancer syndromes in
a cost-effective manner.

It also limits the risk of gathering large amounts of variants of unknown significance
(VUS) that do not have enough data to change the clinical management. Gene panels with
NGS also have a high accuracy rate in detecting all classes of mutations and genetic alter-
ations in patients with suspected cancers [33,96]. This has significant clinical implications
for patients with known hereditary gynaecological cancers who have a negative single-gene
test as gene panels can often identify pathogenic mutations outside the high-penetrant
genes [97]. Multigene panel testing has a much faster turnaround time and is much more
cost-effective compared with single-gene testing [98,99]. It also reduces the chance of
missing a mosaicism of pathogenic gene mutations in patients with hereditary cancer as
NGS can identify even low levels of mutations [16].

4.2. Upfront Tumour Testing

Currently, tumour sample testing for ovarian cancer involves testing for BRCA1/2
mutations and HR deficiency status, which predicts the response to platinum agents and
PARP inhibitors [38]. If a mutation is detected, sequencing is performed on normal cells
to determine if the mutation is somatic or germline. Considering the above, performing
tumour sequencing upfront with NGS can possibly avoid additional testing as it provides
information on both the HR deficiency status and the gene mutation profile (germline
or somatic). It also rules out mutations in susceptibility genes [100]. Recent studies
have demonstrated that tumour sequencing has a high accuracy [101–103]. A tumour-
first testing approach can facilitate early treatment decision-making for the use of PARP
inhibitors and early cancer prevention, given that more than 20% of EOC patients have
a hereditary link [33].
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4.3. T Cell Repertoire Sequencing

There is an immune response to tumours that is facilitated by tumour-infiltrating T
lymphocytes (TILs) [104]. These TILs are regulatory T cells that respond to shared tumour
antigens [105]. Deep sequencing of T cell receptor genes has been used to identify TILs in
ovarian cancer to compare the T cells in the blood. TIL repertoires within ovarian tumours
are discrete from the T cell repertoire circulating in the peripheral blood. This makes
TILs a prognostic marker and their presence (e.g., CD3+ and CD8+) has been shown to
improve overall survival [104]. CD8+ TILs have particularly shown an increased survival
benefit than CD3+ TILs. Hwang et al., suggest that CD8+ staining should be used to
measure TIL proportions in ovarian cancer [106]. Zhang et al., found that ovarian tumours
containing these T cells had a progression-free survival of 22.4 months and an overall
survival of 50.3 months compared with 5.8 and 18 months, respectively, for tumours
with no TILs [107]. Better outcomes with TILs indicate that they have an anti-tumour
effect and reduce growth through the release of specific cytokines, e.g., interferon-gamma,
which promotes inflammation and tumour elimination [107,108]. The Elispot (enzyme-
linked immunospot) assay can detect antigen-specific T cells and this can detect TILs in
the peripheral blood of patients [107]. This opens possibilities for testing using T cell
repertoires from TILs. It also has implications for treatments with immunotherapy. There
have been mixed results with the use of TILs in ovarian cancer. In advanced or recurrent
ovarian cancer, Aoki et al., found clinical responses in five out of seven patients receiving
TILs alone and in nine out of ten patients receiving chemotherapy only [109]. In other
studies, there were no significant clinical responses and using TILs did not enhance the
immune response [110,111]. Further studies need to be completed to conclude whether
TIL therapy can be implemented alongside chemotherapy with the previously observed
clinical significance practically translated into better survival outcomes.

4.4. Pre- and Post-Test Counselling

Genetic counselling is known to help patients decrease their anxiety and depression
about the cancer diagnosis and the frequency of testing [112]. In the era of NGS, genetic
counselling models must evolve alongside the rapidly changing genetic testing technologies
and ovarian cancer management strategies. Despite current guidelines recommending
that all women with a diagnosis of EOC should undergo genetic testing at the time of the
diagnosis, only approximately 10–30% of these women are referred for germline genetic
testing [113–116]. To ensure genetic counselling is delivered in a timely manner to avoid
missed therapeutic and prevention opportunities, the authors of a Canadian review article
on genetic assessments for BRCA-associated malignancies recommended a tumour-first
testing model to detect both somatic and germline BRCA1/2 cases and to ensure that this is
available to all patients without depending on a referral system [117].

With a multigene panel, the rates of VUS increase along with the detection rate [38].
A large retrospective study assessed individuals who underwent genetic testing over
a decade and found that 91% of VUS were reclassified as benign or likely benign and their
penetrance and cancer risks remained unknown [118]. The lack of actionability of VUS is
often very distressing to patients [69]. Hence, in pre-test counselling, patients should be
fully informed of the genes that will be tested, the level of penetrance, and the implications
in cancer predisposition and clinical management. Fecteau et al., recommended that tested
PV genes should be categorised into high, moderate, and unknown penetrance to help
patients to understand the cancer risk profile of the genetic mutations, the understanding
of them of scientists, and their clinical significance [119].

Post-test counselling should be guided by the findings of the test. The implications of
the mutations should be explained to patients as well as their family members. Cascade
testing for relatives of mutation carriers should also be recommended, if applicable [16]. It is
essential that genetic counsellors fully explain what VUS results mean and their limitations.
Patients should understand that although scientists currently have a limited knowledge of
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VUS, our understanding of them will improve with more data available in time and with
international collaboration; hence the importance of regular follow-ups in the future.

4.5. Treatment and Recurrent Ovarian Cancer

As mentioned previously, different histologies of EOC may have different mutations;
however, they have traditionally been grouped into one unit [120,121]. Most of the hered-
itary ovarian cancers are linked to BRCA1/2 mutations, especially in high-grade serous
EOC. An analysis allows for genetic testing in relatives; if identified in asymptomatic
carriers, preventative measures can be offered to reduce their risk of ovarian cancer [122].
Otherwise, if negative, they can be reassured their risk is similar to the general population
risk. Risk-reducing options in BRCA1/2 carriers include a bilateral salpingo-oophorectomy
(BSO), which is invasive compared with regular surveillance; that is, it is not always reliable
in identifying the early stages [122]. A BSO is performed between the ages of 35 and 40 in
BRCA1 carriers and 40 and 45 in BRCA2 carriers due to the late onset and can reduce the
risk of ovarian cancer by 96% [123–125].

Careful counselling is required with planned pregnancies; menopausal symptoms
can be induced, which have their own implications on quality of life and physical health
(e.g., cardiovascular), and the use of hormone replacement therapy [123]. An analysis of
mutations also allows tailored treatment planning, including PARP inhibitors, which have
reformed ovarian cancer management [122]. Studies have found improved progression-free
survival with olaparib and an efficacy of niraparib and rucaparib as maintenance treat-
ments [122,126]. These studies examined recurrent EOC in particular and are summarised
in Table 2.

Table 2. Studies of PARP inhibitors in recurrent EOC.

Study/Reference Population Treatment Plan Median PFS

SOLO 1/[127]

Stage III or IV high-grade serous or
endometroid cancer with BRCA1/2

mutation and complete/partial
response to CTH

300 mg olaparib b.d.
or placebo 49.9 vs. 13.8 m (p < 0.0001)

SOLO 2/[126] Relapsed, platinum-sensitive EOC
with a BRCA1/2 mutation

300 mg olaparib b.d.
or placebo 19.9 vs. 5.5 m (p < 0.0001)

SOLO 3/[128] Germline BRCA-mutated ovarian
cancer with relapse ≤ 12 m

300 mg olaparib b.d. or
non-platinum CTH of the

choice of the physician
13.4 vs. 9.2 m (p = 0.013)

NOVA/[129] Platinum-sensitive recurrent EOC Niraparib 300 mg o.d.
or placebo

Germline BRCA cohort:
21.0 vs. 5.5 m;

non-germline BRCA cohort:
9.3 vs. 3.9 m (p < 0.001)

EOC, epithelial ovarian cancer; PFS, progression-free survival; b.d., bis die (twice daily); CTH, chemotherapy;
m, months.

Despite various treatment options, recurrent EOC is common, occurring in 20–25%
of stage I or II patients and in 70% of advanced-disease patients. The first relapse can
occur from a few months to five years after treatment and the median recurrence is 18 to
24 months [130]. Histology types do not appear to have a correlation with the recur-
rence rates [131]. The treatment of recurrent EOC is decided through platinum sensitivity
based on the progression-free interval. If there is a response to platinum-based chemother-
apy and the progression-free interval is over 6 months, the patients are considered to be
platinum-sensitive [130]. Conversely, patients are considered to be platinum-resistant if the
progression-free interval is less than 6 months, and refractory if less than 3 months [130,132].
For these patients, non-platinum chemotherapy may be used to increase the platinum-
free interval, e.g., single-agent topotecan. This allows a better response to the platinum
challenge at a later point [132]. A carboplatin-based combination is generally used for
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a platinum-sensitive disease; the options include gemcitabine, paclitaxel, and doxoru-
bicin [130]. Surgery may be performed as a secondary cytoreductive surgery and more than
30% of these could involve a bowel resection; each patient should have specific treatment
plans depending on their progression-free interval and prognostic factors [133].

5. Conclusions

Ovarian cancer is heavily influenced by hereditary factors and up to 25% of patients
carry PVs in several genes. These PVs translate the proteins in various DNA repair path-
ways. The most common mutations are BRCA1/2 mutations with rarer mutations in other
genes such as BRIP1, RAD51C, RAD51D, and MMR proteins. Most of the proteins are
implicated in HR repair; treatments to target this pathway include PARP inhibitors, which
allow highly specific chemotherapy planning. NGS has a high accuracy for detecting all
mutation types as it allows the rapid testing of large genomic regions and identifies lower
penetrance genes. Testing can also detect whether the mutations are somatic or germline.
NGS is cost-effective as the cost is similar to single-gene sequencing. Testing for mutations
allows asymptomatic carriers to be counselled and proactively managed as opposed to
regular surveillance, which may not always be successful. More research is needed on the
rarer mutations present in ovarian cancer as understanding and detecting the different
mutations benefits from genetic counselling and improves the treatment options for ovarian
cancer in both the immediate and longer future.
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