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LYR motif containing 1 (LYRM1) is a novel gene that is abundantly expressed in the adipose tissue of obese subjects and is
involved in insulin resistance. In this study, free fatty acids (FFAs) and tumor necrosis factor-α (TNF-α) are shown to upregulate
LYRM1 mRNA expression in 3T3-L1 adipocytes. Conversely, resistin and rosiglitazone exert an inhibitory effect on LYRM1 mRNA
expression. These results suggest that the expression of LYRM1 mRNA is affected by a variety of factors that are related to insulin
sensitivity. LYRM1 may be an important mediator in the development of obesity-related insulin resistance.

1. Introduction

Obesity has become a global public health problem in
recent decades [1]. Type 2 diabetes is characterized by an
inadequate beta-cell response to progressive insulin resist-
ance, which is typically accompanied by weight gain [2].
The increasing global prevalence of type 2 diabetes is tied to
rising rates of obesity [3]. Common obesity (complex poly-
genic obesity) results from interactions between genetic,
environmental, and psychosocial factors [4]. However, the
mechanisms underlying individual differences that lead to a
predisposition to obesity remain obscure.

In our earlier studies, we isolated and characterized
LYR motif containing 1 (LYRM1), a novel human gene
that was expressed at a high level in the omental adipose
tissue of obese patients. LYRM1 promotes preadipocyte
proliferation and inhibits apoptosis of preadipocytes [5, 6].
Overexpression of LYRM1 in 3T3-L1 adipocytes resulted in a
reduction of insulin-stimulated glucose uptake, an abnormal
mitochondrial morphology, decreased intracellular ATP syn-
thesis, and decreased mitochondrial membrane potentials. In

addition, LYRM1 overexpression led to an excessive produc-
tion of intracellular reactive oxygen species [7]. Our findings
indicate that LYRM1 may be a new candidate gene related to
obesity-associated insulin resistance.

Several studies have shown that adipose tissue in obese
patients releases large amounts of free fatty acids (FFAs)
and several adipokines, including tumor necrosis factor-α
(TNF-α) and resistin [8–11]. All of these factors have been
identified as major regulators of insulin activity. A synthetic
activator of peroxisome proliferator-activated receptor-γ
(PPAR-γ) called rosiglitazone (BRL49653) is part of the
thiazolidinedione (TZD) class of drugs. Thiazolidinedione is
one of a few classes of drugs that acts primarily as an insulin
sensitizer by repressing, in mature adipocytes, the expression
and secretion of adipokines [12]. However, the underlying
molecular mechanisms of how these factors affect insulin
sensitivity have not been clarified.

In this study, we show that LYRM1 is a novel gene related
to obesity-associated insulin resistance. We hypothesize that
these factors (FFAs, TNF-α, and resistin) and drug (rosigli-
tazone) may have a potential regulatory mechanism in
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Table 1: Nucleotide sequences for primer and probe sets used in qPCR.

Gene Forward primer (5′–3′) Probe Reverse primer (5′–3′)

LYRM1 CAGATGGATAGGGCGTGGATAAGG TGGTAATGCAGTCCAATCTCAATCCG GACAGCAGCAACCCGACAAGAAGT

β-actin CCTGAGGCTCTTTTCCAGCC TCCTTCTTGGGTATGGAATCCTGTGGC TAGAGGTCTTTACGGATGTCAACGT

obesity through the regulation of LYRM1 mRNA expression,
thereby affecting insulin sensitivity. The purpose of this
study was to investigate the effects of FFAs, TNF-α, resistin,
and rosiglitazone on LYRM1 mRNA expression in 3T3-L1
adipocytes.

2. Materials and Methods

2.1. 3T3-L1 Cell Culture and Treatment. 3T3-L1 cells were
cultured, maintained, and differentiated as previously de-
scribed [13]. Briefly, after confluence was achieved, the cells
were grown for 2 days in DMEM/high-glucose medium
(Gibco, Carlsbad, Calif, USA) supplemented with 10% fetal
bovine serum (FBS; Gibco, Carlsbad, Calif, USA), in a 5%
CO2 environment. Differentiation was subsequently induced
by incubation in a similar medium that was supplemented
with 0.5 mmol/L 3-isobuty-1-methylxanthine (MIX; Sigma,
St. Louis, Mo, USA), 1 μmol/L dexamethasone (Sigma, St.
Louis, Mo, USA), and 10 μg/mL insulin (Sigma, St. Louis,
Mo, USA), for 2 days. The cells were then placed in a medium
containing 10 μg/mL insulin for another 2 days. Afterwards,
the medium was replaced with DMEM containing only 10%
FBS, every 2 days.

On the eighth day after differentiation was induced, if
more than 90% of the cells showed the morphological and
biochemical properties of adipocytes, the cells were used
for experiments. After overnight incubation in serum-free
DMEM, the 3T3-L1 adipocytes were treated with either
10 ng/mL TNF-α (T7539), 60 ng/mL resistin (SRP4560),
0.5 μM rosiglitazone (375004), which were all dissolved in
DMSO, or a 1 mM FFA cocktail composed of palmitic
acid (p5585), oleic acid (O1008), and linoleic acid (L1376;
Sigma, St. Louis, Mo, USA). The high FFA solution was
prepared according to previously published methods [14,
15]. Briefly, the fatty acids were dissolved in 2% (w/v)
fatty acid-free bovine serum albumin (BSA), with a stock
concentration of 100 mM or an equivalent volume of vehicle.
The stock solution was diluted 1 : 100 in DMEM to a final
concentration of 1 mM. After 12 h or 24 h of incubation in
the TNF-α, resistin rosiglitazone and high FFA solution, the
adipocytes were collected for subsequent experiments.

2.2. Quantitative Real-Time Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR). Total RNA was extracted from
3T3-L1 adipocytes using Trizol reagent (Invitrogen, Carls-
bad, Calif, USA). The extracted RNA was quantified by
spectrophotometry at 260 nm. cDNA was synthesized from
1 μg of total RNA using an AMV Reverse Transcriptase Kit
(Promega A3500; Promega, Madison, Wis, USA), accord-
ing to the manufacturer’s instructions. Real-time RT-PCR
was performed on an Applied Biosystems 7500 Sequence

Detection System (ABI 7500 SDS; Foster City, Calif, USA) by
following the manufacturer’s protocol.

Two primer sets were used for PCR analysis. A 259-
bp DNA fragment within the LYRM1 gene was used for
the quantification of LYRM1 mRNA. The PCR product had
previously been cloned into the plasmid pMD-T 18 and
verified by DNA sequencing. Plasmid standards of known
copy numbers were used to generate a log-linear standard
curve, from which the copy numbers of LYRM1 could be
determined by real-time qPCR. A 110-bp region of the β-
actin gene was used to normalize the results. A standard
curve was generated from plasmids containing the β-actin
fragment. This standard curve was used to determine the
copy numbers of β-actin. Briefly, the samples were incubated
at 95◦C for 10 min for an initial denaturation, followed by 40
PCR cycles. Each cycle consisted of an incubation at 95◦C for
15 s and annealing at 60◦C for 1 min. The concentration ratio
of LYRM1 to β-actin reflected the expression level of LYRM1
mRNA per cell. Primer and Taqman probe (Invitrogen,
Shanghai, China) sequences are shown in Table 1.

2.3. Statistical Analysis. Each experiment was performed at
least three times. All data was expressed as means ± SD.
Statistical analysis was performed using one-way ANOVA
using the SPSS 12.0 statistical software package (SPSS Inc.,
Chicago, Ill, USA). For all tests, P-values less than 0.05 were
considered statistically significant.

3. Results

3.1. The Expression of LYRM1 mRNA during the Conversion of
3T3-L1 Preadipocytes into Adipocytes. LYRM1 mRNAs were
expressed at very low levels In the 3T3-L1 preadipocytes.
During the conversion of 3T3-L1 cells to adipocytes, the
expression of the LYRM1 gene was gradually increased to
reach a stable level after the 10th day (Figure 1). More than
90% of the cells exhibited typical adipocyte morphology on
the 10th day.

3.2. The Effect of FFAs on the Expression of LYRM1 mRNA in
3T3-L1 Adipocytes. To assess the effect of FFAs on LYRM1
mRNA levels, we examined the expression of LYRM1 mRNA
in 3T3-L1 adipocytes treated with 1 mM FFAs. Treatment
durations were for either 12 or 24 h, 10 days after differen-
tiation was stimulated. We found that FFAs concentrations
of 1 mM led to a time-dependent increase in LYRM1 mRNA
expression. LYRM1 mRNA expression dramatically increased
after 12 h of exposure (Figure 2) and continued to increase
after a 24 h exposure. At this time point, the expression of
LYRM1 mRNA was approximately 2-fold greater than the
control mRNA (P < 0.001). This result shows that FFAs
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Figure 1: The expression of the LYRM1 mRNA during the
conversion of 3T3-L1 cells to adipocytes. 3T3-L1 cells were induced
to differentiate, as described in “Materials and Methods” section.
Total RNA was harvested from the 3T3-L1 cells on alternate days
before (day −2, day 0) and after (day 2, day 4, day 6, day 8, day
10, and day 12) the switch from growth medium to differentiation
medium. LYRM1 mRNA levels were analyzed using quantitative
real-time RT-PCR and normalized to β-actin levels. The results are
presented as the means ± SE of six experiments.
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Figure 2: The effect of FFAs on the expression of LYRM1 mRNA in
3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were treated
with 1 mM FFAs for the indicated periods (up to 24 h). LYRM1
mRNA levels were analyzed using quantitative real-time RT-PCR
and normalized to β-actin levels. Results are presented as mean ±
SE of six experiments. ∗∗∗P < 0.001 in comparison with basal levels
(untreated cells).

dramatically increased the mRNA expression level of the
LYRM1 gene.

3.3. The Effects of TNF-α and Resistin on the Expression
of LYRM1 mRNA in 3T3-L1 Adipocytes. We examined
LYRM1 mRNA expression 10 days after differentiation was
stimulated in 3T3-L1 adipocytes, which had been treated
with 10 ng/mL TNF-α or 60 ng/mL resistin. TNF-α slightly
increased LYRM1 mRNA expression in 3T3-L1 adipocytes
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Figure 3: The effect of TNF-α on the expression of LYRM1
mRNA in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes
were treated with 10 ng/mL TNF-α for the indicated periods (up
to 24 h). LYRM1 mRNA levels were analyzed using quantitative real-
time RT-PCR and normalized to β-actin levels. Results are presented
as mean ± SE of six experiments. ∗P < 0.05 in comparison with
basal levels (untreated cells).
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Figure 4: The effect of resistin on the expression of LYRM1
mRNA in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes
were treated with 60 ng/mL resistin for the indicated periods (up
to 24 h). LYRM1 mRNA levels were analyzed using quantitative real-
time RT-PCR and normalized to β-actin levels. Results are presented
as mean ± SE of six experiments. ∗P < 0.05 in comparison with
basal levels (untreated cells).

after 12 h. mRNA expression continued to increase 24 h after
treatment (P < 0.05; Figure 3). Resistin showed a moderate
inhibitory effect on LYRM1 gene expression at 12 h; however,
expression was significantly diminished 24 h after resistin
treatment (P < 0.05; Figure 4).

3.4. The Effect of Rosiglitazone on the Expression of LYRM1
mRNA in 3T3-L1 Adipocytes. To study the relationship
between LYRM1 expression and a PPAR-γ agonist, we
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examined the effect of rosiglitazone at 60 ng/mL on 3T3-
L1 adipocytes. Twelve hours after treatment, LYRM1 mRNA
expression in 3T3-L1 adipocytes decreased. After 24 h mRNA
expression had significantly diminished to approximately
half that of the control (P < 0.001; Figure 5).

4. Discussion

The World Health Organization reports that at least one
billion adults are overweight and 300 million are obese. In
the absence of intervention, these numbers are expected to
rise [16]. Most obese individuals are insulin resistant, which
is an important etiological factor for type 2 diabetes mellitus.
Adipocytes are known to secrete a variety of mediators,
including FFA, TNF-α, and resistin, all of which regulate
insulin signaling and glucose uptake. LYRM1 is a recently
discovered gene that is involved in obesity-associated insulin
resistance [5, 7]. LYRM1 mRNA expression is upregulated
during conversion of 3T3-L1 cells to adipocytes, indicating
that the expression of the LYRM1 gene is involved in
adipocyte differentiation. From the 10th day after induction
of differentiation, the LYRM1 mRNA expression remained
at a stable high level, indicating that this clonal cell line
can be used to investigate the regulation of LYRM1 gene
expression. To elucidate the mechanisms by which LYRM1
is involved in the pathogenesis of obesity-associated insulin
resistance, we characterized how this gene is regulated by
factors that modulate insulin sensitivity. Furthermore, we
also investigated the effects of rosiglitazone, which is a
PPAR-γ agonist, on LYRM1 mRNA expression in 3T3-L1
adipocytes.

Elevated concentrations of circulating free fatty acids
are characteristic of type 2 diabetes and are implicated in
the etiology of insulin resistance [17]. Insulin resistance is
thought to arise from impaired insulin signaling in target
tissues. Signaling is impaired due to augmentation of the
serine/threonine phosphorylation sites of insulin receptor
substrates (IRS-1 and IRS-2). In addition, insulin resistance
is compounded by a reduction of activated PI3-kinase
(PI3K) and an inhibition in the translocation of insulin-
stimulated glucose transporter 4 (GLUT4) [18, 19]. An excess
of FFAs causes the intracellular accumulation of metabolic
products such as ceramides, diacylglycerol, or acyl-CoA.
These FFA-derived products may lead to defects in insulin
signaling and glucose transport through the PI3K-dependent
pathway [20, 21]. However, the underlying mechanisms of
these phenomena have not been clarified. In this study, we
observed that FFAs added exogenously upregulated LYRM1
mRNA expression in 3T3-L1 adipocytes. We had previously
shown that LYRM1 overexpression can inhibit insulin-
stimulated glucose transport in adipocytes [7]. We observed
that an excess of FFAs might induce insulin resistance.
Resistance could partly be induced through the upregulation
of LYRM1 expression, which would inhibit glucose uptake in
adipocytes. These findings support and extend other results
in the literature that investigate the effects of FFAs on insulin
signaling.
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Figure 5: The effect of rosiglitazone on the expression of LYRM1
mRNA in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes
were treated with 0.5 μM rosiglitazone for the indicated periods (up
to 24 h). LYRM1 mRNA levels were analyzed using quantitative real-
time RT-PCR and normalized to β-actin levels. Results are presented
as mean ± SE of six experiments. ∗∗P < 0.01, ∗∗∗P < 0.001 in
comparison with basal levels (untreated cells).

As one of the most widely studied cytokines, TNF-α is
reported to modulate insulin resistance [10]. A key role for
TNF-α in obesity-related insulin resistance was identified
when TNF-α or TNF-α receptors were deleted in both diet-
induced obese mice and leptin-deficient ob/ob mice, which
resulted in significantly improved insulin sensitivity [22].
However, the infusion of TNF-α-neutralizing antibodies into
obese, insulin-resistant subjects, or type 2 diabetic patients,
did not improve insulin sensitivity [23, 24]. In this study,
we observed that TNF-α slightly upregulates LYRM1 mRNA
expression in 3T3-L1 adipocytes. There is a need for further
studies in human adipocytes. Currently, we suggest that
TNF-α-induced insulin resistance is only indirectly involved
in increased LYRM1 expression.

Resistin was identified as a gene that was downregulated
by TZD in mouse adipocytes [11]. In rodents, the circulating
levels of resistin increased in obesity [25]. Furthermore, an
increase in serum resistin levels induced insulin resistance in
several rat and mouse models, including after acute admin-
istration [26]. Recombinant resistin caused severe hepatic
insulin resistance in rodents [26]. However, a study observed
a decrease in fasting glucose, improved glucose tolerance and
enhanced insulin sensitivity in resistin knockout mice [27].
In humans, there is considerable controversy surrounding
the role of resistin. We showed that resistin exerts a moderate
inhibitory effect on LYRM1 gene expression in 3T3-L1
adipocytes. This data suggests that LYRM1 and resistin inter-
act during the development of obesity-associated insulin
resistance.

In this study, we observed that rosiglitazone inhibits
LYRM1 gene expression in 3T3-L1 adipocytes. Rosiglitazone
is part of the TZD class of drugs, which act as insulin
sensitizers and agonists for the transcription factor PPAR-γ.
PPAR-γ is a member of three nuclear receptor isoforms (the
other two are PPAR-α and PPAR-δ), which are encoded
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by different genes. PPAR-γ is the master regulator of adi-
pogenesis, being both essential and sufficient for adipocyte
differentiation [28]. It also upregulates the expression of fatty
acid transporter proteins (FATP-1 and D036) [29]. Rosigli-
tazone suppresses TNF-α mediated inhibition of adipocyte
differentiation, whilst TNF-α decreased the expression of
PPAR-γ [30]. TZDs inhibit resistin gene expression in
human macrophages [31, 32] and lower serum resistin levels
in humans as well as rodents [33–35]. We deduced that
rosiglitazone inhibits LYRM1 gene expression most likely
through PPAR-γ.

Our results demonstrate that LYRM1 mRNA expression
is greatly affected by rosiglitazone, FFAs, and two adipokines,
TNF-α and resistin. These two adipokines are involved in
the regulation of insulin sensitivity. The upregulation or
downregulation of LYRM1 expression may be strongly linked
to FFA or rosiglitazone-related insulin resistance. Recently,
LYRM1 in rat myoblasts has been shown to negatively regu-
late the function of IRS-1 and PI3K/Akt, whilst decreasing
GLUT4 translocation and glucose uptake in response to
insulin (L6) [36]. However, a more precise characterization
of the physiological activities of LYRM1 is required to fully
understand these processes.

Conflict of Interests

Relevant to this paper, no potential conflict of interests is
declared by the authors.

Acknowledgments

This work was supported by grants from the National
Natural Science Foundation of China (Grant no. 30801256
and 81000348), Program of Medical Leading Talent in
Jiangsu Province (Grant no. LJ200624), the Natural Science
Foundation of Jiangsu Province (Grant no. BK2011040),
and the Nanjing Municipal Foundation for Medical Science
Development (ZKX09012). Min Zhang, Hai-Ming Zhao and
Zhen-Ying Qin contributed equally to this work.

References

[1] R. W. Jeffery and N. E. Sherwood, “Is the obesity epidemic
exaggerated? No,” BMJ, vol. 336, no. 7638, p. 245, 2008.

[2] M. Stumvoll, B. J. Goldstein, and T. W. van Haeften, “Type
2 diabetes: pathogenesis and treatment,” The Lancet, vol. 371,
no. 9631, pp. 2153–2156, 2008.

[3] P. Zimmet, K. G. M. Alberti, and J. Shaw, “Global and societal
implications of the diabetes epidemic,” Nature, vol. 414, no.
6865, pp. 782–787, 2001.

[4] A. J. Walley, J. E. Asher, and P. Froguel, “The genetic con-
tribution to non-syndromic human obesity,” Nature Reviews
Genetics, vol. 10, no. 7, pp. 431–442, 2009.

[5] J. Qiu, C. L. Gao, M. Zhang et al., “LYRM1, a novel gene pro-
motes proliferation and inhibits apoptosis of preadipocytes,”
European Journal of Endocrinology, vol. 160, no. 2, pp. 177–
184, 2009.

[6] J. Qiu, Y. H. Ni, H. X. Gong et al., “Identification of differ-
entially expressed genes in omental adipose tissues of obese

patients by suppression subtractive hybridization,” Biochemi-
cal and Biophysical Research Communications, vol. 352, no. 2,
pp. 469–478, 2007.

[7] X. G. Cao, C. Z. Kou, Y. P. Zhao et al., “Overexpression of
LYRM1 induces mitochondrial impairment in 3T3-L1 adi-
pocytes,” Molecular Genetics and Metabolism, vol. 101, no. 4,
pp. 395–399, 2010.

[8] G. H. Goossens, “The role of adipose tissue dysfunction in the
pathogenesis of obesity-related insulin resistance,” Physiology
and Behavior, vol. 94, no. 2, pp. 206–218, 2008.

[9] K. Maeda, K. T. Uysal, L. Makowski et al., “Role of the fatty
acid binding protein mal1 in obesity and insulin resistance,”
Diabetes, vol. 52, no. 2, pp. 300–307, 2003.

[10] G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman,
“Adipose expression of tumor necrosis factor-alpha: direct
role in obesity-linked insulin resistance,” Science, vol. 259, no.
5091, pp. 87–91, 1993.

[11] C. M. Steppan, S. T. Bailey, S. Bhat et al., “The hormone
resistin links obesity to diabetes,” Nature, vol. 409, no. 6818,
pp. 307–312, 2001.

[12] P. Wang, J. Renes, F. Bouwman, A. Bunschoten, E. Mariman,
and J. Keijer, “Absence of an adipogenic effect of rosiglitazone
on mature 3T3-L1 adipocytes: increase of lipid catabolism and
reduction of adipokine expression,” Diabetologia, vol. 50, no.
3, pp. 654–665, 2007.

[13] A. K. Student, R. Y. Hsu, and M. D. Lane, “Induction
of fatty acid synthetase synthesis in differentiating 3T3-L1
preadipocytes,” Journal of Biological Chemistry, vol. 255, no.
10, pp. 4745–4750, 1980.

[14] A. R. Subauste and C. F. Burant, “Role of FoxO1 in FFA-
induced oxidative stress in adipocytes,” American Journal of
Physiology, vol. 293, no. 1, pp. E159–E164, 2007.

[15] A. Schaeffler, P. Gross, R. Buettner et al., “Fatty acid-induced
induction of Toll-like receptor-4/nuclear factor-κB pathway in
adipocytes links nutritional signalling with innate immunity,”
Immunology, vol. 126, no. 2, pp. 233–245, 2009.

[16] M. F. Gregor and G. S. Hotamisligil, “Inflammatory Mecha-
nisms in Obesity,” Annual Review of Immunology, vol. 29, pp.
415–445, 2011.

[17] R. N. Bergman and M. Ader, “Free fatty acids and pathogenesis
of type 2 diabetes mellitus,” Trends in Endocrinology and
Metabolism, vol. 11, no. 9, pp. 351–356, 2000.

[18] P. R. Shepherd, “Mechanisms regulating phosphoinositide 3-
kinase signalling in insulin-sensitive tissues,” Acta Physiologica
Scandinavica, vol. 183, no. 1, pp. 3–12, 2005.

[19] J. H. Lim, J. I. Lee, Y. H. Suh, W. Kim, J. H. Song, and M.
H. Jung, “Mitochondrial dysfunction induces aberrant insulin
signalling and glucose utilisation in murine C2C12 myotube
cells,” Diabetologia, vol. 49, no. 8, pp. 1924–1936, 2006.

[20] C. Yu, Y. Chen, G. W. Cline et al., “Mechanism by which fatty
acids inhibit insulin activation of insulin receptor substrate-
1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in
muscle,” Journal of Biological Chemistry, vol. 277, no. 52, pp.
50230–50236, 2002.

[21] Z. Gao, X. Zhang, A. Zuberi et al., “Inhibition of insulin
sensitivity by free fatty acids requires activation of multiple
serine kinases in 3T3-L1 adipocytes,” Molecular Endocrinology,
vol. 18, no. 8, pp. 2024–2034, 2004.

[22] K. T. Uysal, S. M. Wiesbrock, M. W. Marino, and G.
S. Hotamisligil, “Protection from obesity-induced insulin
resistance in mice lacking TNF- alpha function,” Nature, vol.
389, no. 6651, pp. 610–614, 1997.



6 Experimental Diabetes Research

[23] H. Dominguez, H. Storgaard, C. Rask-Madsen et al.,
“Metabolic and vascular effects of tumor necrosis factor-
alpha blockade with etanercept in obese patients with type 2
diabetes,” Journal of Vascular Research, vol. 42, no. 6, pp. 517–
525, 2005.

[24] L. E. Bernstein, J. Berry, S. Kim, B. Canavan, and S. K. Grin-
spoon, “Effects of etanercept in patients with the metabolic
syndrome,” Archives of Internal Medicine, vol. 166, no. 8, pp.
902–908, 2006.

[25] M. W. Rajala, Y. Qi, H. R. Patel et al., “Regulation of resistin
expression and circulating levels in obesity, diabetes, and
fasting,” Diabetes, vol. 53, no. 7, pp. 1671–1679, 2004.

[26] M. W. Rajala, S. Obici, P. E. Scherer, and L. Rossetti, “Adipose-
derived resistin and gut-derived resistin-like molecule-beta
selectively impair insulin action on glucose production,”
Journal of Clinical Investigation, vol. 111, no. 2, pp. 225–230,
2003.

[27] R. R. Banerjee, S. M. Rangwala, J. S. Shapiro et al., “Regulation
of fasted blood glucose by resistin,” Science, vol. 303, no. 5661,
pp. 1195–1198, 2004.

[28] E. D. Rosen, C. H. Hsu, X. Wang et al., “C/EBPalpha induces
adipogenesis through PPARgamma: a unified pathway,” Genes
and Development, vol. 16, no. 1, pp. 22–26, 2002.

[29] H. Bays, L. Mandarino, and R. A. DeFronzo, “Role of the
adipocyte, free fatty acids, and ectopic fat in pathogenesis
of type 2 diabetes mellitus: peroxisomal proliferator-activated
receptor agonists provide a rational therapeutic approach,”
Journal of Clinical Endocrinology and Metabolism, vol. 89, no.
2, pp. 463–478, 2004.

[30] D. Szalkowski, S. White-Carrington, J. Berger, and B. Zhang,
“Antidiabetic thiazolidinediones block the inhibitory effect
of tumor necrosis factor-alpha on differentiation, insulin-
stimulated glucose uptake, and gene expression in 3T3-L1
cells,” Endocrinology, vol. 136, no. 4, pp. 1474–1481, 1995.

[31] L. Patel, A. C. Buckels, I. J. Kinghorn et al., “Resistin is
expressed in human macrophages and directly regulated
by PPAR gamma activators,” Biochemical and Biophysical
Research Communications, vol. 300, no. 2, pp. 472–476, 2003.

[32] M. Lehrke, M. P. Reilly, S. C. Millington, N. Iqbal, D. J.
Rader, and M. A. Lazar, “An inflammatory cascade leading to
hyperresistinemia in humans,” PLoS Medicine, vol. 1, no. 2, p.
e45, 2004.

[33] H. S. Jung, B. S. Youn, Y. M. Cho et al., “The effects of
rosiglitazone and metformin on the plasma concentrations of
resistin in patients with type 2 diabetes mellitus,” Metabolism,
vol. 54, no. 3, pp. 314–320, 2005.

[34] D. Kamin, C. Hadigan, M. Lehrke, S. Mazza, M. A. Lazar,
and S. Grinspoon, “Resistin levels in human immunodefi-
ciency virus-infected patients with lipoatrophy decrease in
response to rosiglitazone,” Journal of Clinical Endocrinology
and Metabolism, vol. 90, no. 6, pp. 3423–3426, 2005.

[35] Y. Miyazaki, L. Glass, C. Triplitt et al., “Effect of rosiglitazone
on glucose and non-esterified fatty acid metabolism in type II
diabetic patients,” Diabetologia, vol. 44, no. 12, pp. 2210–2219,
2001.

[36] C. Kou, X. Cao, D. Qin et al., “Over-expression of LYRM1
inhibits glucose transport in rat skeletal muscles via attenuated
phosphorylation of PI3K (p85) and Akt,” Molecular and
Cellular Biochemistry, vol. 348, no. 1-2, pp. 149–154, 2010.


	Introduction
	Materials and Methods
	3T3-L1 Cell Culture and Treatment
	Quantitative Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)
	Statistical Analysis

	Results
	The Expression of LYRM1 mRNA during the Conversion of 3T3-L1 Preadipocytes into Adipocytes
	The Effect of FFAs on the Expression of LYRM1 mRNA in 3T3-L1 Adipocytes
	The Effects of TNF- and Resistin on the Expression of LYRM1 mRNA in 3T3-L1 Adipocytes
	The Effect of Rosiglitazone on the Expression of LYRM1 mRNA in 3T3-L1 Adipocytes

	Discussion
	Conflict of Interests
	Acknowledgments
	References

