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Abstract: Src Homology 2 (SH2) domains arose within metazoan signaling pathways and are
involved in protein regulation of multiple pleiotropic cascades. In signal transducer and activator
of transcription (STAT) proteins, SH2 domain interactions are critical for molecular activation and
nuclear accumulation of phosphorylated STAT dimers to drive transcription. Sequencing analysis
of patient samples has revealed the SH2 domain as a hotspot in the mutational landscape of
STAT proteins although the functional impact for the vast majority of these mutations remains
poorly characterized. Despite several well resolved structures for SH2 domain-containing proteins,
structural data regarding the distinctive STAT-type SH2 domain is limited. Here, we review the
unique features of STAT-type SH2 domains in the context of all currently reported STAT3 and STAT5
SH2 domain clinical mutations. The genetic volatility of specific regions in the SH2 domain can result
in either activating or deactivating mutations at the same site in the domain, underscoring the delicate
evolutionary balance of wild type STAT structural motifs in maintaining precise levels of cellular
activity. Understanding the molecular and biophysical impact of these disease-associated mutations
can uncover convergent mechanisms of action for mutations localized within the STAT SH2 domain
to facilitate the development of targeted therapeutic interventions.

Keywords: STAT3; STAT5; SH2 domain; mutations; cancer; autosomal-dominant hyper IgE
syndrome; inflammatory hepatocellular adenomas; T-cell large granular lymphocytic leukemia;
T-cell prolymphocytic leukemia; growth hormone insensitivity syndrome

1. Introduction

Several key cellular pathways converge on the multidomain signal transducer and activator
of transcription (STAT) proteins highlighting their importance in the development and progression
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of oncogenic and malignant diseases. Conventional STAT activation is initiated by cytokine or
growth-factor interactions with extracellular receptors, stimulating SH2 domain-mediated recruitment
of tyrosine kinases and STAT isoforms to the receptor cytoplasmic domains [1,2]. Nuclear translocation
and accumulation of the resulting phosphorylated STAT dimers facilitates transcription of a wide array
of gene products involved in proliferation and cellular survival including C-MYC [3], BCL-XL [3],
MCL-1 [4], FOXP3 [5], BCL-2 [6], HIF [7], D-type cyclins [8], IGF-1 [9], and self-regulation of
STAT3/STAT5 [10]. Normal STAT function is dependent on the SH2 domain which arbitrates homo- or
hetero- STAT dimerization as well as multiple protein–protein interactions. As such, structurally altered
SH2 domains exhibit considerable effects on STAT activity, leading to either hyperactivated or refractory
STAT mutants. These critical roles in governing the transcriptional capacity, coupled with the relatively
shallow binding surfaces elsewhere on the protein, resulted in the STAT SH2 domain dominating
therapeutic interest for small molecule inhibitor development and intervention [11–15]. However,
currently there are no clinical drug candidates directly targeting the STAT protein family. This is
partially due to the limited structural data available on the STAT SH2 domains or their mutated
disease-associated counterparts, and further compounded by observations that STAT SH2 domains are
distinct from those found in other well characterized systems such as Src kinase. Here, we summarize
structural features of STAT-type SH2 domains in the context of STAT3/STAT5 disease-associated
mutations, and discuss their effects on protein activity, as well as potential new druggable pockets
within the STAT SH2 domain.

2. Structure of STAT SH2 Domains

SH2 domains are modular units that arose within multicellular life, approximately 600 million
years ago, and are therefore heavily tied to metazoan signal transduction [16]. There are 121 human
SH2 domains that are classified into different groups based on their structural or phylogenetic
characteristics [16]. Broadly, they have been classified into either STAT- or Src-type SH2 domains
based on the presence of either an α-helix (STAT-type) or β-sheet (Src-type) at the C-terminus [17].
Alternatively, phylogenetic analysis has categorized SH2 domain-containing proteins into 38 different
sub-families [16]. Functional activity-based screens have also been employed to stratify SH2
domain-containing proteins into four categories based on the identity of the fifth residue in the
βD strand, which has been shown to be a critical determinant in phospho-peptide selectivity [18,19].
Despite different methods for classification, all SH2 domains contain conserved structural motifs that
are canonical to the core function of phospho-Tyr (pY) peptide binding. These features represent an
evolutionary compromise to preserving critical structural motifs while maintaining highly specific
peptide recognition capacity.

The structure of an SH2 domain consists of a central anti-parallel β-sheet (with the three β-strands
conventionally labeled βB-βD) interposed between two α-helices (αA and αB), often referred to as
the αβββα motif [16]. The structure and nomenclature for the motifs of STAT SH2 domains is shown
in Figure 1a,b. The β-sheet partitions the SH2 domain into two subpockets, referred to as the pY
(phosphate-binding) and pY+3 (specificity) pocket [16]. The pY pocket is formed by the αA helix,
the BC loop (region connecting βB-βC strands) and one face of the central β-sheet. The pY+3 pocket is
created by the opposite face of the β-sheet as well as residues from the αB helix and CD and BC* loops
(regions connecting βC-βD strands and αB-αC helices, respectively). Both the pY and pY+3 pockets are
common targets for drug design due to well defined features and conserved residues. Within the pY+3
pocket, there are additional clefts that also have drug targeting potential. This includes the C-terminal
region of the pY+3 pocket, also known as the evolutionary active region (EAR) [17]. The EAR contains
an additional α-helix (αB’) in STAT-type SH2 domains, as opposed to the Src-type which harbors a
β-sheet (βE and βF although each strand is not always observed). Additionally, there is a cluster of
non-polar residues (referred to as the hydrophobic system [20]) at the base of the pY+3 pocket that
assists in stabilizing the conformation of the β-sheet and maintaining the integrity of the overall SH2
domain. The αB, αB’, and BC* loop also participate in SH2-mediated STAT dimerization forming
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important cross-domain interactions. Therefore, residues in the pY+3 pocket can have a dual effect on
STAT dimerization capacity and phospho-peptide binding. Conventional phospho-peptide binding
occurs perpendicular to the β-sheet with the peptide adopting a binding mode as illustrated with
STAT1 in Figure 1c. The phospho-Tyr interacts with conserved amino acids in the pY pocket, while the
C-terminal residues stretch across the SH2 domain into the pY+3 pocket.

Cancers 2019, 11, 3 of 20 

 

adopting a binding mode as illustrated with STAT1 in Figure 1c. The phospho-Tyr interacts with 
conserved amino acids in the pY pocket, while the C-terminal residues stretch across the SH2 domain 
into the pY+3 pocket. 

 
Figure 1. (a) Secondary structural motifs in STAT3 (blue) and STAT5 (green) with mutations 
annotated; (b) Structure of STAT3 SH2 domain; (c) Structure of pY-peptide-STAT1 SH2 domain. The 
pY residue is depicted in red with the C-terminal residues in violet; (d) Structure of STAT3 SH2 
domain with Sheinerman residues (red), hydrophobic system residues (yellow) and the selectivity 
filter (cyan); (e) Structure of STAT5B SH2 domain with the same color scheme as above; (f) STAT3 
SH2 domain with all mutations highlighted in spheres. The volume of each sphere is proportional to 
frequency of cases identified. Red spheres indicate an activating mutation, yellow spheres indicate a 
destabilizing mutation and magenta spheres represent sites where both activating and refractory 

Figure 1. (a) Secondary structural motifs in STAT3 (blue) and STAT5 (green) with mutations annotated;
(b) Structure of STAT3 SH2 domain; (c) Structure of pY-peptide-STAT1 SH2 domain. The pY residue is
depicted in red with the C-terminal residues in violet; (d) Structure of STAT3 SH2 domain with
Sheinerman residues (red), hydrophobic system residues (yellow) and the selectivity filter (cyan);
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(e) Structure of STAT5B SH2 domain with the same color scheme as above; (f) STAT3 SH2 domain
with all mutations highlighted in spheres. The volume of each sphere is proportional to frequency of
cases identified. Red spheres indicate an activating mutation, yellow spheres indicate a destabilizing
mutation and magenta spheres represent sites where both activating and refractory mutations are
observed; (g) STAT5B SH2 domain with all mutations highlighted in spheres. The color scheme is
the same as in (f). Protein structures were visualized using Chimera [21] with PDB codes: 4E68 [22]
(STAT3), 6MBW (STAT5B) [23], 1YVL (STAT1) [24].

These residues are critical for maintaining proper binding interactions to facilitate protein
dimerization, and specific mutations here can alter normal STAT function. An issue of particular
relevance for drug discovery is protein flexibility, and indeed, STAT SH2 domains exhibit a particularly
flexible behavior even in sub-microsecond timescales [23,25]. Notably, the accessible volume of the
pY pocket varies dramatically. Also, crystal structures do not necessarily preserve even the main,
targetable pockets in an accessible state. This further underlines the importance of accounting for
protein dynamics in STAT-directed drug discovery efforts.

3. Disease-Associated Mutations in STAT3 and STAT5B SH2 Domains

Sequencing analysis of patient samples has identified multiple point mutations within the SH2
domain of STAT3 (Table 1) and STAT5B (Table 2) leading to variable effects on physiological activity.
In mice, homozygous disruption of STAT3 is embryonically lethal [26], and correspondingly germline
homozygous loss-of-function (LOF) mutations have not been identified in humans. Heterozygous loss
of STAT3 can be tolerated to different extents and contributes to immunological deficiencies,
most commonly autosomal-dominant Hyper IgE syndrome (AD-HIES) as a result of a reduced
STAT3-mediated Th17 T-cell response [27–29]. Classical STAT3 function is implicated in Th17 T-cell
lineage commitment, through upregulation of RORγt, promoting the release of IL-17 and IL-22.
This stimulates transcription of genes associated with Th17 development. Loss of STAT3 function
strongly diminishes Th17 T-cell expansion, thereby reducing the immunologic response leading to
recurrent staphylococcal infections and exceedingly high levels of IgE that contribute to clinical
presentations of eczema and eosinophilia.

Table 1. Disease-associated mutations in the STAT3 SH2 domain.

Mutation Position Location Residue
Relevance

Nucleotide
Substitution Cases Pathology Type Ref

K591E αA2 pY Sheinerman 1771A>G 1 AD-HIES Germline [30]

K591M αA2 pY Sheinerman 1772A>T 1 AD-HIES Germline [31]

R593P αA4 pY - 1778G>C 1 AD-HIES Germline [32]

R609G βB5 pY Sheinerman&
Signature 1825A>G 1 AD-HIES Germline [33]

S611G βB7 pY Sheinerman 1831A>G 2 AD-HIES Germline [34,35]

S611N βB7 pY & Signature
Sheinerman 1832G>A 2 AD-HIES Germline [36,37]

S611I βB7 pY Sheinerman &
Signature 1832G>T 1 AD-HIES Germline [38]

S614G BC3 pY Sheinerman 18040A>G 1 AD-HIES Germline [34]

S614R BC3 pY Sheinerman 1842C>G

1 T-LGLL

Somatic [39–43]2 NK-LGLL

1 ALK-ALCL

1 HSTL
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Table 1. Cont.

Mutation Position Location Residue
Relevance

Nucleotide
Substitution Cases Pathology Type Ref

E616G BC5 pY BC loop 1847A>G 1 DLBCL,
NOS Somatic [44]

E616K BC5 pY BC loop 1846G>A 1 NKTL Somatic [45]

G617E BC6 pY BC loop 1850G>A 1 AD-HIES Germline [46]

G617V BC6 pY BC loop 1850G>T 1 AD-HIES Germline [34]

G617R BC6 pY BC loop 1849G>A 1 DLBCL,
NOS Somatic [44]

G618R BC6 pY BC loop 1852G>C
1 ALK-ALCL

Somatic [47,48]
1 T-LGLL

G618D BC6 pY BC loop 1853G>A 2 AD-HIES Germline [35,37]

T620A βC2 pY - 1858A>G 2 AD-HIES Germline [34,49]

T620S βC2 pY - 1859C>G 1 AD-HIES Germline [33]

F621V βC3 pY+3 Hydro. Sys. 1861T>G 3 AD-HIES Germline [36,37,50]

F621L βC3 pY+3 Hydro. Sys. 1863C>G 2 AD-HIES Germline [51,52]

F621S βC3 pY+3 Hydro. Sys. 1862T>C 1 AD-HIES Germline [53]

T622I βC4 pY - 1865C>T 4 AD-HIES Germline [30,34,36]

D627E CD1 - 1881C>A 1 ATLL Somatic [54]

S636F βD4 pY Sheinerman 1907C>T, 1 AD-HIES Germline [49]

S636Y βD4 pY Sheinerman 1907C>A 1 AD-HIES Germline [30]

V637M βD5 pY+3 Sel. Filter 1909G>A 43 AD-HIES Germline [30,32–37,49,52,55,56]

V637L βD5 pY+3 Sel. Filter 1909G>T 1 AD-HIES Germline [36]

V637A βD5 pY+3 Sel. Filter 1910T>C 1 AD-HIES Germline [30]

E638G βD6 pY Sheinerman 1913A>G 4 AD-HIES Germline [49,51,57,58]

P639A βD7 pY+3 - 1915C>G 1 AD-HIES Germline [37]

P639S βD7 pY+3 - 1915C>T* 2 AD-HIES Germline [30,34]

P639T βD7 pY+3 - 1915C>A 1 AD-HIES Germline [35]

Y640F DB’1 pY+3 - 1919A>T

56 T-LGLL

Somatic [43,44,47,48,57,59–69]

2 IHT

3 CLPD-NKs

2 NK-LGLL

1 DLBCL,
NOS

1 ANKL

1 NKTL

1 Sezary

3 HSTL

K642E αB’1 - Dimer Inter 1924A>G 1 AD-HIES Germline [34]

Q643K αB’2 - Dimer Inter 1927C>A 1 T-LGLL Somatic [68]

Q644P αB’3 - Dimer Inter 1929A>C 3 AD-HIES Germline [52,70]

Q644del αB’3 - Dimer Inter 1930del CAG 2 AD-HIES Germline [35,36]

N646K αB’5 pY+3 Dimer Inter 1938C>G 2 EOAD Germline [71]

N647D αB’6 pY+3 Dimer Inter 1939A>G 8 AD-HIES Germline [36,72]

N647I αB’6 pY+3 Dimer Inter 1940A>T
3 CLPD-NK

Somatic [43,57,65,67]6 T-LGLL

1 HSTL

E652K αB3 pY+3 Dimer Inter 1954G>A 1 AD-HIES Germline [36]

G656D αB7 pY+3 Dimer Inter 1967G>A 1 T-LGLL Somatic [73]

G656_Y657insF αB7 pY+3 Hydro. Sys. 1968C>T;
1969_1970insTTT 1 IHCA Somatic [66]

Y657C BC1* pY+3 Hydro. Sys. 1970A>G 5 AD-HIES Germline [30,34,36,58]

Y657S BC1* pY+3 Hydro. Sys. 1970A>C 1 AD-HIES Germline [74]

Y657N BC1* pY+3 Hydro. Sys. 1969T>A 1 AD-HIES Germline [52]

Y657ins BC1* pY+3 Hydro. Sys. - 1 TCL Somatic [47]

Y657dup BC1* pY+3 Hydro. Sys. - 3 T-LGLL Somatic [48,65,72]
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Table 1. Cont.

Mutation Position Location Residue
Relevance

Nucleotide
Substitution Cases Pathology Type Ref

Y657_M660dup BC1* pY+3 Hydro. Sys. 1969T_1980G
dup 1 IHCA Somatic [66]

K658M BC2* pY+3 Dimer Inter 1973A>T 2 T-LGLL Somatic [67,72]

K658N BC2* pY+3 Dimer Inter 1974G>T 1 T-LGLL
EOAD Somatic/Germline [65,71]

K658Y BC2* pY+3 Dimer Inter 1972A>T;
1974G>T 1 IHCA Somatic [66]

K658E BC2* pY+3 Dimer Inter 1972A>G 1 AD-HIES Germline [75]

I659N BC3* pY+3 Hydro. Sys. 1976A>T 1 AD-HIES Germline [58]

I659L BC3* pY+3 Hydro. Sys. 1975A>C 2 T-LGLL Somatic [57,72]

M660R BC4* pY+3 Dimer Inter 1979T>G 1 AD-HIES Germline [55]

M660T BC4* pY+3 Dimer Inter 1978T>A 1 AD-HIES Germline [76]

D661I BC5* - Dimer Inter 1981G>A;
1982A>T 1 CLPD-NK Somatic [67]

D661Y BC5* - Dimer Inter 1981G>T

1 NK-LGL

Somatic [41,47,48,60,63,65,67,68,72,77]56 T-LGL

1 HSTL

10 NKTL

D661ins BC5* - Dimer Inter - 1 T-LGLL Somatic [47]

D661V BC5* - Dimer Inter 1981A>T 10 T-LGLL Somatic [65,67]

D661H BC5* - Dimer Inter 1981G>C 1 T-LGLL Somatic [65]

A662V BC6* - Dimer Inter 1985C>T 1 ALK-ALCL Somatic [78]

T663I BC7* - Dimer Inter 1988, 1989>TT 2 DLBCL/B1 Germline [44,75]

I665N BC9* - Dimer Inter 1998T>A 2 AD-HIES Germline [34]

V667L BC11* - Dimer Inter 1999C>G 1 NKTL Somatic [45]

S668F BC12* - Dimer Inter 2003C>T 3 AD-HIES Germline [30,34,37]

S668Y BC12* - Dimer Inter 2003C>A 1 AD-HIES Germline [34]

The final search date for mutations from medical case reports and literature was 30 August, 2019. Abbreviations:
AD-HIES, autosomal-dominant Hyper IgE syndrome; ALK-ALCL, anaplastic lymphoma kinase negative anaplastic
large cell lymphoma; ANKL, aggressive natural killer cell leukemia; ATLL, adult T-cell leukemia lymphoma; EOAD,
early onset autoimmune disease; CLPD-NKs, Chronic lymphoproliferative disorders of natural killer cells; DLBCL,
NOS, Diffuse large B-cell lymphoma, not-otherwise-specified; NKTL, extranodal NK/T-cell lymphoma; HSTL,
Hepatosplenic T-cell lymphoma; IHAC, inflammatory hepatocellular adenomas; IHT, inflammatory hepatocellular
tumors; NK-LGLL, Natural killer cell large granular lymphocytic leukemia; T-LGLL, T-cell large granular lymphocytic
leukemia; TCL, γδ-T-cell lymphoma.
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Table 2. Disease-associated mutations in the STAT5B SH2 domain.

Mutation Position Location Residue
Relevance

Nucleotide
Substitution Cases Pathology Type Ref.

G596V βA2 - - 1787G>T 1 APL Somatic [79]

T628S βC2 pY - 1883C>G

11 T-PLL

Somatic [43,80,81]1 MEITL

3 HSTL

1 Eosinophilia

A630P βC4 pY - 1888G>C 1 GHI Germline * [82]

D634V βC8 pY - 1901A>T 1 T-PLL Somatic [83]

Q636P CD2 pY+3 - 1907A>C 1 MEITL Somatic [81]

N642H βD4 pY Sheinerman 1924A>C

39 MEITL

Somatic [41,62,69,77,80,81,83–102]

33 T-PLL

29 Eosinophilia

28 T-ALL

7 HSTL

11 LGLL

3 PCTL

3 Sézary

1 AAA

1 CNL

1 PTCL, NOS

1 AML

F646S DB’1 pY+3 - 1937T>C 1 GHI Germline * [103]

T648S DB’3 pY+3 - 1942A>T 1 T-ALL Somatic [101]

R659C αB’4 Dimer
Inter - 1975C>T 1 T-PLL Somatic [80]

Y665F BC3* Dimer
Inter

Hydro. Sys. 1994A>T

6 T-PLL

Somatic [43,80,101]
3 HSTL

2 T-ALL

2 NKTL

5 LGLL

Y665H BC3* Dimer
Inter Hydro. Sys. 1993T>C 2 T-PLL Somatic [80]

* Patients were homozygous for the point mutation. The final search date for mutations from medical case reports
and literature was 30 August, 2019. Abbreviations: AAA, acquired aplastic anemia; AML, acute myeloid leukemia;
APL, acute promyelocytic leukemia; CNL, chronic neutrophilic leukemia; GHI, growth hormone insensitivity;
HSTL, hepatosplenic T-cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T cell lymphoma;
PCTL, primary cutaneous γδ T-cell lymphoma; PTCL-NOS, peripheral T-cell lymphoma not-other-specified;
T-ALL, T-cell acute lymphoblastic leukemia; T-LGLL, T-cell large granular lymphocytic leukemia; T-PLL, T-cell
prolymphocytic leukemia.

Comparatively, homozygous loss of both STAT5 gene products in mice is lethal late in embryonic
development, due to the defective erythropoiesis and with loss of STAT5B manifesting with a myriad
of physiological effects including sexual dimorphic body growth [104–106]. Clinical cases of patients
with STAT5B LOF mutations on both alleles exhibit features similar to growth hormone insensitivity
syndrome (GHIS). However, heterozygous human carriers of STAT5B LOF mutations generally do
not present with any immunological deficiencies or growth complications, although there have been
three germline dominant-negative heterozygous STAT5B mutations recently reported that result in
postnatal growth impairment among other physiological symptoms [107]. Although these growth
deficiencies are likely multifactorial in etiology, the growth hormone (GH)-growth hormone receptor
(GHR) interactions that recruit JAK kinase and stimulate phosphorylation of STAT5B remain intact,
suggesting a breakdown in corresponding STAT5B activity. STAT5B LOF patients often carry additional
immunological burdens including reduced populations of several T-cell subtypes, suggesting multiple
roles for STAT5 in T-cell differentiation [108].
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Gain-of-function (GOF) germline mutations for STAT3 and STAT5 are rare and clinically diverse.
STAT3 GOF mutations present with autoimmune responses, likely due to Th17 clonal expansion which
also suppresses regulatory T-cell (Treg) formation. Clinical presentations of STAT3 GOF mutations also
show parallels with STAT5 LOF mutations [28]. This is partially an effect of compensatory upregulation
of SOCS3 (suppressor of cytokine signaling-3) which strongly inhibits hyperactivated STAT3, but by
extension also dampens STAT5 and STAT1 activity. This potently reduces basal levels of STAT5 leading
to growth immunodeficiencies.

Contrastingly, multiple de novo somatic GOF mutations arise in STAT3 and STAT5B leading
to cancer pathogenesis, and such mutations have been implicated in both solid and liquid tumors.
Hyperactivated STAT3 is identified in patients with diverse phenotypes and multiple somatic mutations
have been associated with T-LGLL (T-cell large granular lymphocytic leukemia, 40–70% of all cases)
and NK-LGLL (natural killer cell large granular lymphocytic leukemia, 30% of all cases), as well as
different hepatocellular adenomas [40]. STAT5 is upregulated, directly and indirectly, through multiple
mechanisms in several hematological malignancies leading to neoplastic transformation. For instance,
in ~30% of acute myeloid leukemia (AML) cases, STAT5B is activated by mutated FLT3 (Fms-Like
Tyrosine Kinase 3) [109]. Similarly, ~99% of all chronic myeloid leukemia (CML) cases, which result from
the appearance of the Philadelphia chromosome, result in STAT5B hyperactivation [110]. B-cell cancers,
such as B-ALL (B-cell acute lymphoid leukemia) and B-CLL (B-cell chronic lymphoid leukemia) are
driven by upregulation of IL-7 and IL-22 which also simulate STAT5B [111–113]. Acute and chronic
T-cell cancers have lower incidence, but a larger diversity, and are heavily implicated by STAT5B
GOF driver mutations [84,114,115]. STAT GOF mutations generally stabilize protein structure thereby
enhancing transcriptional output, leading to apoptosis-evading and survival phenotypes. LOF mutants
generally distort secondary structure and contribute to either loss of activity or increased STAT
degradation. Herein, we highlight the structural significance and mechanism of action of malignant
STAT3/5B point mutations in the SH2 domain. Notably, STAT5A mutations are less frequently
identified which is likely due to the differential roles of the protein isoforms. Although STAT5B
has been characterized as a driver in several malignancies, STAT5A has been associated with tumor
suppression [116,117]. STAT5A and STAT5B have similar SH2 domains (~93% amino acid similarity)
with significant changes in the βD strand which likely contributes to varying peptide selectivity.

3.1. Mutations in the pY Pocket

As previously described, the pY pocket is formed by the αA helix, BC loop, and one face of the
central β-sheet, and it harbors an overall positive electrostatic potential to stabilize binding with the
electronegative phospho-Tyr side-chain (Figure 1). This region of the SH2 domain is characterized by
strongly conserved residues that facilitate interactions with the phosphorylated peptide. It includes
the SH2 domain signature sequence as well as a group of 8 phospho-Tyr interacting amino acids
that have been collectively referred to as Sheinerman residues [20]. The SH2 domain signature
sequence, FLXRXS (where X is a hydrophobic amino acid), corresponds to FLLRFS in all STAT
proteins and is located on the βB strand. The eight Sheinerman residues correspond to the positions:
αA2, αA6, βB5, βB7, BC1, BC2, βD4 and βD6 [20]. Critically, the βB5 residue is located within the
SH2 domain signature sequence as an invariant Arg residue, which is conserved in 118 of 121 SH2
domain-containing proteins [16]. This indispensable Arg residue is the principal binding partner for
phospho-Tyr with the side-chain guanidinium group participating in a bidentate ionic interaction with
the phosphate. The side-chains of the αA2 (Arg/Lys in 118/121 SH2 domains), βB7 (Ser in 106/121
SH2 domains) and βD4 (His in 80/121 SH2 domains) residues also participate in direct interactions
with the phospho-Tyr [16]. Notably, the αA2, βB7, and βD4 residues correspond to Lys591, Glu638,
and Ser636 in STAT3 and Lys600, Ser620, and Asn642 in STAT5B. These interactions are highly important
for phospho-peptide binding and are reported to contribute to >50% of Gibbs free energy of the
protein–peptide interaction [16]. The high fidelity of these interactions ostensibly suggests that a
mutation at these sites will have a dramatic effect on the activity or binding capacity of STAT3/5.
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3.1.1. Mutations in Sheinerman Residues

Mutations identified at the αA2 site in STAT3 (Lys591Glu [30] and Lys591Met [31]) contribute to
AD-HIES, a STAT3-deficient malignancy, due to removal of the positively-polarized Lys side-chain that
directly coordinates the phospho-Tyr. Similarly, mutations at other critical residues in the pY pocket
present with analogous clinical outcomes. Mutation of the invariant βB5 position (Arg609Gly [33])
in STAT3 leads to AD-HIES, presenting with reduced expression profiles of Th17 T-cells and high
serum levels of IgE (11,300 IU/mL). Replacement of βD4 (Ser636Phe [49]) leads to strongly elevated
IgE levels (17,407 IU/mL) with presentation of eczema, abscesses, and pneumonia, also characteristic
of AD-HIES pathologies. Interestingly, a patient with a semi-conservative substitution (Ser636Tyr [30])
that retains H-bonding capacity at the βD4 position still presented with a reduced percentage of Th17
cells (0.31%) compared to healthy patients (>1%), highlighting the substantive role of changes in sterics
at the phosphate binding positions. Examining the prevalence of mutations within the remaining
Sheinerman residues shows infrequent mutations, such as STAT3 βB7 (in which Ser611Gly [34]/Asn [36]
have been reported), which also lead to ablation of activity and AD-HIES. In cellulo studies with
Ser611Asn indicate a reduced capacity for activation by phosphorylation consistent with altered
phospho-Tyr binding [118]. Similarly, substitution at the Sheinerman βD6 position is also capable of
triggering the AD-HIES phenotype. Notably, this βD6 (Glu638Gly [49,51]) mutation likely causes gross
conformational changes in the β-sheet due to removal of a complete side-chain. Although mutations
in the pY pocket of STAT3 tend to abolish peptide binding, specific mutations in the BC loop lead to
either hyperactivation and LGL leukemias or protein dysfunction and AD-HIES. Since the BC loop
is directly involved in multiple domain interactions including the pY and pY+3 pockets, mutations
identified in this region will be discussed in detail in Section 3.3.

In STAT5, mutations at the conserved Sheinerman residues have not been identified apart from
the βD4 position. In the majority of SH2 domain-containing proteins, the βD4 residue is a His, directly
coordinating the phosphate, and mutagenesis of this residue abolishes peptide binding capacity [16].
As seen with STAT3 (Ser636Tyr), modification in sterics at this position greatly modulates phospho-Tyr
peptide binding. In STAT5B, the βD4 residue is an Asn642, and the absence of a conserved His
residue may represent an evolutionary response to tune down the basal activity of STAT5. Notably,
this residue is most frequently mutated in STAT5B (Asn642His) and has been reported in multiple
cancer phenotypes (>150 cases [41,62,69,77,80,81,83–102]), most commonly T-cell-prolymphocytic
leukemia (T-PLL), monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), and T-cell acute
lymphoblastic leukemia (T-ALL). Asn642His is an extremely aggressive oncodriver of T-cell neoplasia
and previous studies have shown multiple T-cell subset organ infiltration and transformation in
transgenic mice [23,119]. Recently, the crystal structure for the STAT5B Asn642His mutation was
reported which suggested different SH2 domain conformations with either a neatly packed βD strand
forming a tight central β-sheet or a more dissociated βD strand that provides greater access to the SH2
domain [23]. Additionally, different biophysical studies [23,41] have confirmed the substantial increase
(~5–7 fold) in the affinity of pY containing peptides for mutated STAT5B (Asn642His) compared
to wild type. This provides a molecular basis for the lower threshold of mutant STAT5B towards
cytokine activation and the aggressive phenotype observed in patients. The Asn642His mutation
is also predicted to lead to a more stable dimer interface and reduced dephosphorylation kinetics,
prolonging the lifetime of the activation state [23].

3.1.2. Mutations Outside Sheinerman Residues

The mutational landscape of STAT3 and STAT5B within the pY pocket also extends to less
conserved residues, predominantly on the βC strand. Mutations at βC4 have been identified in both
STAT3 (Thr620Ser [33]/Ala [34,49]) and STAT5B (Thr628Ser). In STAT5B, this conservative mutation is
commonly observed in T-PLL and T-ALL [86]. In vitro studies with STAT5B Asn642 variants have
shown that bulkier substituents in the pY pocket reduce phospho-Tyr affinity [23]. Therefore, the loss of
a single methylene group from Thr628 can better accommodate the cognate peptide yielding increased
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transcriptional activity. However, contrary effects are observed with Thr620Ser in STAT3, where this
mutation, as well as Thr620Ala, both lead to reduced protein activity and AD-HIES. The contrasting
effects of the same mutation at identical positions in STAT3 and STAT5B underscores the unique aspects
of each structural motif, and more broadly, the potential for isoform specific drug targeting. Generally,
STAT3 is less robust to molecular modifications with slight changes capable of strongly diminishing
activity. This is unusual considering the melting temperature of isolated STAT3 (52.5 ± 0.7 ◦C) is higher
than STAT5B (44.5 ± 0.3 ◦C) [120]. The total protein stability is likely the result of both structural and
complex protein dynamics and requires further investigation. One destabilizing mutation has been
observed in the pY pocket of STAT5B at the βC4 position (Ala630Pro [121]) which disrupts the β-sheet,
reducing protein solubility and leading to misfolding and a clinical presentation of severe growth
deficiency. Thus, destabilizing mutations are observed in STAT5B, but with a reduced frequency.

3.2. Mutations in the pY+3 Pocket

Adjacent to the pY pocket of the SH2 domain is the pY+3, or specificity pocket which interacts
with C-terminal residues of the phospho-Tyr peptide. The βD strand is critical in facilitating these
interactions, particularly the βD5 residue which controls accessibility to this pocket. In Src-type SH2
domains, additional interactions with the cognate phospho-peptide occur between residues in the
evolutionary active region (EAR). This includes the βE and βF strands as well as the loops in between
these structural elements. In STAT3 and STAT5, the EAR motif is comprised of an α-helix (αB’), and the
corresponding interactions occur within the DB’ region (loop in between βD strand and αB’ helix),
αB’, and αB helices. There is also a clustering of predominantly aromatic, hydrophobic residues at the
base of the pY+3 pocket which has been referred to as the hydrophobic system (βC3, βC5, βD3, BC1*,
and BC3*). In STAT3, this includes residues Phe621 (βC3), Trp623 (βC5), Tyr657 (BC1*), and Ile659
(BC3*) and in STAT5B, Ile629 (βC3), Trp631 (βC5), Phe633 (βC7), Trp641 (βD3), Leu663 (BC1*) and
Tyr665 (BC3*). In STAT3, the hydrophobicity of this pocket is reduced by the presence of Gln635 and
Lys626 at the βD3 and βC7 positions, respectively. The increased polarity leads to a reduced STAT3
preference for phospho-peptides with non-polar residues in the C-terminal positions compared to
STAT5B. The SH2 dimerization interface is in close proximity to the pY+3 pocket and is formed by the
BC* loop, αB’ helix and one face of the αB helix. As such, alterations in the pY+3 pocket directly affect
the dimerization interface.

3.2.1. Mutations in the Hydrophobic System and βD Strand

The pY+3 pocket is a hotspot for STAT SH2 domain mutations. Generally, mutations that
increase the polarity of this pocket result in protein destabilization and LOF. This was demonstrated
in Epstein–Barr virus (EBV)-transformed B-cells expressing AD-HIES-associated STAT3 mutations.
In these assays, the half-life of wild type STAT3 (25 ± 2 h) was shown to be substantially reduced by
polar mutations at βD5 (Val637Met = 5.3 ± 4.5 h) and BC1* (Tyr657Cys = 5.5 ± 4.1 h) [122]. Conversely,
STAT3 mutant Tyr640Phe (DB’1), which is a commonly identified mutation in solid and liquid tumors,
leads to constitutive activation across several cell lines (hepatic epithelial cells, lung carcinomas,
fibroblasts, etc.) through enhanced stability of STAT3 dimerization, nuclear accumulation and
increased transcriptional activity following IFNγ stimulation [44,47,48,59–62,65–69]. In wild type
STAT3, Tyr640 points directly into the hydrophobic system. Increasing hydrophobicity, through removal
of the hydroxyl group tightens the packing of the pocket and enhances the activation potential.
The STAT3 Tyr640Phe mutation has been identified in over >110 cancer cases in the COSMIC database
and is most frequently observed in patients with T-LGLL. An analogous mutation is observed at
the BC3* site in STAT5B where the second most frequent mutation (Tyr665Phe) results in STAT5B
hyperactivation and has also been observed in patients with T-LGLL.

Within the hydrophobic system, the presence of aromaticity for π-π stacking interactions from
key residue side-chains is strongly favored over non-aromatic Van der Waals interactions. This is
especially seen at the βC3 position with patients harboring Phe621Val [36,37,50]/Leu [51,52]/Ser [53]
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mutations resulting in STAT3-deficient AD-HIES. In cellulo mutagenesis studies with the Phe621Val
mutation have elucidated impaired STAT3 phosphorylation, resulting in defective DNA binding
capacity. This strong requirement for aromaticity is also observed in STAT5B, where Tyr665His leads
to a hyperactive mutant, since it retains the aromaticity of the imidazole ring to interact with Trp631
(βC5), despite the increase in side-chain polarity.

In addition to the hydrophobic system, the βD strand is critical for controlling pocket accessibility.
This is primarily governed by the residue at the βD5 position in SH2 domains and corresponds to
Val637 in STAT3. This residue serves as a selectivity filter, interacting with C-terminal amino acids of
the phospho-Tyr peptide. In Src kinase, the βD5 residue corresponds to a Tyr and the aromatic ring
is sandwiched between the Glu (pY+1 residue) and Ile (pY+3 residue) of the phospho-peptide [18].
In other SH2 domain-containing kinases, the βD5 residue interacts with all three C-terminal amino
acids of the pY-peptide. Given the critical nature of this site, it is not unexpected that mutations
strongly impair STAT3 activity. STAT3 Val637Met has been identified in a number of patient samples
(>40 cases) and is associated with AD-HIES due to impaired response to cytokine activation and
transcriptional activity. The importance of Val637Met [30,33,34,36,49,56] is further underscored by
insensitivity to 100-fold increases in IL-6 to simulate phosphorylation. This inability to recognize
specific phospho-peptides contributes to the defective STAT pathway observed in AD-HIES. As a
crucial selectivity filter, even semi-conservative mutations Val637Leu [36] and Val637Ala [30] have also
been shown to be disruptive to STAT3 activity and result in AD-HIES. Although STAT3 Val637Met may
be a result of reduced protein stability [122], circular dichroism spectra for STAT3 Val637Ala suggest
that this substitution does not cause large structural perturbations. Alternatively, this substitution
likely reduces phospho-peptide binding in the pY+3 pocket [123]. The βD7 position also assists in the
orientation of the βD5 residue, and mutation of the rigid Pro639 to 639Ala [37]/Ser [30,34]/Thr [35] also
results in AD-HIES.

3.2.2. Mutations in the Dimerization Interface

In comparison to pY and pY+3 pockets of the SH2 domain, the dimerization interface represents
a delicate balance in carefully regulating STAT activity. This region is littered with disease-causing
mutations and slight changes to sterics or electronics at the αB, αB’, or BC* loop propagate their
effects exponentially and lead to highly contrasting effects. There are multiple examples of such
mutations throughout the dimerization interface. For instance, at the αB’6 site, patients with STAT3
Asn647Asp [36,72] exhibit symptoms of AD-HIES, but the Asn647Ile [57,65,67] mutation results in
STAT3 hyperactivation manifesting as chronic lymphoproliferative disorder of NK cells (CPLD-NK)
and T-LGLL. Comparable to trends observed at the central pY+3 pocket, hydrophobic or aromatic
substitutions at the interface stabilize STAT3 dimer formation and subsequent phosphorylation,
while changes in polarity, or in this case, an electrostatic reversal, effectively abolish STAT3
activity. Analogous effects are also observed at the BC1*–BC6* positions. At BC1* and BC2*,
Tyr657Ser [74]/Asn [52]/Cys [30,34,36,58] and Lys658Glu [75] lead to AD-HIES, whereas Tyr657ins [47],
Tyr657dup [48,72] and Lys658Met [67,72]/Asn [65]/Tyr [66] elicit several types of T-cell cancers [124].
At the BC3* position, Ile659Leu [57,72] has been characterized in T-LGLL, whereas the recently
identified Ile659Asn [58] mutation distorts STAT3 activity leading to AD-HIES. Only destabilizing
(AD-HIES causing) mutations have been identified at BC4* (Met660Arg [55] and Met660Thr [76])
in STAT3. The BC5* position was found to be genetically volatile with mutations occurring as
Asp661His [65]/Val [78]/Tyr [41,47,48,60,63,65,67,68,72,77]/Ile [67], with all mutations resulting in
STAT3 activation and enhanced response to cytokines. Finally, the BC6* (Ala662) and BC8* (Asn664)
positions are critical SH2 domain interface determinants, where mutagenesis experiments have created
artificial disulfide linked STAT3-Ala662Cys-Asn664Cys dimers that are constitutively active in cellulo
and induce malignant transformation [66]. This further reinforces the role of the BC* loop in maintaining
the dimer interface to control STAT activity. Individually, these Cys-mutations are likely destabilizing,
but their pairing allows for covalent tethering of the STAT3 monomers and active dimer formation.
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Within STAT3, the disordered BC* loop tends to be the only site amenable to insertion/deletion
mutations. Since different mutations in this BC* loop lead to either hyper- or refractory activity,
likely the substitutions have some degree of compensatory effect that allow them to persist compared
to other regions of the SH2 domain. Furthermore, the remaining motifs of the SH2 domain are highly
structured and less likely to tolerate insertions or deletions.

The volatility shown by each of the residues in the BC* loop to trigger such extreme changes in
STAT3 behavior underscores both the importance of this region to STAT activity, but also the necessity
to understand the underlying molecular dynamics that result in such variability. This is particularly
true for the BC5* residue which has no prescribed role in other SH2 domains. However, as seen
above, its malignant capacity is revealed in >100 identified cases featuring a mosaic of mutations,
according to the COSMIC database. Specifically, the STAT3 Asp661Tyr mutation represents one of the
most frequently occurring mutation in the SH2 domain of STAT3 along with Tyr640Phe (>100 cases).
Although the increases in hydrophobicity and aromaticity have been speculated as critical determinants
for the aggressive nature of this mutation, the site-specific mechanism of activation remains unclear.
Notably, both of these frequently cancer-associated mutation sites in STAT3 (Tyr640 and Asp661) are by
default Phe and Ile respectively in STAT5B. This substitution to the STAT3 cancer-associated genotype
in STAT5B suggests that the protein may be more optimized for protein dimerization. This is an
interesting observation and further suggests a delicate evolutionary balance in STAT5B by potentially
improving interactions at the dimerization interface while reducing activity through the lack of an
efficient phosphate-coordinating βD4 residue (Asn642). The functional significance of these changes
in STAT5B, compared to STAT3, has not been biophysically characterized and may also suggest that
additional mechanisms are relevant to the disease-associated phenotype including changes to protein
stability or transcriptional regulation.

3.3. Mutations in the Additional Regions of the SH2 Domain

Mutational hotspots in regions outside the pY and pY+3 pockets may highlight additional areas
that are important for protein regulation and exploitable for drug targeting and understanding disease
progression. There is a tight clustering of mutations in the BC loop of STAT3 on the periphery of the
pY pocket. Similar to the dimerization interface, mutations at these residues can either enhance or
reduce STAT activity. This region is in close proximity to the pY pocket, pY+3 pocket, dimerization
interface, and STAT linker domain and likely serves as an important allosteric communication bridge
for interdomain signaling. As such, interactions at this region of the BC loop require a complex balance
of flexibility and rigidity. For instance, at the STAT3 BC3 position, a mutation at Ser614Arg [39–42]
leads to hyperactivation and LGLL, whereas a Ser614Gly [34] results in LOF and AD-HIES. Increasing
the positive electrostatic potential at this region generally leads to STAT hyperactivation and draws
the BC loop closer into the pY pocket. Mutations found at neighboring sites BC5, BC6, and B7
delineate similar trends, where Glu616Lys [45], Glu616Gly [44], Gly617Arg [44], and Gly618Arg [47,48]
are found in diffuse large B-cell lymphoma and NK-malignancies. Corresponding electronegative
or bulky substitutions are associated with AD-HIES and dysfunctional STAT3 (Gly617Glu [46],
Gly618Asp [35,37], and Gly617Val [34]).

There are additional mutations that are located across STAT5 and identified in single patient cases.
Given the general robust nature of STAT5 to mutations, it is difficult to assess the oncogenic driving
capacity of a single mutation, or whether the disease is multifactorial in etiology. For instance, a mutation
in the short βA strand was identified within STAT5B as Gly596Val [79]. However, this mutation was
identified in a chimeric protein of STAT5B and retinoic acid receptor-α (STAT5B-RARα), which is
associated with acute promyelocytic leukemia (APL) and is also resistant to all-trans retinoic acid
therapy. All-trans retinoic acid (ATRA) is capable of inducing remission in almost all APL cases,
with several exceptions [125]. Since this is a rare subtype of APL, where the fusion protein was
identified in a small minority of cases (<10), it is difficult to judge the importance of the mutation to the
progression of the disease, although the residue is conserved across species. Notably, a STAT3-RARα
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fusion was also recently discovered in an APL patient with a similar ATRA-resistance profile [126].
Surprisingly, no STAT5A fusions have been discovered. It would be interesting to define if the
dimerization mechanism of these RARα fusions is mediated through a partially intact SH2 domain or
other dimerization domain of STAT. Other mutations in STAT5B are located in non-hotspots including
Asp634Val (βC8), Gln636Pro (CD2), and Arg659Cys (αB4) and were identified in patients with T-PLL
and MEITL. Similar to STAT3, these mutations are in close proximity to the dimerization interface and
increase the hydrophobicity of the region, which can facilitate hyperactivation. It is interesting to note
that T-PLL represents the disease with most hyperactive STAT3/5B and JAK3 mutations among all
subgroups of largely untargeted orphan T-cell neoplasias, and future targeting efforts in this pathway
will likely benefit these patients.

4. Conclusions

Disease associated mutations are more frequently identified in STAT3 compared to STAT5B,
suggesting that STAT5B is more robust to the alterations in structural motifs, or that STAT3 has a more
pronounced role in normal physiological functioning. However, it is clear that even slight alterations
to electronics or sterics in the SH2 domain can dramatically alter STAT3 activity. In STAT3, the majority
of mutations identified in the pY pocket impair protein function, with the most substantial effects
observed upon mutation of conserved Sheinerman residues (Figure 1f). In STAT5B, pY mutations
are generally activating with the Asn642His substitution occurring most frequently in aggressive
T-cell cancers (Figure 1g). The pY+3 specificity pockets are characterized by multiple mutations with
variable effects. Broadly, mutations that improve hydrophobicity or introduce aromaticity lead to
hyperactivation, while increases in pY+3 pocket polarity or removal of aromatic substituents diminish
STAT function. This trend is also observed at the SH2 domain dimerization interface which is a hot-spot
for mutations, and different substitutions at a single position can result in severe loss- or gain-of-function.
Finally, the BC loop may be a critical region for allosteric communication pathways throughout the
protein and has been evolutionarily tuned for the precise interactions. As such, marginally reducing
electronegativity or increasing electropositivity leads to hyper- and hypo-activation, respectively.

Currently, additional structural studies and molecular dynamics simulations are required for a
better understanding of the molecular mechanisms of STAT3/5B mutations at different sites within the
SH2 domain. Considering the conformational flexibility of the main binding sites with state-of-the-art
computational methods, for example thermodynamic integration, should be more thoroughly exploited
in further work. These can be used to propose alternative treatments or highlight therapeutic
approaches. For instance, the relative instability of the wild type STAT3 protein is shown to be
amplified by AD-HIES-causing mutations. The use of small molecules that can trigger stimulation
of protein chaperones to rescue dysfunctional STAT3 mutants has been shown to be effective in
cellulo [122]. Alternatively, hyperactivated STAT3 is only marginally more stable than the wild-type
protein which may be exploited by degradation enhancing therapeutic strategies such as the use of
PROTACs and hydrophobic tagging. These efforts can be extended to STAT5 as well as examining
the Asn642His site, as this hot-spot mutation mimics SH2 domain superbinders and is excessively
aggressive due to its prime role in the pY pocket. Collectively, these structural studies offer a predictive
approach for understanding the molecular foundations of additional mutations identified in the SH2
domain, based on their location and alterations to pocket electronics and sterics.
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