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Abstract: The safety of urban transportation systems is considered a public health issue worldwide,
and many researchers have contributed to improving it. Connected automated vehicles (CAVs) and
cooperative intelligent transportation systems (C-ITSs) are considered solutions to ensure the safety of
urban transportation systems using various sensors and communication devices. However, realizing
a data flow framework, including data collection, data transmission, and data processing, in South
Korea is challenging, as CAVs produce a massive amount of data every minute, which cannot be
transmitted via existing communication networks. Thus, raw data must be sampled and transmitted
to the server for further processing. The data acquired must be highly accurate to ensure the safety
of the different agents in C-ITS. On the other hand, raw data must be reduced through sampling to
ensure transmission using existing communication systems. Thus, in this study, C-ITS architecture
and data flow are designed, including messages and protocols for the safety monitoring system of
CAVs, and the optimal sampling interval determined for data transmission while considering the
trade-off between communication efficiency and accuracy of the safety performance indicators. Three
safety performance indicators were introduced: severe deceleration, lateral position variance, and
inverse time to collision. A field test was conducted to collect data from various sensors installed
in the CAV, determining the optimal sampling interval. In addition, the Kolmogorov–Smirnov test
was conducted to ensure statistical consistency between the sampled and raw datasets. The effects of
the sampling interval on message delay, data accuracy, and communication efficiency in terms of the
data compression ratio were analyzed. Consequently, a sampling interval of 0.2 s is recommended
for optimizing the system’s overall efficiency.

Keywords: safety monitoring system; cooperative intelligent transportation system; connected and
automated vehicles; data reliability

1. Introduction

The safety of urban transportation systems has been recognized as a public health
issue worldwide; consequently, many researchers have contributed to improving safety
performances. According to previous studies [1,2], approximately 90% of traffic incidents
and accidents are caused by human factors. Therefore, many previous studies have used
sensors and communication technologies to reduce the influence of human factors on
traffic safety [3]. However, although researchers have focused on technologies using in-
vehicle sensors, there exists several limitations in perception capability, detection range,
and price in particular cases. Moreover, recent studies have concluded that connected
and automated vehicles (CAVs) and cooperative intelligent transportation systems (C-
ITS) can be a solution to ensuring transportation safety by reducing the perception and
reaction error related to human drivers [4]. CAVs and C-ITS are based on information and
communication technologies (ICT), which collect massive amounts of data from various
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sensors, transmit data and messages through telecommunications, process the data and
messages to monitor real-time safety performances, and apply control strategies to vehicles
and traffic management systems [5].

In the era of CAVs and C-ITS, there have been several changes in the role played
by the transportation management center (TMC). First, traffic management is shifting
from infrastructure to in-vehicle device-based management that relies on mobile devices
and in-vehicle communication units. In particular, the previous research suggests that
providing personalized traffic management can improve both traffic efficiency and safety
compared to the conventional traffic management system, which provides traffic informa-
tion based on the average behavior of road users [6–10]. Second, communication protocols
in traffic management are witnessing a change from wired and mobile communications to
vehicle-to-everything (V2X) and machine-to-machine (M2M) communications to ensure
accurate and low-latency safety services. In the case of variable speed limit (VSL) and
ramp metering, which are representative examples of conventional traffic management
services, traffic control is performed using predefined schedules or transmitting a control
method calculated in the server to the variable message signs (VMS) or traffic signals on
the road through wired or mobile communication. However, in-vehicle device-based traffic
management, using V2X or M2M communication, is more efficient than the conventional
communication method, because it can provide warning information to the vehicle with
low latency [11]. Finally, the nature of computing is changing from on-premise to cloud
and edge computing to facilitate efficient and flexible data handling of multisource unstruc-
tured big data. To provide in-vehicle device-based traffic management in real time, various
computing tasks such as data acquisition, data preprocessing, and control decisions must
be performed efficiently. Therefore, it would be more efficient to subdivide computing roles
(data acquisition, data preprocessing, communication, and data analytics) into a cloud and
edge than to collect and process all data in one server, as in on-premise computing.

Thus, it is vital to develop a novel framework design, including data collection in-
vehicle devices, transmission from vehicles to cloud servers, and data processing in cloud
platforms, to properly monitor the safety of urban transportation networks and apply
proper traffic control. However, a problem when developing and deploying such a frame-
work is that the automated driving system produces too massive data every minute. The
size of the produced data varies from 1 to 3 GB per minute, and these data consist of
data points collected by various sensors, such as Lidar, radar, vision, chassis, and GPS.
According to a previous study on the communication speed in South Korea, the average
data rate of LTE communication is 23.6 Mbps, which is equivalent to approximately 1.4 GB
per minute [12]. In addition, the maximum data rate of WAVE communication is 27 Mbps,
which is equivalent to approximately 1.6 GB per minute [13–15]. Thus, both existing com-
munication systems cannot guarantee sufficient data rates to transmit data from connected
automated vehicles in real time for safety applications.

In the near future, ensuring higher-speed communication for C-ITS may be possible
due to the emergence of 5G and 6G communication systems. However, considering the
current deployment stage, the data size must be reduced through sampling to ensure
that the data can be transmitted through the existing communication system. On the
other hand, it is necessary to acquire highly accurate data to ensure the safety of different
agents in C-ITS. Previous studies have also studied such a trade-off relationship in traffic
data [16–18]. Thus, both communication efficiency and data reliability in data collection
must be considered for new real-time safety applications to properly monitor the safety
performances of connected vehicles (CVs) and automated vehicles (AVs).

From research papers to standards, extensive studies have been undertaken on frame-
works and architectures for future transportation management centers. In particular, many
studies have focused on C-ITS, which enables direct communication between vehicles,
roadside infrastructures (also known as roadside units, RSUs), and TMCs. A high-level
system architecture was proposed in [19], comprising an end-to-end structure including a
traffic control center, roadside infrastructure, and vehicle. In [20], a cloud-based vehicle
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information system architecture was proposed for C-ITS application services in connected
vehicle environments. The use of the cloud system in C-ITS was proposed to process and
store a massive amount of data generated from various sensors in C-ITS. Different types of
data can be collected and analyzed under it, such as traffic flow and link speed data [21],
safety-related data [22], and emission data [23]. With the emergence of CVs and CAVs,
every vehicle traveling in a traffic network can function as a moving data generator and
possibly merge with C-ITS. Furthermore, in [24], the exchange of traffic data, traffic control
data, and traffic management strategies between public authorities and the private sector
were analyzed with possible levels of cooperation under Traffic Management 2.0 (TM2.0).
The exchange of data collected by sensors under the control of C-ITS and data collected by
sensors installed in CV and CAV is the key to improving the overall performance of the
traffic network. Although research covered an extensive range of studies with different
aspects of C-ITS, many research gaps still exist for real-world deployment. The previous
studies focused on developing the conceptual design of C-ITS, and as a result, it is difficult
to use them directly. Additionally, previous studies did not consider the massive amount
of data CAVs will produce when they emerge in urban transportation systems. There-
fore, it is necessary to fill the research gap to properly design and deploy C-ITS for CAVs
on the currently running communication networks by considering the trade-off between
communication efficiency and data reliability.

This study primarily focused on the safety performance of an urban transportation
network with CAV and C-ITS. Safety applications and safety-related decisions can be
handled by edge devices installed in CAVs [25]. For example, an emergency electronic
braking lights application, one of the most common C-ITS services, generates the safety
message in edge devices installed in CAVs when a driver abruptly brakes hard. These
kinds of edge device approaches are useful when the types of safety indicators are constant
and fixed. As the safety aspects for monitoring are diversified and increased, monitoring
the safety performance of the overall network and confronting the possible fallbacks
of the automated driving systems of CAVs are the roles that traffic management centers
undertake. Certain studies [22,26,27] have proposed a TMC-based safety monitoring system
that includes data flow. The results show that the TMC-based safety monitoring system
provides a good opportunity for improving safety performances, because it can effectively
consider the temporal and spatial relationship of the entire road network. However, they
only consider the one type of service, so issues arising from increasing safety aspects that
need to be monitored, such as communication efficiency and data reliability, for multiple
applications have not been studied.

Moreover, although the trade-off between communication efficiency through data
sampling and data reliability has been studied in various fields [28,29], it has not been
attempted in CAV and C-ITS. For example, in [18], a simplified resource allocation problem
was defined to assess the trade-off between communication efficiency and data reliability
under different sampling rates over a discrete time communication channel. Furthermore,
Ref. [16] analyzed the effects of other variables, such as the penetration rate and sampling
frequency of mobile sensors, on traffic state estimations in a highway scenario.

Thus, the objectives of this study are (1) to develop and design a C-ITS architecture
and data flow for the safety monitoring systems of CAVs and (2) to determine the optimal
sampling interval for data transmission considering the trade-off between communication
efficiency and data reliability of safety performance indicators. Primarily, this study focuses
on the design and deployment of C-ITS for CAVs, considering the trade-off of data reliability
and communication efficiency.

The remainder of this paper is presented as follows. In Section 2 is a novel framework
for traffic management centers for the safety monitoring of connected automated vehicles.
In Section 2.1, the system architecture of the proposed traffic management center is pre-
sented with a detailed explanation of the data flow for the safety monitoring system of
CAVs. Section 2.2 presents the safety performance indices used in this study. Section 2.3
presents an efficient data transmission technology from an onboard unit to a cloud server. In
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Section 3, the data used in this study and the experimental design to determine the optimal
sampling transmission interval are introduced. In Section 4, the results of applying various
sampling intervals for the three safety performance indicators are discussed. Finally, in
Section 5, the contributions of this study and future study plans are presented.

2. Methodology

Safety monitoring of vehicles is one of the main issues in the field of transportation
for both rapid responses to dangerous situations and a causal analysis of the dangerous
situation [30]. There were two major approaches for the safety monitoring of various types
of vehicles in the previous studies. The first approach was analyzing driving data after
the end of driving [7,31–33]. The merit of this approach is that it can derive a meaningful
analysis by handling a large amount of data. However, this approach is not applicable
for real-time applications, because data collection activities are conducted at least once
a day. The second approach is detecting dangerous situations with real-time data and is
widely used in the field of C-ITS [34–36]. In this approach, the data size is strictly limited,
such as 1 KB or less, considering the communication efficiency and its standard. It has
the advantage of responding quickly to dangerous situations, but on the contrary, it has a
limitation that the type of safety indicator that can be monitored is extremely limited, such
as severe deceleration and sharp curves, due to the small message size. In some studies, to
improve the utilization of limited small messages related to safety, dangerous situations
are judged locally, and the results are transmitted to the TMC when the critical events are
detected [37–39]. Since this method is limited in the scalability and flexibility of the safety
indicators, it is hard to consider more diverse safety aspects than the designed function in
the initial system plan.

With the introduction of CAVs, the requirements for the main functions of TMC are
changing. First, the TMC for CAVs requires a faster response and more accurate analysis
with more data than human-driven vehicles and connected vehicles. Second, considering
the initial stage of research on CAVs, it requires a framework that makes it easy to introduce
various safety indicators to respond to future safety issues in the middle of the system
operations. Thirds, for the safety monitoring of CAVs, there is a need for what data items
to be transmitted and how often they are transmitted among the vast amounts of data
from CAVs.

With the requirements for a safety monitoring system for CAVs, this study designed
data flow for a TMC based on data collected from CAVs for safety monitoring. The data
flow ranges from the data generated in sensors in the CAVs to the calculation of safety
performances in a TMC. In particular, a data sampling method for transmitting the data
collected from the in-vehicle sensors to the TMC via the roadside unit (RSU) has been
proposed. The details are described in the subsequent subsections.

2.1. System Architecture

This study devises safety monitoring for CAVs, as shown in Figure 1. The proposed
monitoring system comprises four systems: CAD system, onboard unit (OBUs) for commu-
nication, roadside units (RSUs) for communication, and TMCs for CAVs. The CAD system
controls the longitudinal and lateral movements of vehicles based on the information of the
sensors installed in the vehicle. In addition, the data from the in-vehicle sensors, such as
chassis, vision sensor, radar sensor, Lidar sensor, and GPS, are first collected through the
middleware such as the Robot Operation System (ROS) according to previous studies [40–42].
Each sensor has a different data collection cycle of less than 0.1 s, and the collected data are
sent to the OBU for communication to be sent to the TMC for CAV.
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Figure 1. Data flow for the safety monitoring of connected and automated vehicles.

The OBU sends the data collected from the CAD to the RSU. Since the data collected
from the CAD comprises heterogeneous time intervals of various sensors, the unification
of the heterogeneous time intervals from multiple sensors is necessary before sending
the data to the RSU. Furthermore, data reduction is required due to the large size of raw
data from the in-vehicle sensors that have to be sent over communications with limited
transmission capabilities. Therefore, the OBU performs the sampling to unify the data
received from the CAD simultaneously. For example, if the time interval of the raw data is
0.01 s, the data are converted to 0.1 s units via capturing the raw data once every 10 points
during the sampling work. Moreover, the data volume is reduced by approximately 10% in
this process, although the accuracy (reliability) of the data is reduced. Subsequently, the
sampled data are packaged into the communication message format (V2X message) to be
sent to the RSU [43] and, eventually, sent to the TMC. Simultaneously, the communication
state information of the RSU is generated and sent to the TMC.

In this study, a uniform sampling interval is only considered to reduce the computing
load in the OBU. Applying different sampling intervals for each data can be beneficial in terms
of the data size of a single message. For example, data closely related to safety are sampled
every second, and data with low safety importance are sampled every two seconds. However,
when different sampling intervals are applied, the sampling intervals must be determined for
each data element, leading to an increase in the computing load in the OBU. Furthermore,
different sampling intervals for each data element could decrease the overall reliability of the
data collection, because data with a relatively long sampling interval may be designated as an
optional type rather than mandatory for transmission of a message.

The TMC performs functions to facilitate the safety monitoring of CAVs based on the
data received from the RSU, which are primarily composed of the following four steps.
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First, the V2X message from the RSU is converted to a format that enables a more accessible
analysis in a server, such as JSON, and then stored in the message broker, which can easily
store and share data in real time. Second, a level of safety is calculated for each element
of CAD to monitor the safety of the CAV based on the data stored in the message broker.
This study used safety indicators for CAVs, such as severe deceleration, lateral position
variation, and inverse time to collision. The safety indicators used are explained in the next
section. Finally, the level of safety calculated through the safety indicators is displayed on
the bulletin board to provide related information to the TMC manager. The safety index
for each vehicle/road section is calculated and used for vehicle maintenance, performance
improvement, and the warning of dangerous zones. Finally, the monitoring result for each
vehicle/road section is transmitted to the CAV for safe driving. The CAV reduces the speed
according to the monitoring results by adjusting the maximum speed for each road section.
For example, when safety issues are detected in the TMC, it recommends that the CAV
reduces the maximum driving speed from the road speed limit (e.g., 100 km/h) to a safe
speed (e.g., 70 km/h).

2.2. Indicators for Monitoring Automated Driving Vehicles

For the monitoring of the safety performances of CAVs, various types of safety indi-
cators are proposed and used in the previous research, such as the distribution of TTC at
the brakes onset, the number of selected traffic violations, and the number of instances
where the vehicle takes unnecessary collision avoidance action [44]. The proposed TMC is
designed to cover all kinds of safety indicators; this study uses three safety indicators for
monitoring different aspects of safety: severe deceleration (SD), lateral position variation
(LPV), and inverse time to collision (ITTC). The SD is designed to capture unsafe and
uncomfortable longitudinal driving movements and is among the extensively used safety
surrogate measures for indicating the safety performances of both drivers and CAVs [45–47].
The occurrence of SD is determined by the existence or absence of the following condition:

Accsub
long(t) ≤ Dsevere, (1)

where Accsub
long(t) is the longitudinal acceleration of the subject vehicle at time t, Dsevere is

the threshold value for SD, which is set to −2.94 m/s2 in this study, and explanation of the
variables is shown in Figure 2.
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This index comprehensively indicates the decreased comfort of users in the vehicle, the
occurrence of an accident, and delayed cognition behavior of the preceding vehicle when
there is a rapid deceleration of the vehicle. This is more strictly applied to mass transit, such
as buses, because the safety of standing passengers in buses can be significantly decreased
by the SD.
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The LPV represents vehicle safety related to lateral movement and is designed to
capture the unsafe and unstable steering control of the lane-keeping system of connected
and automated vehicles. The equation for the LPV is as follows:

ILPV = min

(∣∣∣∣∣ydist
Le f t −

lsub
width

2

∣∣∣∣∣,
∣∣∣∣∣ydist

Right −
lsub
width

2

∣∣∣∣∣
)

, (2)

where ydist
Le f t is the distance from the vehicle center to the left lane in the vehicle-moving

direction, ydist
Right is the distance from the vehicle center to the right lane in the vehicle-

moving direction, lsub
width is the width of the subject vehicle, and explanation of the variables

is shown in Figure 2.
The gone over event, wherein a CAV approaches a lane too closely or crosses over a

lane during driving, is a hazardous situation and among the most widely used evaluation
factors in field tests [48–50]. The use of a LPV has been suggested to analyze such danger-
ous events numerically. It is considered a representative key performance indicator for
evaluating the driving safety of CAVs, because it can detect a dangerous situation before
the occurrence of a touched line event or gone over event [4,51].

The LPV determines whether the subject vehicle drives excessively to the left or right
from the centerline. This implies that the minimum distance from the left or right side
to the left or right lane, and the closer to zero this distance is, the more dangerous it
is. For example, let us assume that a vehicle with a 2-m width is driving 0.5 m toward
the right on the road with a lane width of 3.4 m. In this situation, the lsub

width is 2 m,
ydist

Le f t is 3.2 m
2 + 0.5, and ydist

Right is 3.2 m
2 − 0.5. Consequently, the obtained value is: ILPV =

min
(∣∣2.1− 2

2

∣∣, ∣∣1.1− 2
2

∣∣) = min(1.11, 0.11) = 0.11. In this example, the vehicle is in a
dangerous situation with a residual space of 0.11 m in the right direction. Consequently,
the CAV must execute longitudinal vehicle control to return to the centerline or closely
observe neighboring vehicles approaching from a near distance.

The ITTC represents the collision risk of the subject vehicle considering the distance
and relative velocity between the subject and the preceding vehicles [52–55]. This indicator
is often used to estimate the danger of the driver and CAV. The driver is provided a warning
message to prevent an accident. The CAV performs control such as acceleration and braking
based on this value to maintain a safe distance. This study used the ITTC to evaluate the
ability of CAVs to recognize and appropriately respond to objects ahead. The equation for
the ITTC is as follows:

ITTC(t) =
vsub(t)− vpre(t)

d(t)
, (3)

where vsub(t) is the speed of the subject vehicle at time t, vpre(t) is the speed of the preceding
vehicle at time t, d(t) is the distance between the rear of the preceding vehicle and the front
of the subject vehicle, and explanation of the variables is shown in Figure 2.

An ITTC value closer to 0 indicates a safer situation, and as it attains larger positive
values, a more dangerous situation is indicated. Previous studies that used ITTC as a
measure usually set the threshold to indicate a hazardous situation as 0.49 [38,41]. However,
in this study, the safety performance indicators of the CAVs are the main focus, and thus, a
threshold the same as human drivers should not be used. Considering previous studies,
this study determined that an ITTC value larger than 1.76 is a dangerous situation [56,57].

2.3. Sampling for Transmission of Automated Driving Data

As previously discussed, the amount of data produced by CAVs every minute is ap-
proximately 1–3 GB. Under the current deployment stage, transmitting such large data is not
possible via the existing communication networks in Korea, including WAVE (1.6 GB/min)
and LTE (1.4 GB/min). Thus, as both communication systems cannot guarantee sufficient
data rates to transmit data from connected automated vehicles in real time for safety appli-
cations, sample data must be collected before transmission through the communication
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network. The data collection frequency varies depending on the sensors and target vari-
ables, ranging from 20 to 50 Hz. This implies that the sensor can generate approximately
20–50 data points every second. Thus, if one data point is sampled every second, theoreti-
cally, the size of the data can be reduced to one-fiftieth, which the current communication
network can accommodate for CAVs.

Adjusting the data sampling interval as explained above can result in several benefits
in terms of data transmission and storage. Still, the data accuracy decreases (error), and
thus, a delay in detecting severe events can occur. Moreover, it is possible that severe
events may not have been detected in some instances. Figure 3 presents examples of these
problems. Figure 3a shows the delay and error that occurred when a sampling interval of
10 s was applied to the data collected in a 20 Hz unit. This figure graphically shows the
acceleration of the CAV. At this moment, the automated driving monitoring system must
detect the SD situation. However, due to the occurrence of a delay, because the system
detected the peak point of the SD slightly late, an error was produced that underestimated
the severity of this event. Figure 3b shows the result when a sampling interval of 5 s was
applied to the data collected in a 20 Hz unit. The automated driving monitoring system
failed to detect SD events in this situation.
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The sampling interval may be increased, which reduces the data volume and gives
data communication and storage; however, as shown in Figure 3, an error and delay
in severe event detection can occur, and severe events may not be detected in certain
cases. In contrast, the data volume increases if the sampling interval is decreased, which
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imposes a significant burden on data communication and storage. Thus, to satisfy these
two requirements, a process for determining the optimal sampling interval is required.

Even if the sampled data are sent and stored by adjusting the sampling interval, the
process becomes meaningless if the distribution significantly changes compared to the raw
data. Therefore, before determining the optimal sampling interval, this study first analyzed
whether the distribution of the sampled data was similar to the distribution of the raw
data. Figure 4 shows examples of data distribution when data are acquired by applying a
sampling interval as a probability density function. The black curve in each figure depicts
the distribution of the values in the raw dataset. In contrast, the remaining curves depict
the distribution of the values in the sampled dataset with different sampling intervals. The
differences between the colored curves and the black curve in Figure 4 indicate that the
data distribution change by sampling data points from the raw data. Consequently, to
ensure that this distribution change does not cause statistical distributional change, the
Kolmogorov–Smirnov test (KS test) is used, one of the extensively used statistical tests.
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There are numerous options when choosing the correct statistical test, such as the
t-test, Mann–Whitney test, and KS test [58]. In this study, the KS test is used, which is
nonparametric and does not make assumptions about, or is not affected by, the original
distribution of the data [59]. The KS test quantifies the distance between the empirical
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cumulative distribution function of two given data. For two particular data points, the
equation for the KS statistic is as follows:

Dn,m = sup
x
|F1,n(x)− F2,m(x)|, (4)

where F1,n and F2,m are the empirical distribution functions of the first and second samples,
respectively, and sup is the supremum function.

Figure 5 shows the passing rate when the KS tests were performed 100 times. This
result verifies whether the data obtained when sampling each datum exhibit a statistically
similar distribution to that of the raw data. In the case of LPV, even a long sampling
interval generates a statistically similar data distribution, but acceleration (longitudinal)
cannot, because the KS test passing rate drops after 10 s. Thus, various sampling intervals
can be applied for LPV, but longitudinal acceleration can generate statistically different
distributions when a sampling interval of 10 s is used. Furthermore, using a long sampling
interval should be avoided, because the ITTC data indicate a low passing rate, even when a
short sampling interval is used.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 4. Change in distribution of (a) the longitudinal acceleration, (b) lateral position variation, 
and (c) inverse time to collision varying sampling intervals. 

 
Figure 5. Passing rate of a hypothesis varying sampling interval. 

3. Data and Evaluation 
To analyze the effect of sampling intervals on the reliability of indicators and com-

munication efficiency, this study collected data from CAVs and adjusted the sampling 
intervals of the collected data. In the data collection stage, a vehicle with various sensors 

Figure 5. Passing rate of a hypothesis varying sampling interval.

3. Data and Evaluation

To analyze the effect of sampling intervals on the reliability of indicators and commu-
nication efficiency, this study collected data from CAVs and adjusted the sampling intervals
of the collected data. In the data collection stage, a vehicle with various sensors was driven
on a real road to obtain data for various dangerous situations. Subsequently, the effects
of sampling intervals on the reliability of safety indicators and communication efficiency
were analyzed at the effect analysis stage. Furthermore, regarding the reliability of the
safety indicator, the reduction in the safety performance according to an increase in the
sampling interval relative to the raw data was derived. The details are described in the
following sections.

3.1. Evaluation Metrics

As the sampling interval increases, the performance is improved in terms of the
communication efficiency, because the amount of collected/transmitted data is reduced.
However, it causes a reduction in the safety performance, because the safety-related
events cannot be determined, as discussed in Section 2.1. Consequently, the safety perfor-
mance in terms of the accurate detection of safety-related events and the communication
efficiency in terms of the size of the data transmitted over communication exhibits a
trade-off relationship.
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The evaluation process of this study consists of three steps: the analysis of sampled
points, analysis of the delay and error of the sampled data, and evaluation of the overall
objective. In the first step, the characteristics of each safety performance indicator are
investigated by analyzing the differences between the raw and sampled data points. The
second step analyzes the distributions of the error and delay of safety-related events. Finally,
in the last step, the overall performance of each sampling time interval is evaluated based
on the objective function, considering both the communication efficiency and reliability of
the safety indicator. The communication efficiency is evaluated in terms of the compression
ratio (how much the data size is reduced) of the data and the reliability in terms of the
detection success rate (how many critical events are successfully detected). The objective
function used in this study is as follows:(

wcom·xST=k
comp rate + wacc·xST=k

sucrate

)
, (5)

where wcom and wacc are weights for the communication and accuracy of the safety indicator,
respectively, xST=k

comp rate is the compression ratio of the sampled data with a sampling interval
(k s) compared to the raw data, and xST=k

success rate is the detection success rate of the sampled
data with a sampling interval (k s) compared to the raw data.

3.2. Experimental Environment

Figure 6 shows the sensor configuration and dimensions of the CAVs used for data
collection. The CAV has a length of 6.195 m, a width of 2.038 m, and a height of 2.665 m.
Seven Lidar sensors, two radar sensors, one vision sensor, and one GPS were installed in the
CAV. The vision sensor collects image data from the vehicle. It generates information related
to the objects and the environment, including the type of objects in front, the lane type,
and the distance to the lane. At the same time, the radar sensors are used to detect objects
ahead and behind and generate information such as the distance and relative velocity of
a relatively far away vehicle. Furthermore, Lidar sensors generate information regarding
the environment, such as safety facilities in the surroundings, and information about
objects such as people and vehicles. Finally, the GPS generates information for estimating
the locations of vehicles and time synchronization. All information was collected, time-
synchronized, and stored through the ROS.
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The data collected in this study includes PVSD (Probe Vehicle Safety Data) and AVSM
(Autonomous Vehicle Safety Message). PVSD contains the information on the status of
CAVs, including their GPS location, speed, and route. AVSM includes data collected by
various sensors such as Lidar, radar, vision, chassis, and GPS. There are 64 specific data
fields in PVSD and 118 data fields in AVSM. Among all the data we achieved, Table 1
shows a description of the data used in this study. Three safety indicators were used in
this study, as discussed in Section 2.2. First, the SD is determined using the condition in
Equation (1), which requires longitudinal acceleration data from the CAV. These data were
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collected using the Chassis sensor. Second, the LPV is determined using the condition
in Equation (2), which requires the position of the left lane and the position of the right
lane. These data fields are collected by a vision camera sensor installed in front of the
CAV. In addition, ‘leftLaneQuality’ and ‘rightLaneQuality’ were used to filter out noisy
data. Finally, the ITTC is determined using the condition in Equation (3), which requires
the relative distance and relative speed between the ego vehicle and the obstacle in front
of the CAV. These data were collected by the radar sensor installed in front of the CAV,
and ‘targetRangeAccel’ (the relative acceleration) and ‘targetStatus’ were used to filter out
noisy data.

Table 1. Description of the data collected by the connected and automated vehicle.

Data Field Description

timestamp Data collection time (time synchronized through ROS)

Chassis longAccel Longitudinal acceleration of the ego vehicle

Vision

leftLanePosition position of left lane from the ego vehicle
leftLaneQuality quality of left lane detection

rightLanePosition Position of the right lane from the ego vehicle
rightLaneQuality Quality of right lane detection

Radar

targetRange Distance between target and the ego vehicle
targetRangeRate Relative speed between target and the ego vehicle
targetRangeAccel Relative acceleration between target and the ego vehicle

targetStatus Status of the target

The sensor data, including chassis, vision, and radar, were collected based on the
test drives of CAVs conducted in Sejong City. Eight test drives were conducted from
August to November 2020. The total length of the test route was 15.64 km, and the total
driving time was 21 h. One test drive was divided into normal and abnormal driving
sessions. In the normal driving session, the CAV traveled one predefined route without
causing any safety-related events. In contrast, in the abnormal driving session, the CAV
traveled the predefined route six times while generating safety-related events such as SD,
left and right tilt, and rapid acceleration. The predefined route is shown in yellow line
in Figure 7, and a sample set of the collected data can be found at: https://github.com/
benchoi93/CAVTestDriveData (accessed on 6 May 2022). The architecture of this study
is developed based on the cloud platform, Microsoft Azure. and the communications are
based on WAVE.
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4. Results and Analysis
4.1. Severe Deceleration (Longitudinal)

Figure 8 shows an example of the sampled points with different sampling intervals
from 0.1 to 10 s. In the figure, the solid gray line and double black line represent the
raw and sampled data, respectively. Furthermore, the black squares represent the points
where the data were collected in the sampled data, indicated by the double black lines.
In the example case in Figure 8, the vehicle initially drove at a constant speed with an
acceleration near 0, rapidly decelerated at up to –3.4 m/s2, and returned to the acceleration
of 0 m/s2. In this case, the amount of deceleration was increased for approximately 2 s, and
subsequently, the amount of deceleration decreased for 10 s. The peak points occurred at
282.05 and 282.33 s. Moreover, as shown in Figure 8, as the sampling interval increased, the
peak point of deceleration in the extracted data increased, which was delayed compared
with the raw data. The peak points of the raw data occurred for the size of −3.4 m/s2

at 282.05 and 282.33 s. However, as the sampling intervals increased to 0.1, 0.2, 0.5, 1,
2, 5, and 10 s, the peak points tended to increase to −3.3, −3.3, −3.3, −3.2, −2.8, −2.7,
−2, and −0.9 m/s2, respectively. Furthermore, the times when the peak points occurred
were delayed at 282.47, 282.51, 282.49, 283.25, 283.19, 284.69, and 289.85 s. Overall, as the
sampling interval increased, the data smoothened, and the detection was delayed.
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Figure 8. Example case of SD at varying sampling intervals.

Figure 9 shows the changes in the distributions of the delay and error at different
sampling intervals. The figure shows the cases of detecting the occurrences of SD events
(Figure 9a,c) and the cases of missing the occurrences of SD events (Figure 9b,d). Further-
more, Figure 9a,b represent the time difference between the peak point of the raw data
and the peak point of the sampled data. This time difference represents the delay of SD
event detection. The increase of the sampling interval exhibits different effects on the
distributions in the detected and missed case.
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Figure 9a shows the delay distribution in the detected case. When the sampling
interval increases from 0.1 to 10 s, the mode of the delay increases from 0.088 to 0.172 s,
while the standard deviation increases from 0.041 to 1.30 s. Thus, when the sampling
interval increases, the increase in the standard deviation is more clearly observed than the
increase in the mode interval of the delay. This is related to the duration of the SD event,
which is approximately 2.1 s on average. Therefore, if the sampling interval is larger than
the average event duration, it will likely miss the SD event.

Figure 9c,d show the change in the error distribution of the sampled data at different
sampling intervals. The effect of the sampling interval on the data distribution appears
to be different in the detected and missed cases. In the detected case, when the sampling
interval increases from 0.1 to 10 s, the mode interval increases from 1.087 to 1.263 m/s2,
while the standard deviation changes from 0.133 to 0.342 m/s2. The change in the standard
deviation is more significant than the change in the mode, because the points have a more
significant difference between the raw and sampled data than the threshold value moves
from a detected case to a missed case. Therefore, the mode of the detected case is restricted
by the peak point value of the raw data and threshold value. In contrast, in the missed
case, as the sampling interval increases from 0.1 to 10 s, the mode increases from 0.329 to
3.040 m/s2. In the same situation, the standard deviation changes from 0.312 to 0.978 m/s2,
respectively. The changes in both the mode interval and standard deviation are large in
the missed case. In contrast to the detected case, in the missed case, the sampled data are
smoothed toward 0, and the change of the sampled data is decreased when the sampling
interval increases. Consequently, it becomes far from the mode and standard deviation of
acceleration of the raw data.

Figure 10 shows the reliability and communication efficiency changes when different
sampling intervals are applied. In this figure, the reliability of the indicators (in terms of
the detection success ratio) is marked by a solid black line and circles. When this value is
closer to 1, it implies that all critical events are detected, whereas, when closer to 0, fewer
critical events than the raw data are detected. The communication efficiency (in terms of
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the compression ratio) is marked by a dotted black line and black diamonds. This value is
the ratio of the reduced amount of sampled data to the amount of raw data. The closer it is
to 1, the greater the size of the data reduction and vice versa. Finally, the weighted average
of the detection success and compression ratios is marked by a black dotted line and black
triangles, and the weight was set to 0.5 each.
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As shown in Figure 10, when the sampling interval increased from 0.1 to 5 s, the
detection success ratio decreased. However, the degree of the decrease was different. When
the sampling interval changed from 0 (raw data) to 1 s, the detection success ratio decreased
by 0.454, but when it changed from 1 to 5 s, it decreased by 0.329. In contrast to the detection
success ratio, the compression ratio continuously increased with the sampling interval.
However, the increasing trend appeared differently, depending on the sampling interval.
When the sampling interval changed from 0 (raw data) to 0.2 s, the compression ratio
increased by 0.905, but when it changed from 0.2 to 5 s, it increased by 0.091. Moreover,
because of the different trends of the detection success and compression ratios, a peak point
of the weighted sum of the two values was observed at 0.2 s. In other words, before 0.2 s,
the rapid increase in the compression ratio had a significant effect on the weighted sum,
thus increasing the weighted sum. However, after 0.2 s, the effect of the detection success
ratio was more significant, thus decreasing the weighted sum. Considering these results,
0.2 s was recommended as the sampling interval for the SD.

4.2. Lateral Position Variation (LPV)

Figure 11 shows an example of the sampling points with different sampling intervals
ranging from 0.1 to 10 s. In this figure, the solid gray and double black lines indicate
the raw and sampled data, respectively. In the sampled data, the data marked by black
squares represent the data collection points. The example case in Figure 11 shows a vehicle
driving close to the right with an LPV of approximately 0.765 m and, further, moving
close to the right with an LPV of 0.190 m at approximately 95 s. The margin to the right
is approximately 0.190 m, which is a dangerous situation for lateral control, leading to a
“touched line event”. In contrast to the case of SD in Figure 8, the error and delay of the
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LPV show different patterns. In terms of error, the peak point at all time sampling intervals
is observed near 0.190. The difference between the peak point of the raw data and that
of the sampled data is very small. In contrast, the time at which a peak point occurred
was delayed as the sampling interval increased; that is, the error experienced minimal
change, but the delay increased to 0.100, 0.182, 0.420, 0.827, 1.619, 3.864, and 7.041 s when
the sampling interval increased to 0.1, 0.2, 0.5, 1, 2, 5, and 10 s, respectively.
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The error and delay show different patterns due to the duration of the event when a
critical LPV appears. In the case of SD in Figure 8, the duration is only 2.1 s, whereas the
duration of a critical event of LPV is approximately 19.99 s. Therefore, in the case of LPV,
even if the delay increases due to a long sampling interval, it does not affect the detection
of a critical event itself.

Figure 12 shows the changes in the distributions of delay and error at different sam-
pling intervals. When the sampling interval increases from 0.1 to 10 s, the mode interval of
the delay of the detected case (Figure 12a) increases from 0.16 to 8.57 s, while the standard
deviation also increases from 0.043 to 3.561 s. This result is different from the result of the
delay distribution of SD of the detected case (Figure 9a), where only the standard deviation
changed, while the mode underwent a minimal change. In the case of LPV, the mode and
standard deviation increase as the sampling interval increases because of the long duration
of a critical event. In the detected case of LPV, the negative effect caused by increasing the
sampling interval is reflected in the distribution of the delay. In addition, the effect of such a
long duration was also observed in the missed cases. When the sampling interval increases
from 0.1 to 10 s, the mode interval of the delay distribution of the missed cases (Figure 12b)
increases from 0.109 to 6.374 s, while the standard deviation also increases from 0.030 to
2.661 s. The increasing trends of both the mode interval and standard deviation can be
clearly observed.
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Due to the effect of the relatively long duration of the event, the impact of the sampling
interval on the LPV error was not significant, as shown in Figure 12c,d; even when the
sampling interval increased from 0.1 to 10 s, the mode interval of the error distribution of
detected cases changed in small increments from 0.001 to 0.016 m. In addition, the standard
deviation also varied from 0.005 to 0.016 m, which was the smallest of increments compared
to the other indicators. Moreover, a similar trend was also observed in the error distribution
of the missed cases. This was because the duration of the peak points of the critical event of
LPV was often longer than the sampling interval. Even if the sampling interval increased,
all dangerous situations have already been detected.

Figure 13 shows the changes in the reliability and the LPV’s communication efficiency
of the LPV when the sampling interval is increased. As evident, in contrast to the SD case
(Figure 10), the effect of the sampling interval change on the detection success ratio of the
LPV is relatively small. Thus, at a sampling interval of 0.1 s, the detection success ratio is
0.999, whereas, at 10 s, it is 0.951. In contrast, the compression ratio increased significantly
from 0.857 at 0.1 s to 0.974 at 10 s. Therefore, the sampling interval in the LPV has a much
more significant effect on the compression ratio than on the detection success ratio.

Owing to the contrasting effects of the sampling interval on the compression and
detection success ratios, the time when the peak point of the weighted sum appears was
also different from that of the SD. The peak value of the SD appeared when the sampling
interval was 0.2, whereas that of the LPV appeared at 5 s. Thus, in the case of the LPV, even
if a relatively long sampling interval was applied, dangerous situations can be detected
more effectively than in the SD.

4.3. Inverse Time to Collision (ITTC)

Figure 14 shows an example of the sampling points, with different sampling intervals
ranging from 0.1 to 10 s. In the figure, the solid gray and double black lines represent
the raw and sampled data, respectively. Furthermore, in the sampled data indicated by
a double black line, the black squares represent the data collection points. The example
case in Figure 14 shows a change in the ITTC. A critical event with an ITTC higher than
2.995 s−1 occurred near 1718.88 s, and another critical event with an ITTC of 0.987 s−1
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occurred near 1731.38 s. Considering that an ITTC value higher than 1.76 s−1 is regarded
as a critical event [41,42], the example case includes an urgent situation where an accident
can occur if a prompt response is not made.
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Compared with the SD and LPV cases described earlier, the sampling interval of the
ITTC had a significant effect on the detection accuracy. As shown in the 0.1-s sampling
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interval of Figure 14a, even when it was slightly increased by 0.1 s from the average time
interval of 0.0499 s for the raw data, the dangerous situation of an ITTC of 2.995 s−1, which
occurred near 1718.88 s, was not detected. Furthermore, a slightly dangerous situation of
an ITTC of 0.987 s−1 at 1731.38 s, which maintained a relatively long duration, was barely
detectable at sampling intervals longer than 1 s. Furthermore, certain situations were not
detected at the sampling intervals of 0.1–0.5 s. Consequently, in contrast to the occurrence
of a peak point value of 2.995 s−1 at 1718.88 s in the raw data, when the sampling interval
was 0.1, 0.2, 0.5, 1, 2, 5, and 10 s, the peak points occurred at 0.987, 0.987, 0.987, 0.151, 0.127,
0.111, and 0.124 s−1, respectively. Moreover, no dangerous situation was detected when
the sampling interval was more significant than 1 s.

The ITTC reacted more sensitively to an increase in the sampling interval than the
other indicators, because the duration of the critical event of the ITTC was the shortest
among the indicators. In the example case, the duration of the ITTC was around 0.1 s.
Therefore, it failed to capture the peak points even if the sampling intervals were slightly
increased. Due to the short duration of the ITTC, significant changes in the ITTC values
were not observed when the sampling interval was more significant than 1 s.

Figure 15 shows the changes in the delay and error distributions, with different
sampling intervals for the detected and missed cases. As shown in Figure 15a, in the delay
distribution of the detected cases, when the sampling interval increased from 0.1 to 10 s,
the mode interval increased significantly from 0.050 to 4.138 s. The standard deviation
also increased significantly from 0.049 to 3.220 s. Similar significant increases in the mode
interval and standard deviation were also observed in the delay distribution of the missed
cases (Figure 15b). Due to the significant increase in the standard deviation according to
the increase in the sampling interval, when the sampling interval was larger than 5 s, the
uniform distribution that was almost flat was obtained. The significant increase occurred
because, when the sampling interval increased, the critical event in the raw data can be
barely detected, rather than detecting it even at a later time. Significant increases in the
mode interval and the standard deviation are also observed in Figure 15c,d, indicating the
error distribution changes with different sampling intervals.
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Figure 16 shows the changes in reliability and communication efficiency when the
sampling interval increased. The figure shows that the detection success ratio decreased
sharply when the sampling interval increased. In particular, when the sampling interval
in the raw data increased to 0.1, 0.2, and 0.5 s, the detection success ratio decreased
significantly to 0.502, 0.606, and 0.746. Subsequently, the decrease became smaller, and
when the sampling interval became 10 s, the change was close to zero. Furthermore, the
compression ratio, which represents the communication efficiency, increased significantly
by 0.905, until the sampling interval was 0.5 s. Then, the change converged to 1, similar to
the pattern of the other indicators. Due to the opposite changes in the detection success
and compression ratios, the weighted sum of the two values reached a peak near 0.2 s.
However, in contrast to the SD results (Figure 10), the changes in the weighted sum with
different sampling intervals showed minimal variations between 0.5 and 0.6. This was due
to the opposite tendencies of the detection success and compression ratio, which changed
at similar values. This suggests that the effect of the sampling interval on the overall
performance of the indicator was practically insignificant.
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5. Conclusions

In this study, a safety monitoring system was proposed for connected and automated
vehicles, and the effects of different sampling intervals on reliability and communication
efficiency based on three indicators indicating various aspects of safe driving were analyzed.
The analysis results showed that the increase in the sampling interval had similar effects
on the communication efficiency for all three indicators. Although the degree of change
depends on the size of raw data required for indicator calculations, all three indicators
showed more than 90% improvement in their communication efficiency when the sampling
interval was more significant than 0.5 s. Regarding the accuracy of the indicators, different
results were observed for the three indicators. In the case of the SD, when the sampling
interval was 0.5 s, the success ratio was approximately 0.7, showing an intermediate effect
on the accuracy among the three indicators. In the case of LPV, the accuracy was 0.996
when the sampling interval was 0.5 s, and the success ratio changed very little because of
the long duration of the critical event. Finally, in the case of the ITTC, the success ratio
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changed the largest to 0.254 when the sampling interval was 0.5 s due to the short duration
of the critical event. Due to the different change patterns of the success ratio of the three
indicators, the optimal sampling interval for each indicator was derived as 0.2 s for the SD,
5 s for the LPV, and 0.2 s for the ITTC.

For efficient and reliable monitoring of the safety indicators, different sampling in-
tervals should be applied to each indicator to obtain the optimal results. However, as
shown in the data flow for the safety monitoring of CAVs in Figure 1, the communica-
tion messages transmitted from the CAD to the RSU and the center are designed for the
integrated utilization of the safety monitoring of CADs, rather than for each indicator.
Thus, designing and applying messages with different sampling intervals to the CAD
monitoring system would probably decrease the integration efficiency due to the increased
number of messages. Therefore, it is more advantageous to uniformly apply a sampling
interval of 0.2 s to apply indicators with different characteristics. Furthermore, in the case
of indicators with a long duration of the critical event, such as LPV, the increase in gain
obtained by increasing the sampling interval was not significant compared to the other
two indicators. For example, when the sampling interval was changed from 5 s to 0.2 s,
the decrease in the weighted sum of the LPV was small at 0.061, whereas those of the SD
and ITTC increased significantly by 0.253 and 0.045, respectively. To optimize the system’s
overall efficiency in such heterogeneous features of safety indicators, a sampling interval of
0.2 s is recommended.

In this study, although the sampling interval for safety monitoring was researched
based on three safety indicators with different characteristics, it was also observed that the
sampling interval suggested of 0.2 s could be changed depending on the features of the
indicators. For example, suppose there were many indicators with a long duration, such as
the LPV in the overall safety monitoring system. In that case, the optimal sampling interval
will be larger than the results of this study. Therefore, when communication messages
for the safety monitoring of CADs are designed, the reduction in the efficiency and the
characteristics of the indicator should be considered. In the future, the characteristics of
more diverse safety indicators will be analyzed by expanding the results of this study for
various applications, such as evaluation of the collision risk and control of the automated
vehicle, and for other execution strategies such as execution time and calculation of the
safety indicator of an in-vehicle device [60–62]. Furthermore, although this study assumed
the same sampling interval and data transmission interval, the follow-up paper will also
analyze the optimal method for data transmission from connected and automated vehicles
when different sampling intervals and transmission intervals, depending on their urgency,
are applied.
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