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Abstract The brain processes underlying cognitive tasks
must be very robust. Disruptions such as the destruction of
large numbers of neurons, or the impact of alcohol and lack
of sleep do not have negative effects except when they
occur in an extreme form. This robustness implies that the
parameters determining the functioning of networks of
individual neurons must have large ranges or there must
exist stabilizing mechanisms that keep the functioning of a
network within narrow bounds. The simulation of a
minimal neuronal architecture necessary to study cognitive
tasks is described, which consists of a loop of three cell-
assemblies. A crucial factor in this architecture is the
critical threshold of a cell-assembly. When activated at a
level above the critical threshold, the activation in a cell-
assembly is subject to autonomous growth, which leads to
an oscillation in the loop. When activated below the critical
threshold, excitation gradually extinguishes. In order to
circumvent the large parameter space of spiking neurons, a
rate-dependent model of neuronal firing was chosen. The
resulting parameter space of 12 parameters was explored by
means of a genetic algorithm. The ranges of the parameters
for which the architecture produced the required oscilla-
tions and extinctions, turned out to be relatively narrow.
These ranges remained narrow when a stabilizing mecha-
nism, controlling the total amount of activation, was
introduced. The architecture thus shows chaotic behaviour.
Given the overall stability of the operation of the brain, it
can be concluded that there must exist other mechanisms
that make the network robust. Three candidate mechanisms
are discussed: synaptic scaling, synaptic homeostasis, and
the synchronization of neural spikes.
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1 Introduction

Already in 1893 the Italian psychiatrist Tanzi (1893)
postulated that the formation of memories was carried by
the growth or strengthening of interactions in the brain
(D’Anguilli and Dalenoort 1996), an idea that some fifty
years later was stated more explicitly by Hebb (1949). He
formulated the rule that the efficiency of a synapse is in-
creased when a pair of neurons involved are simultaneously
active. Although the well-known learning rule that originated
from the ideas of Tanzi and Hebb, has been extensively
studied over the last fifty years, there have been relatively
few studies directed at the consequence of the rule: that cell-
assemblies are the carriers of our memory traces. Hebb saw
this as one of his major contributions to our understanding of
cognitive brain functioning. The question of the robustness
of cell-assemblies was not raised before Milner (1957), who
introduced inhibitory interactions in the simulations of cell-
assemblies in order to make them more stable. Since then
studies on cell-assemblies have remained relatively scarce.
The issue of robustness was studied in Hopfield net-
works (1982) by means of analytical methods. For such
relatively simple networks, with simple models of neurons,
it is possible to draw conclusions from analytical studies
(Gerstner and Kistler 2002). Provided the model of the
network is not too complex, the equations describing the
dynamics of such networks can be approximately analysed,
on the basis of arguments that are mainly heuristic. These
equations can only be analysed for networks that are of
infinite size, that have some properties of symmetries, or
that consist of simplified neurons, for example such that
they all have the same threshold, and the same numbers of
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interconnections. Moreover, the system must be random to
allow statistical arguments. The equations can then be
handled in a statistical fashion, in manners known from
statistical physics. Unfortunately, or perhaps fortunately,
these statistical analyses cannot be used for the study of the
properties of networks that are to serve as substratum for
cognitive tasks that have some relevance for the study of
cognition, such as doing simple arithmetic, or producing
and understanding language. These networks can in
principle not be analysed fully in a statistical manner. Even
a basic requirement, the implementation of binding—a
topic to be discussed later on—seems to be impossible in an
analytical model. For these inhomogeneous and non-
uniform networks, only the process itself can be simulated.
This is in contrast to the numerical analysis of a simple
network for which the equations can be so far approximated
that the equations can be evaluated by numerical techniques
for different cases of parameter values, and for different
types of networks. For the architecture and dynamics of
neural networks that can serve as the substratum of specific
cognitive tasks, only simulations are possible of the
network itself. (Dalenoort, personal communication).

The last two decades have shown an increase in the
interest of cell-assemblies (Dalenoort 1985; Pulvermiiller
1996, 1999; Huyck 2004) and also in analytical studies,
where they are represented in terms of attractors (Amit
1995; Amit and Mongillo 2003). As we argued above an
analytical representation in terms of attractors is not
suitable to answer questions about the specific network
structure of cell-assemblies necessary from a cognitive
point of view (Dalenoort and de Vries 1995).

The approach of this paper is that cognitive requirements
expressed in terms of the functional notion of memory traces
are used to design simulations at the neural level. On the basis
of these simulation studies new phenomena in the model can
be distinguished and compared with what is known neuro-
physiologically. It is possible that this will lead to the discov-
ery of actual new phenomena. In earlier work (de Vries 1995),
we referred to this approach as ‘downward emergence’.
Quintessential to the approach is that a strict bottom-up study
of brain functioning will not be sufficient. Cognition—the
top-down approach—has to be taken into account as well
(Dalenoort 1990; Dalenoort and de Vries 1998a).

2 Hebb revisited: a generalization of the cell-assembly
concept

In this paper we will generalize the concept of cell-
assembly. This notion has its origin in the phenomenon
that the discussed Tanzi—Hebb learning rule leads to clus-
ters in which neurons are more strongly connected to each
other than to neurons in other clusters. According to Hebb

each cluster corresponds to a memory trace. Already in the
1940s it had to be assumed that the neurons of a cell-
assembly must be widely distributed since lesion experi-
ments do not have specific effects on memory traces (Hebb
1949; Lashley 1951). Still, we consider the original notion
of a cell-assembly as being too static. The neurons carrying a
memory trace do not belong exclusively to a single cluster.
Rather, a memory trace should be considered as an excitation
pattern in a large network of neurons. In different contexts a
memory trace is carried by different sets of active neurons.
Accordingly a memory trace can contribute to various
context-specific meanings (Dalenoort 1982, p. 176).

Another extension of the original notion of cell-assembly
that has been applied in the current study, concerns the
existence of a critical threshold. For almost all networks of
threshold elements—such as neurons—there exists a level
of activation above which the activity in the network will rise
autonomously to its maximum level, whereas it will extin-
guish below that level. Such a critical threshold is important to
relate cognitive and neural models of information-processing
(Dalenoort 1985): suprathreshold activity (autonomous
growth of excitation) might be hypothesized to correspond
to cognitive processes that are reported to be consciously
experienced, whereas subthreshold activity (followed by
gradual extinction of excitation) corresponds to processes
of implicit memory such as priming. According to Hebb’s
original notion, activity of cell-assemblies represents short
term memory, whereas the network of assemblies as a whole
stands for long term memory. By means of the concept of the
critical threshold of a cell-assembly, in addition, explicit and
implicit memory can be represented in the same network.
The notion of ‘critical threshold’ is also present in the
concept of ‘ignition of a cell-assembly’ (Braitenberg 1978;
Pulvermiiller 1999). These studies emphasize the instanta-
neous character of the activation of cell-assemblies. The
present study focuses on the conditions necessary to create
sufficient room for subthreshold excitation. When this
excitation exceeds the critical threshold, a smoothly devel-
oping autonomous growth of excitation should produce an
oscillation in the network.

Although the neurons participating in the excitation
pattern underlying a memory trace do not form a fixed set,
there must exist a nucleus of neurons that is active in each
occurrence of the pattern. The memory trace obtains its
identity from the specific connections with the sensory and
motoric parts of the nervous system (Dalenoort 1996).

In this approach the identity or ‘signature’ of a memory
trace is not represented by the temporal structure of the
spikes in a excitation pattern, as assumed by Shastri and
Ajjanagadde (1993), Sougné (2001), and Harris (2005). It is
difficult to see how such purely temporal code could lead to
specific behavioural responses without the intervention of
some kind of ‘decoding’ device. The introduction of such a
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device in a model of cognitive brain functioning, however,
would be inconsistent with the requirement of self-
organisation for such a model (Dalenoort and de Vries
1998D).

Within the generalized model of cell-assemblies the
temporal structure of spikes is not without significance,
however. They may play a crucial role in the solution of the
binding problem. In the context of the paper a possible
solution to this problem is best introduced by the following
example. The fact that we can make associations between
arbitrary words implies that between the cell-assemblies of
the memory traces of these words, a resonance is
established. How is it possible that such a resonance comes
into being between cell-assemblies that are not specifically
connected (like those for ‘black’ and ‘white’)? This
resonance must come into being in a fashion that agrees
with the self-organising character of the network, no top-
down information can be used that is not “available” to the
network. Within this approach it is assumed that for such a
resonance to occur, the spike trains produced by both
assemblies have to be in phase. This solution of the binding
problem is compatible with the ideas of binding expressed
in theories about synfire chains (Abeles 1991; Abeles et al.
2004; Hayon et al. 2005). In the discussion of the synfire
chains, however, no explicit statements are made with
regard to the nature of the memory trace. A wave of excitation
in a synfire network is a purely temporal phenomenon. Thus
the approach based on synfire chains begs the question of how
memory traces obtain their identity (Dalenoort 1996), and
how they are related to explicit and implicit memory.

As was already pointed out in the introduction, networks
of cell-assemblies must have a very specific structure in
order to carry the cognitive processes typical of human
cognition. A good example of a minimal model structure
needed, is exhibited by the cell-assemblies that carry the
memory traces for words. As shown in Fig. 1, such a cell-
assembly, the so-called ‘word node’, has incoming excit-
atory connections from the cell-assemblies corresponding

Fig. 1 An example of the logistics of a small network of cell-
assemblies. The ellipse is a word node denoting a cell-assembly for
the memory trace of the word “WORK”, the large circles are letter
nodes denoting cell-assemblies of the memory traces of its constitut-
ing letters. The small circles represent sub-assemblies of the word
node, necessary for the representation of the order of letters.
Unmarked lines indicate excitation loops between (sub)assemblies,
arrows stand for the excitatory connections from one sub-assembly to
another, and lines ending with a bar stand for inhibitory connections
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to the memory traces of the letters constituting the word,
the so-called letter nodes. There must also exist excitatory
connections from the word node back to the letter nodes,
otherwise the top-down-effects typical for the word superi-
ority effect (Reicher 1969; Wheeler 1970; McClelland and
Rumelhart 1981) could not occur. As a consequence the
relationship between a word node and one of its letter nodes
is an excitatory loop. In addition the loops between a word
node and its letter nodes must reflect the order of the letters
in the word. This can easily be concluded from the fact that
we can quickly answer, e.g., the question ‘what is the third
letter of the word grass?’. At the neural level this means
that within a word node there must exist subpopulations of
neurons for each loop to a letter node. In turn these
subpopulations, or subnodes, must be organised in a chain
that reflects the serial order of the letters of the word.
Propagation of excitation through this chain is necessary to
find which letter is at a certain position within a word. For
this purpose it is also necessary that there exists a network
of cell-assemblies that represents order in a generic sense.
Because of the binding occurring between the letter nodes
of a word and the memory traces for “first’, ‘second’, etc. in
this special network, the excitation process in the chain of
subnodes will reach, and stop at, the subnode corresponding to
a letter position asked for.

Besides the excitatory connections discussed so far, there
must exist inhibitory connections. A specific mechanism of
inhibition employed in the presented cell-assembly model,
is referred to as backward inhibition. Because of this
mechanism the activity of a cell-assembly that brings the
excitation level in another assembly to a level above the
critical threshold, is extinguished by the latter. In the word-
and-letter example of Fig. 1, connections for backward
inhibition thus run in the opposite direction as the
excitation loops through which a letter node activates a
word node. Accordingly the letter nodes are extinguished
by their word node, once its excitation level has increased
above the critical threshold. At the cognitive level this
corresponds to the phenomenon that in normal reading we
perceive a word as a gestalt without the constituting letters.
This short cognitive analysis of the structure of a memory
trace already requires a relatively complex network.

At present it is cumbersome to construct a computer
simulation at the level of individual neurons for a cognitive
task of some complexity. The top-down, or programmed,
tuning of the numerous parameters is impossible. The
tuning has to be done by a self-organising process of which
we do not yet know the conditions (Dalenoort and de Vries
1998b). At present we still need additional insights to
further specify a learning rule, so that the appropriate forms
of self-organisation arise. The complexities at the neuronal
level can be avoided by switching to a higher level of
description. In de Vries (2004) the functioning of cell-
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assemblies, including binding processes required by the
task, is described and simulated at the level of conceptual
networks. In such a network each node represents a cell-
assembly, and accordingly the number of parameters
involved is considerably reduced.

An essential property of cell-assemblies in the context of
this paper concerns their robustness. The neuronal circuitry
underlying cognitive processes must be very robust since
our cognitive system continues to function in a broad range
of biological conditions (extensive cell-death in adults, loss
of sleep, consumption of alcohol, head injuries a.o.). This
robustness implies that the parameters determining the
functioning of networks of individual neurons must have
large ranges, or there must exist stabilizing mechanisms
that keep the parameters for proper functioning of a
network within narrow bounds. The role of the parameters
of the neurons making up this circuitry has only been
understood to a limited extent. In this paper we will explore
the parameter space of model neurons to see whether there
exist relatively large subspaces that underlie the robustness
of cell-assemblies. In order to carry out this exploration we
will use a network (cf. Fig. 2(a)) of neurons that is minimally
required for the specific structures of memory traces
described above, and necessary to understand the heteroge-
neity of human cognition.

The chosen network is constructed and does not come
about through self-organisation. At present there is still
insufficient knowledge to specify a learning rule for
networks of the required cognitive complexity. However,
the results of the exploration of the parameter space may
provide useful insights for the formulation of such a rule.

3 The choice of a minimal cognitive architecture

Many sciences have benefited from the choice of an
idealized model from which general conclusions could be
drawn. Since the exploration of the neuronal parameter
space is not feasible for networks of neurons representing
cognitive tasks, we need an idealized architecture in order
to find the parameters of individual neurons that underlie
the robust functioning of cell-assemblies. The architecture
has to obey the following conditions:

1. an ‘autonomous-growth’ condition (Fig. 2(b)): if a cell-
assembly is externally activated at a level above the
critical threshold, then its excitation level should grow
autonomously to its maximum level. As a consequence
it will activate other cell-assemblies. If one of these also
becomes active at a level above the critical threshold, it
will extinguish the activating cell-assembly. Accord-
ingly only one cell-assembly at a time will be active at
a supra-threshold level.

Cell-assembly

O Neuron
—> |Internal excitatory connection

— Internal inhibitory connection
====> (multiple) External excitatory connections

"***1  (multiple) External inhibitory connections

(b) t, ot t, (c) t, t, t
A 2R AVIVAGS I AR N
c2 2

s SV %%
e PAVAURES

sim. time sim. time

Fig. 2 The chosen minimal architecture and its computer simulation.
(a) A loop of three cell-assemblies, the large gray circles denote cell-
assemblies with dashed lines indicating the excitatory and inhibitory
connections between them; the double-sided white arrow is used to
show part of a cell-assembly at the level of neurons (small gray
circles) with solid lines indicating the excitatory and inhibitory
connections internal to the assembly. (b) Computer simulation of
autonomous growth with subsequent oscillation around the critical
threshold when sufficient input is given, i.e. activation of a random
selection of 25% of the neurons in one of the cell-assemblies with a
value of .25 per neuron on a scale from zero to one. (¢) Computer
simulation of extinction of excitation when insufficient input was
given, similar as in (b) but now with an activation value of .20 per
neuron. The symbols #_3 are time points for conducting a simulation
experiment: ¢; marks the beginning of a start-up condition in which
the network is only activated with random activation (defined by the
function R in formula (1)) and should settle in an equilibrium, #, marks
the end of the start-up condition and the beginning of the condition in
which autonomous growth (b) or extinction (¢) should occur on the
basis of the external inputs described above, #; marks the end of the
simulation experiment

2. an ‘extinction’ condition (Fig. 2(c)): if a cell-assembly
is externally activated at a level below the critical
threshold, then its excitation level should extinguish.
Although the cell-assembly will contribute to the
activation of other assemblies, it alone will not bring
them above the critical threshold.

These conditions are derived from cognitive arguments
for task performance. The observation that humans can
only be conscious of one thing at a time, corresponds to the
first condition that only one assembly can be active at a
level above the critical threshold. The observation that
memories can remain subconscious corresponds to the
second condition, in which excitation of a cell-assembly
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does not exceed the critical threshold. The approach in
which observations at a certain level of description are used
to introduce hypotheses about new phenomena at a lower
level, was referred to as ‘downward emergence’ earlier in
this paper.

The minimal architecture obeying these conditions is a
loop of three cell-assemblies (cf. Fig. 2(a)). In the
architecture excitatory connections from one cell-assembly
to the next are required, as well as inhibitory connections in
the reverse direction (cf. the mechanism of backward
inhibition discussed in the previous section). In this way
the rise of excitation above the critical threshold in one cell-
assembly will extinguish the excitation in the preceding
assembly. Consequently one assembly will remain active in
an oscillating loop.

Moreover, if this propagation of excitation is to be
plausible from a cognitive point of view then the cor-
responding excitation curves should show a smooth increase
and decline during oscillation. Within a cell-assembly
inhibitory connections may therefore be necessary to prevent
too sharp an increase in excitation.

A loop of two (instead of three) cell-assemblies is too
small to allow the excitation level of an extinguished cell-
assembly to decrease at a level below the critical threshold.
This would not lead to the required oscillation, in which
only one cell-assembly is active at a level above the critical
threshold.

A fundamental assumption underlying the proposed
minimal architecture is that one must first acquire insight
into its parameter space before the problem of its self-
organisation (on the basis of an extension of the Tanzi—
Hebb rule) can be solved.

When reduced to its minimal form, the architecture may
also be studied according to analytical methods, such as
those proposed in Van Vreeswijk and Sompolinsky (1996),
Amit and Brunel (1997), and Brunel (2000). This would
provide a useful input to studies about the self-organisation
of larger, heterogeneous networks for specific cognitive
tasks, which are not amenable to analytical methods, and
have to be simulated.

In the proposed minimal network we do not include the
role of binding and therefore no spike trains are modeled.
Modeling a neuron at the level of spikes would require too
many parameters for a first approach to solve the problem
of robustness for a minimal network necessary for cognitive
tasks.

We focus on the robustness of the oscillation of an
excitation wave in a loop of three cell-assemblies. Such an
oscillation represents a steady state, that at the cognitive
level is supposed to correspond to a condition that
something becomes known in the network. As an example
of a cognitive task corresponding to the described network,
one can think of the rehearsal of three items, e.g. three
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letters of the alphabet. It is crucial that the critical threshold
of the cell-assemblies in the loop has an appropriate value
from a cognitive point of view. This means that this threshold
should not be too low, for then a cell-assembly would start its
autonomous growth too quickly, and there would be little
room for subthreshold excitation corresponding to priming
and other processes of implicit memory. Neither should a
critical threshold be too high, for then autonomous growth
will hardly develop.

4 Choice of parameters

Each of the three cell-assemblies in the loop is composed of
model neurons, compatible with the °‘state-of-the-art’
knowledge of neural functioning. The number of these
neurons and their properties constitute the 12 main
parameters of the computer simulation, cf. Table 1. Most
of the parameters are stochastic in nature, which means that
their values are specified by two components: a mean, and
a standard deviation. In any concrete realization of the
network actual values have to be drawn from the normal
distributions specified by these components. The generation
of a series of actual values from a distribution is determined
by a random seed. This implies that a network is
determined by its parameter values and its set of random
seeds (one seed for each distribution parameter). Accord-
ingly, different versions of a network can be created when
the same parameter values are combined with different sets
of random seeds.

The model of the neuron and its parameters is based on
the processes in a synapse. The effectors of presynaptic
neuron A4 contain neurotransmitters that in interaction with
the properties of receptors on postsynaptic neuron B can
either produce an excitation or an inhibition of B. Since the
impact of released neurotransmitters is dependent on the
types of receptors in the postsynaptic neuron, each model
neuron can have excitatory as well as inhibitory connec-
tions to other neurons. The processes of excitation and
inhibition for each neuron have different absolute thresh-
olds in the model.

A model neuron can have excitatory as well as inhibitory
connections, each with a separate threshold. At the neural
level the inhibitory connections can be represented by the
combination of an excitatory neuron and an inhibitory
interneuron, each with its own firing threshold. For the
computational purposes of this paper we refrained from
such a representation with an interneuron because it would
increase the number of parameters to an extent that the
exploration of the parameter space would no longer be
computationally feasible. Also in analytical studies (Brunel
2000) parameters are taken together in order to make a
solution possible.
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Table 1 The 12 parameters of the chosen architecture

Description Name mean Range Name SD Range
Parameters specified as single values
1. Number of neurons per cell assembly NrCA (135, 240) 15
2. Decay of excitation level of a neuron per time step Decay (.2,.55).05
Parameters specified as normal distributions
3. Excitatory threshold of a neuron mThrE (.1,.8).1 sThrE (.150,.325).025
4. Inhibitory threshold of a neuron mThrl (.3, 1.0).1 sThrl (.35,.525).025
5. Number of excitatory connections of a neuron in a cell assembly mNrEI (5.0, 7.8).4 sNrEI (.0, 2.8).4
6. Strength of excitatory connections of a neuron in a cell assembly mStrEI (.11,.18).01 sStrEI (.0,.07).01
7. Number of inhibitory connections of a neuron in a cell assembly mNrll (.0, 3.5).5 SNrlI (.0, 1.75).25
8. Strength of inhibitory connections of a neuron in a cell assembly mStrll (.0,.35).05 sStrll (.0,.175).025
9. Number of excitatory forward connections of a neuron external mNrEfE (.65, 1.0).05 sNrEfE (.05,.04).05
to a cell assembly
10. Strength of excitatory forward connections of a neuron external mStrEfE (.05,.12).01 sStrEfE (.0,.07).01
to a cell assembly
11. Number of inhibitory backward connections of a neuron external mNrIbE (1.0, 3.8).4 sNrlbE (4,3.2)4
to a cell assembly
12. Strength of inhibitory backward connections of a neuron external mStrIbE (.5,.85).05 sStrIbE (.0,.35).05

to a cell assembly

The parameters can be distinguished in those having a single value for the entire architecture (rows 1 and 2), and parameters characterizing each
individual neuron, the value of which is drawn from a normal distribution (rows 3—12). For the latter the mean, and the standard deviation of the
distribution are given. For each parameter the range and step size used in the exploration of the parameter space is specified. Since the exploration
turned out to be particularly sensitive to the value of the decay, this parameter was set to a fixed value during the initial stage of the exploration

and varied later on, cf. Fig. 3.

The behaviour of each neuron is characterized by its
excitation level, that is based on a commonly used integrate-
and-decay-mechanism, cf. formulas (1), (2) and (3).

E(t)=(1—-D)xE(t—1)+ iEchni,-(t)

j=1

+ > InhIng(t) + Ri(t) 0<E()<1
=1

(1)
[ 0if E(t— 1) < ThrE
ExclIng(t) = {Ej(t— 1) x Wy if Wy >0 AE;(t — 1) > ThrE; "

(2)
[ 0if Ej(t—1) < Thrl;
Inhlny (1) = {Ej(t — 1) x Wy if Wy < O AE;(t — 1) > Thrl,

(3)

In formulas (2) and (3) the values of the variable ThrE,, resp.
Thrl;, are drawn for the distribution determined by mThrE and
sThrE, resp. mThrl and sThrl, (see Table 1) and give the
actual threshold for excitation, resp. inhibition, for neuron ;.

In the simulation, excitation and inhibition correspond to
the increase, resp. decrease, of the number of spikes per time
frame in the spontaneous firing rate of a biological neuron.
The parameter D expresses the decay of the excitation level
E of a neuron. In a biological neuron decay corresponds to
the phenomenon that the number of spike trains per time
frame produced by a neuron will gradually return to the rate
of spontaneous firing if no excitatory input is received.

The function R,(¢) in formula (1) denotes random
fluctuations occurring in a neuron’s excitation level. It was
introduced to control for the sensitivity of the simulation to
fluctuations. Throughout all simulation experiments its value
was an amount drawn from a normal distribution with mean
0.0 and standard deviation .05 for each neuron at every time
step. The actual value of a neuron’s excitation level was
increased or decreased by this amount.

5 Simulation experiments based on ‘downward
emergence’

The exploration of the parameter space of the minimal
architecture is accomplished on the basis of simulation
experiments carried out by a Neural Network Simulator
(NNS). Each experiment consists of the described con-
ditions, ‘autonomous-growth’ and ‘extinction’, and is given
the values of the parameters of a selected point in the
parameter space, together with N sets of random seeds. The
exploration aims to find the values of parameters that
produce the effects expected in both conditions. As such the
search for the appropriate parameter values is an example
of downward emergence since it is guided by knowledge
from a higher level of description.

In each simulation experiment N networks are constructed
according to the given parameter values and the N sets of
random seeds. The latter are necessary to minimize the
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probability that the occurrence of the desired effects is due to
an idiosyncratic sample of parameter values drawn from their
specified distributions. Moreover, certain specific connection
structures in the network may have unwanted effects. In order
to prevent the occurrence of such artefacts, NNS can generate
different versions of a network by combining the same
parameter values with different sets of random seeds. With
the given parameter values NNS ‘conducts’ a simulation run
for each set of random seeds. Each run consists of one
condition for autonomous growth and one for extinction. A
simulation experiment therefore contains as many runs, and as
many conditions for autonomous growth and for extinction, as
the number of sets of random seeds that were specified.

The exploration of the parameter space took place in two
stages. In the first stage the exploration of the parameter
space was done on the basis of a set of fixed parameter values
for which one could estimate statistically that the desired
effects would occur. If these estimations were confirmed by
simulation experiments, the ranges around these values were
explored. For each experiment the number of sets of random
seeds was set to five. Although it was possible to find ranges
of parameter values that produced the desired effects, it
turned out that these were relatively small and fragmented.

In order to explore larger parts of the parameter space a
computerized search was used in the second stage. A
program (GA) based on a genetic algorithm was used
(Goldberg 1989; Coley 1999). GA selects parameter values
from prespecified ranges and determines value sets of
optimal fitness, i.e. sets of parameter values for which the
loop of cell-assemblies manifests to a sufficient degree
autonomous growth and extinction, given the appropriate
input. The ranges from which the values were chosen, were
obtained from prior estimates based on the size of the
simulated cell-assemblies and the number and strength of
their internal and external connections—obtained in the
first stage of parameter search. To determine the fitness
values GA calls NNS, which constructs the minimal
architecture described above, according to the parameter
values selected by GA from the specified ranges and the
sets of random seeds. According to the principles underly-
ing genetic algorithms this selection of parameter values
takes place according to a quasi-random process, again
determined by a random seed. In order to find regions in the
parameter space that give a sufficiently high fitness, it is
necessary to use different random seeds. In this way the
parameter space will be explored from different starting
points, and one avoids hitting only local maxima.

With the introduction of the genetic algorithm we must
now distinguish two kinds of random seeds: those necessary for
the selection of parameter values by GA and those necessary for
the construction of different versions of a network within the
simulation experiments conducted by NNS. These different
kinds of random seeds will be referred to as GA-random-seeds
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and NNS-random-seeds, respectively. In the second stage of
exploration of the parameter space we increased the number of
NNS-random-seeds per simulation experiment from five to ten.
Accordingly the effects of idiosyncratic network structures in
this stage of exploration should be decreased.

For each set of parameter values it selects, GA computes
a fitness measure. This measure reflects the extent to which
each of the ten generated versions of the architecture—one
for each of the ten sets of NNS-random seeds in a simulation
experiment—Ileads to:

a. a stable oscillation in the autonomous-growth condi-
tion, and

b. an excitation curve that approaches zero in the
extinction condition.

For a formalization of these conditions such that they
can be used by the genetic algorithm, the reader is referred
to the appendix.

By means of the approach of genetic algorithms one can
carry out a simultaneous optimization of all the parameters
of the chosen minimal architecture. As a result one obtains
sets of 12 parameter values—one for each GA-random-
seed—each of which indicates a point of maximal fitness
in the parameter space.

GA gives us the points in the parameter space that
produce the desired effects, for all ten sets of random seeds
provided. In view of the paper’s general question on the
robustness of cell-assemblies, however, we are looking—
per parameter—for a region of values that satisfies the
requirements for both the condition of autonomous-growth
and the condition of extinction. In order to find these
regions, we used a third computer program, GF, that
generates a list of symbolic codes for a prespecified range
of parameter values. Each symbolic code indicates to which
extent the conditions of autonomous-growth and extinction
produce the desired effects for each of the ten runs in a
simulation experiment per parameter value. For this
purpose the code is composed of two triples. Each triple
consists of three counters <i,, i, i3> expressing the number
of runs in which did occur respectively:

1. autonomous growth (see Fig. 2(b)).

2. an extinction. (see Fig. 2(c))

3. neither 1 nor 2 (in this case e.g. the network can be in a
chaotic state, or its excitation levels can remain at a
fixed level above zero.)

The first triple in the symbolic code is used to expresses
the extent to which the autonomous-growth condition is
satisfied, whereas the second reflects the extent to which
the extinction condition is met. For example, the triple <10,
0, 0> represents that 10 runs in a simulation experiment led
to autonomous growth, whereas none of the runs produced
an extinction or other state of the network. For the
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Fig. 3 Parameter graphs for 6 of the 12 parameters in Table 1: the graphs
(a—f) display the extent to which the architecture exhibits the required
autonomous growth and extinction behaviour for 6 sets of choices of the
parameter values (computations were done for all 12 parameters,
leading to 12 optimal sets); each set consists of (accidentally also) 12
parameter values, corresponding to the 12 GA-random-seeds (A-L)
used to initialize the different searches of the parameter space; each
parameter graph contains 12 vertical bars, one for each GA-random-
seed; the differences in shading in each bar 3 (6 = A-L) in a parameter
graph represent the changes in behaviour of the minimal architecture of
Fig. 2(a) when the values of that parameter are varied along the vertical
axis (only 6 cases of 12 are shown); the other parameters of the
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architecture keep the optimal value found in the parameter search
corresponding to the random-seed of 3; in each bar five different types
of outcome are distinguished, each indicated by a different character of
shading in the graphs (see Table 2); the parameters shown are (a) NrCA4,
number of neurons per cell-assembly, (b) mThrE, mean excitatory
threshold of a neuron, (¢) mS#EI, per neuron the mean strength of
excitatory connections internal to a cell-assembly, (d) sStrEl, per neuron
the standard deviation of strength of excitatory connections internal to a
cell-assembly, (e) mNrEfE, per neuron the mean number of excitatory
forward connections with neurons external to its cell-assembly, (f) decay
of excitation level (D) of a neuron per time step (cf. Table 1, parameters
of the chosen architecture)
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Table 2 Different shadings used in Fig. 3 to characterize the
behaviour of the minimal architecture shown in Fig. 2

dark grey: autonomous-growth and extinction
condition both achieve their maximum score
of 10: the 10 runs in both conditions all gave
the expected outcome.

horizontal shading: 9 out of the 10 runs in the
autonomous-growth  condition gave the
expected result, all 10 runs in the extinction
condition were successful.

vertical shading: 9 out of 10 runs in the
extinction condition gave the expected result,
1 10 runs in the autonomous-growth
condition were successful.

8
=

light grey: for both the autonomous-growth
and the extinction condition 9 of the 10 runs
gave the expected outcome.

white: for the autonomous-growth or the
extinction condition (or both) less than 9 of
the 10 runs gave the expected outcome.

oscillation condition in the experiment this example triple is
the desired outcome, whereas for the extinction condition it
is just the opposite. Our discussion of the results of the
simulation experiments will be based on these symbolic
codes. Fitness values generated by GA, do not reveal which
of the two conditions in a simulation experiment are met.

GF accomplishes the generation of symbolic codes by
calling NNS with the appropriate parameter values and ten
sets of random seeds. NNS then carries out the simulation
experiments. GF can thus be used to characterize the
behaviour of the architecture in simulation experiments
based on parameter values which vary around the values of
maximal fitness found by GA. Within each set of 12
parameter values found on the basis of a GA-random-seed,
either individual or pairs of parameters can be selected for
processing by GF. In both cases the not-selected parameters
keep their optimal value for that GA-random-seed.

6 Results of the simulation experiments

Table 1 lists the 12 parameters of the architecture that were
optimized and the ranges from which GA selected the
values in the exploration of the parameter space. In the
present study 12 different GA-random-seeds were used to
start separate searches of the parameter space. In these
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explorations the criterion for sufficient fitness was set to
90% of the maximum fitness. For each of the GA-random-
seeds the genetic algorithm found a set of 12 parameter
values that produce a fitness above the criterion level. For
all the parameter values in prespecified ranges GF
computed the symbolic codes reflecting the outcome of
the simulation experiments. Given the relatively large
number of parameters and of GA-random seeds involved,
our discussion will be limited to the ranges found for 6 of the
12 parameters in each of the 12 explorations initialized by a
GA-random-seed. These six parameters in particular are
relevant to the conclusions on the robustness of cell-
assemblies. In Fig. 3 each graph (a—f) corresponds to one
of these six parameters. In each of these parameter graphs the
successive vertical bars correspond to the 12 different GA-
random-seeds (A—L) used in the optimization process. The
differently shaded areas within a bar indicate the extent to
which the outcomes of the simulation experiments approach
the desired behaviour, based on the triples discussed in the
previous section. Each bar in a parameter graph in Fig. 3
corresponds to a GA-random-seed (indicated by the capitals
A-L) used in a parameter search. A bar in a parameter graph
reflects the changes in behaviour of the architecture when the
values of that parameter are varied while the other
parameters keep their optimal value, found in the parameter
search with the GA-random seed corresponding to that bar.

Let us now consider what the obtained results of the
simulation experiments mean for the robustness of cell-
assemblies. We will first focus on the five parameters
specifying a mean: the number of neurons per cell-assembly
(NrCA), the mean excitatory threshold (mThrE), the mean
strength of excitatory connections internal to a cell-assembly
(mStrEI), the mean number of excitatory forward connec-
tions external to the cell-assembly (mNrEfE), and the decay
of the excitation level of a neuron (D), displayed in Fig. 3(a),
(b), (c), (e), and (f) respectively. Of primary interest are
parameter ranges in which the desired behaviour did occur,
i.e. in which all 10 oscillation conditions in a simulation
experiment indeed produced an oscillation, and all 10
extinction conditions led to an extinction. Such regions, the
dark grey areas in the graphs of Fig. 3, will be qualified as
indicating ideal behaviour.

6.1 Parameters specifying a mean

Proliferation of subspaces The graphs of these parameters
display rather large differences between the ranges produced
by the different GA-random-seeds. When we look in the graph
for the parameter NrCA (Fig. 3(a)), we see that the ranges of
the GA-random-seeds J, K, and L overlap to a large extent,
especially if we allow one of the simulation runs to fail on
the autonomous-growth or extinction condition (the horizon-
tally, resp. vertically, shaded areas). The same holds for these
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three random seeds if the parameters mThrE, mStrEl, and
mNrEfE are considered (Fig. 3(b),(c), and (e); the value of
the decay parameter was set to a fixed value for all parameter
searches). The other GA-random-seeds, however, do not
occupy the same regions in the parameter space. The ranges
of GA-random-seeds A and B, for example, do overlap for
parameters NrCA and mNrEfE (Fig. 3(b)) but are widely
dispersed for parameters mThrE and mStrEI (Fig. 3(b) and
(c), respectively). In addition, the ranges of GA-random-
seeds B—I overlap for the mean excitatory threshold (mThrE
in Fig. 3(b)) but for the other parameters in Fig. 3
representing a mean, these GA-random-seeds have quite
different ranges in the parameter space. These findings are
not compatible with the hypothesis that the robustness of
cognitive brain functioning can be explained on the basis of
clearly distinguishable and relatively large subspaces of the
parameter space, in which the architecture produces the
desired behaviour. There seem to exist several, relatively
small subspaces that are appropriate.

Narrow ranges Another issue concerns the relative nar-
rowness of most of the ranges of ideal behaviour displayed
in Fig. 3. For the used GA-random-seeds the width of the
ranges of mThrE, mStrEI, and D is at most 10% of the
average of their lower and upper bound (Fig. 3(b),(c), and
(f)). Besides their narrowness, these ranges also seem to be
rather steep. This can be deduced from the horizontally and
vertically shaded areas indicating failures in the autono-
mous growth and extinction conditions. For mThrE, the
excitatory threshold (Fig. 3(b)), and D, the decay
(Fig. 3(f)), the horizontally shaded areas above the ranges
of ideal behaviour are all referring to a failure in the
autonomous-growth condition. This is due to the relatively
high value of mThrE, resp. D, in these areas, which makes
it hard for autonomous growth to develop. Similarly, the
vertically shaded areas below the ranges of ideal behaviour
in the graphs of mThrE and D all indicate a failure in the
extinction condition. This stems from a lower excitatory
threshold, resp. decay, in these areas which makes it
difficult for the excitation in the network to extinguish.

Just the opposite pattern can be observed for the mean
strength of excitatory connections external to the cell-
assembly (mStrEI). For this parameter the vertically shaded
areas above the ranges of ideal behaviour all concern a
failure in the extinction condition. The relatively high
connection strengths in these ranges are favourable for the
extinction of excitation in the network. Similarly, the
horizontally shaded areas below the ranges of ideal
behaviour in mStrEl all represent failures in the autono-
mous-growth condition. Relatively weak connections do
not promote autonomous growth of excitation in the
network.

The horizontally or vertically shaded areas all represent a
failure for one of the ten conditions of autonomous-growth or
extinction in each simulation experiment. However, their
width is again very small, in most cases only a single step size
in the total range selected for the parameters. The architecture
does therefore not display a graceful degradation. The narrow
and steep nature of the ranges of ideal behaviour can not serve
as a basis for robust cognitive brain functioning.

Fragmentation per parameter A third issue to be observed
in Fig. 3 is the fragmentation of the value space of
parameters. This phenomenon occurs for the number of
neurons per cell-assembly (NrCA, Fig. 3(a)) and the mean
number of excitatory, forward connections external to the
cell-assembly (mNrEfE, Fig. 3(e)). In the corresponding
parameter graphs we see ranges of ideal behaviour mixed
with ranges displaying one or more failures in the
autonomous growth or in the extinction condition (the
shaded, light grey, or white areas). These ranges of
suboptimal behaviour do not exhibit a systematic pattern
as was the case for the parameters mThrE, mStrEl, and D.
Like the proliferation of subspaces and the narrowness of
the ranges of ideal behaviour, this fragmentation of the
value space of a parameter does not support the hypothesis
that the robustness of cell-assemblies is based on large
ranges of parameter values, producing stable behaviour.

6.2 Parameters specifying a standard deviation

A different picture comes up when we focus on parameters for
standard deviations. In contrast to the observed narrow and
fragmented ranges of parameters specifying a mean is the
finding that parameters for standard deviations do have large
ranges. The graph of the standard deviation of the strength of
excitatory connections internal to a cell-assembly (sStrEl in
Fig. 3(d)) provides a good example here. Apparently a
relatively large variation in the actual parameter values of
individual neurons is possible, as long as the mean of their
distribution lies within a relatively narrow margin.

6.3 Compensatory relationships between parameters

The robustness of the chosen architecture can also depend
on interactions between parameters if these have compen-
satory relationships. For two parameters that have such a
relationship, GF can determine the area in the parameter
space that produces the required behaviour, for a single
GA-random-seed. If the variation of the values of both
parameters in such a pair would lead to robust behaviour,
one would expect to see areas of ideal behaviour that are
relatively large for certain combinations of parameter
values. Evidently such a compensatory relationship holds
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among the parameters for decay of excitation in a single
neuron (D) and the mean excitatory threshold in a neuron
(mThrE), cf. Fig. 4(a). In addition it holds between the
decay parameter and the average strength per neuron of the
excitatory connections internal to a cell-assembly (mStrEI),
cf. Fig. 4(b). A decrease in the decay parameter D leads to a
quicker build-up of excitation in the network, which can be
compensated for by an increase in mThrE or a decrease in
mStrEL. Mutatis mutandis the same holds when the values
change in the opposite direction.

An inspection of the effects of pairs of compensatory
parameters on the behaviour of the architecture, did not
reveal the existence of large ranges of parameter values
necessary for robust cognition. It can be observed in
Fig. 4(a) and (b) that the width of the area of ideal
behaviour remains fairly narrow under the variation of both
parameters. Remarkably, the shaded areas of suboptimal
behaviour—in which either a single of the ten autonomous-
growth, resp. extinction, conditions fails—are nearly
absent. When the effects of the same pairs of parameters
are analyzed for different GA-random-seeds similar patterns
of ideal behaviour emerge. These findings do not support
the idea that the robustness of cognitive brain functioning
rests on large ranges of parameter values.

6.4 A stabilizing mechanism

The results plotted in Figs. 3 and 4 raise the question
whether the introduction of stabilizing mechanisms is required
to make the network more robust. One candidate mechanism
is a so-called arousal control mechanism (Dalenoort 1985). It
is also used in many other programs for the simulation of
neural networks. Such a mechanism controls the level of
total excitation in the network. If this level exceeds a certain
criterion value C, the excitation level of each neuron is
lowered to an extent that produces a decrease of the total
excitation level of the network to reset value S. With the
introduction of this mechanism the excitation level of neuron
i will be expressed as E'(?), cf. formulas (4) and (5), with

Fig. 4 Areas indicating for two
pairs of parameters the extent to (a)

0<E'(f)<1 and in which E(¥) is defined in formula (1).

v [ Ei(t) — (Exa(t) — S) if Ene(t) > C
E[(t) - { E,‘(Z‘) 1f E]\I]\;(l‘) S C ' N (4)

> Ei(t)

Ene(t) = % (5)

The two parameters C and § in formulas (4) determining
the criterion and the reset excitation level, were optimized by
means of the genetic algorithm GA. The ranges from which
GA could select the values to be optimized, were chosen
such that activation of the arousal control mechanism would
be likely. Accordingly the ranges used by GA for the
parameter C and S were 0.20-0.55 with step size 0.05, and
0.05-0.40 with step size 0.05, respectively. For the criterion
parameter C the values producing ideal behaviour were
distributed across the entire prespecified range. For param-
eter S, giving the level for the reset excitation, these values
turned out to be 0.35 or higher within the prespecified
range. In Fig. 5 the ranges of ideal behaviour are shown
for the simulations, where the arousal control mechanism
of formulas (4) and (5) was used. From Fig. 5 it can be
concluded that the suppression of extremely high levels
of activation in the network (as defined by formulas (4) and
(5)) does not enlarge the parameter ranges necessary for
robust behaviour of the architecture. However, there do exist
other possibilities for the functioning of an arousal control
mechanism, which will be examined in future research.

7 Discussion

We have explored the parameter space of a minimal model of
cognitive brain functioning. The results of the simulation
experiments indicate that the desired behaviour of the model
occurs in several subspaces of the parameter space. In every
subspace, however, two typical phenomena can be observed.
On the one hand the behaviour strongly depends on the

(b)
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Fig. 5 Ranges of parameter
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selection of specific parameter values from a single narrow
range, like the mean excitatory threshold, the mean strength of
excitatory connections internal to a cell-assembly, and the
decay. On the other hand, value ranges of parameters can be
quite fragmented. For a single parameter there exist value
ranges that produce adequate behaviour, arbitrarily mixed
with ranges exhibiting unexpected effects. These findings
indicate that the key to the solution of the robustness question
is not to be found in the parameter space of the brain. In the
following we will pursue some alternative answers.

7.1 The robustness/flexibility dilemma

Suppose that we would have found the large parameter
ranges necessary for the robust behaviour of the minimal
architecture. This would then raise the question of how the
architecture could adapt itself to new changes in its
environment or could develop new cognitive structures,
e.g. corresponding to creative thought. A necessary condi-
tion for these things to happen is that the brain is capable of
producing a sufficient variation of excitation patterns. The
observed deviations in the autonomous-growth and extinc-
tion conditions may be part of this variation.

7.2 Stabilizing mechanisms

Even if we take into account that the unexpected behaviours
observed in simulation experiments may have a function, the

J KL ABCDEFGHI JKL

role of stabilizing mechanisms—other than the discussed
arousal control system—is not excluded. We will review three
candidate mechanisms, of which the first two are discussed in
Turrigiano (1999) whereas the last one is a hypothesis of the
authors. The three mechanisms have to be distinguished from
learning mechanisms because they do not depend on any
external events playing a role in learning.

Synaptic scaling is the regulation by cortical and
hippocampal neurons of their own firing rates by scaling
their synaptic inputs up or down as a function of activity.
This mechanism operates relatively slowly: requiring hours
or days of altered activity to modify synaptic strengths. As
a solution to the robustness problem formulated this paper,
it may therefore be insufficient. A mechanism that keeps
the architecture within its bounds should also be able of an
instantaneous reaction since sudden changes in parameter
values should not disrupt cognitive functioning.

Synaptic homeostasis refers to the capability of a neuron
to maintain relative constant firing properties although it is
subject to many changes: growth, changes in shape, loss
and gain of synapses, and the constant turnover of the ion-
channels that determine its electrical-firing properties. The
underlying mechanism probably makes use of the intracellular
concentration of certain ions. A change in this concentration
triggers a compensatory reaction that modifies ionic conduc-
tance such that the level of neuronal activity remains constant.
Accordingly, distortions—Ilike the failures occurring in the
described simulation experiments—are immediately repaired.
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However, the effects of the mechanism of synaptic homeostasis
have only been found in neuro-muscular synapses.

Synchrony of firing implies that the spikes produced by
two or more neurons are in phase. This phenomenon is
relevant to the issue of robustness because phase synchrony
may be a condition for the propagation of neural excitation:
two neurons will only activate a third one if their spikes are
in phase. Such a propagation may become robust if it takes
the form of a loop, in which the spikes are interlocking. This
synchronous firing of neurons could then trigger a biochem-
ical process that compensates for changes in parameters of
neural functioning. If robustness is based on synchronous
firing, one would expect specific spike patterns on the
presentation of a stimulus, although not every stimulus needs
to have a unique pattern (see the discussion on the identity of
a memory trace in the second section of this paper). In
addition, repeated presentations of the same stimulus should
reproduce the same spike patterns. Data compatible with this
hypothesis have been reported by Fellous et al. (2004).
Accordingly, synchronization could also play a role in the
robustness of permanent memory structures next to its role
in the temporal coupling of neuronal activity (‘binding’), a
hypothesis fundamental to the already cited work on synfire
chains and to many neurophysiological studies such as
Singer et al. (1994), Roelfsema et al. (1997), and Freiwald
et al. (2001).

The list of stabilizing mechanisms presented here, is not
meant to be exhaustive. Moreover, the three mechanisms on
the list are not mutually exclusive and each of them requires
further study. Their discussion is the offspring from the
exploration of the parameter space of a minimal architecture,
by means of which we have tried to lay down some important
questions on cognitive brain functioning.
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Appendix
Formalization of Fitness

The genetic algorithm GA computes a fitness measure,
which reflects the extent to which each of ten generated
versions of the network architecture in Fig. 2 leads to:

a. astable oscillation in the autonomous-growth condition,
and

b. an excitation curve that approaches zero in the
extinction condition.
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Each of the ten versions of the network is constructed on
the basis of a separate NNS-random seed in order to control
for effects due to an idiosyncratic connectivity.

The degree to which the mentioned conditions are
satisfied, is expressed by the fitness measure F; defined
for cell-assembly i in formulas (A1), (A2), (A3), (A4), (AS)
and (A6) of this appendix; cell-assembly 7 being the one
that is given the external input. These formulas make use of
three time points that apply to the condition of autonomous
growth as well as to the extinction condition in each
simulation experiment (cf. Fig. 2 b and c¢):

—  t1: beginning of the start-up condition of the simulation
experiment, the neurons only produce a noise as
excitation. Noise is characterized by a normal distribution
with a mean of 0, and standard deviation of .05, i.e. 5% of
the maximal excitation, as specified by the function R{(?)
in formula (1).

— 1: end of the start-up condition and the beginning of
the condition of autonomous growth, resp. extinction,
for each simulation experiment.

— t3: end of the simulation experiment.

The fitness measure F;, cf. formulas (A1), (A2), (A3),
(A4), (A5) and (A6), is the sum of the fitness values for the
conditions start-up, autonomous growth, and extinction,
provided that the parameters under which the simulation
experiment is run are such that the mean excitatory
threshold is lower then, or equal to the inhibitory one. If
this is not the case the sum is multiplied by 0.1.
Accordingly, these implausible combinations of parameter
values will produce a fitness value that rules out their
selection in a set of optimal parameter values.

o Start; + Aut; + Ext; if mThrE < mThrl
"7 0.1 x (Start; + Aut; + Ext;) if mThrE > mThrl

(A1)
Start, = 1 — F,(t) 4+ F, (1)) (A2)
Aut, — {AYA(;ori if F,(t2) <ex F.(t1) (A3)

0if F;() > ¢ x F;(t1)

1 — G(t) if Fi(t) < ¢ x F.(t)
Ext: = i i ) i A4
X { 0if Fi(t) > ¢ X F;(t1) (A4)
G (1) = max NRS4[ LpExc(k, 1, CA))] (A5)
NrRdSd

> AveExc(k,t,CA;)

Fi(t) == (A6)

NrRdSd

Formulas (A1), (A2), (A3), (A4), (AS5) and (A6) are based
on aggregated variables. They have been obtained from the
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excitation levels produced in the simulation of 10 different
versions of the architecture (NRdSd = 10), one for each of
the ten NNS-random-seeds.

The constant ¢ is used to evaluate whether the start-up
condition was terminated successfully. A successful termi-
nation means that at the end of the start-up condition the
excitation level of a cell-assembly has not increased above
the noise level. This restriction was formalized by means of
the auxiliary fitness measure F) (¢), which determines, for the
ten versions of the architecture, the excitation level in cell-
assembly i at time ¢ averaged over these different versions.
The constant ¢ specifies the degree to which F,(t,)may
exceed F,(t;) in order for Aut;, resp. Ext; to be larger than
zero. In the current study ¢ was set to 1.1.

In formula (A3) the variable AvACor; expresses the
autocorrelation of the excitation curve of cell-assembly i
averaged over the ten NNS-random-seeds in the autono-
mous-growth condition of the simulation experiment
(where an oscillation in the excitation curve is expected).

In formula (AS5) the function LpExc(k, ¢, CA;) deter-
mines the height of the last peak in the excitation level of
cell-assembly i, constructed on the basis of random seed £,
in the 50 time steps before time 7. Because of the random
fluctuation in the excitation level of the neurons of a cell-
assembly (cf. the function R,(¢) in formula (1)) such a peak
will always exist. From the simulation runs with different
versions of the network NRdASd measurements of this
excitation value are obtained. The maximal value of them
gives G'(f). Accordingly, the function produces a decrease
in fitness when an oscillation did occur in the extinction
condition or if the excitation level did not decrease to zero.

In formula (A6) the function AveExc(k, ¢, CA;) determines
the average excitation of the neurons in cell-assembly i,
constructed on the basis of random seed & at time 7.

The programs used in the simulation experiments (the
neural network simulator NNS, the genetic algorithm GA,
and the generator of fitness values GF) were written in
PASCAL (Delphi) and when linked to the appropriate
modules for input and output, run on common operating
systems (WINDOWS, Unix, Linux). Further specifications
of these programs, the simulated networks, and their
parameters are available upon request.
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