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Abstract

Background: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin.
The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is
associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-
dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study
of genomic control mechanisms. Transcription factors (TFs) have been suggested to play a role in nucleosome positioning in
vivo.

Principal Findings: Here, the minimum redundancy maximum relevance (mRMR) feature selection algorithm, the nearest
neighbor algorithm (NNA), and the incremental feature selection (IFS) method were used to identify the most important TFs
that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs) in
53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were
extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test.

Conclusions: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the
sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome
positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-
inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results
of this study.
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Introduction

Of eukaryotic genomic DNA, 75–90% is wrapped around

regularly spaced protein complexes called nucleosomes [1,2,3]

(Figure 1), the fundamental building blocks of chromosomes.

Nucleosomal DNA, which is 165 bp long in Saccharomyces cerevisiae

[1,2], can be divided into core and linker DNA. Core DNA, with

an invariable length of 147 bp, is sharply bent and tightly wrapped

around a disc-shaped histone protein octamer with 1.65 turns of a

left-handed superhelix [4,5,6]. The histone octamer is comprised

of two copies of each of the four core histone proteins: H2A, H2B,

H3, and H4 [3,5,7,8]. The linker histone, H1, is associated with

linker DNA and with the nucleosome core particle itself [7,8]. The

length of linker DNA varies between species and cell types, as well

as during differentiation and gene activation [7,8,9]. It is

approximately 18 bp in Saccharomyces cerevisiae [7,8,9] and approx-

imately 38 bp in humans [10].

Packaging DNA into nucleosomes differentially affects sequence

accessibility compared to linear naked DNA in vivo [1,11,12,13],

which implies that nucleosomes have a fundamental influence on

important DNA-dependent processes in eukaryotic cells [5,14],

including DNA replication [15,16], gene transcription [3,6,17,18],

DNA damage and repair [11], and DNA recombination. The

nucleosome is critical for gene regulation [1,14,19,20,21,22]. It not

only represses gene expression [23,24] but also facilitates gene

transcription [25]. Therefore, a complete understanding of

the mechanisms of genomic control in eukaryotes will require

a detailed description of the determinants of nucleosome

positioning.

Nucleosome positioning refers to the position that the DNA

helix adopts with respect to the histone core [2]. The majority of

nucleosomes are regularly positioned along DNA sequences

[3,5,6,11,13,15,26]. The position of the nucleosomes may be

determined by DNA sequences [1,5,27,28,29], transcription

factors (TFs) [28,29], chromatin remodelers [30,31], and several

other factors [3,5,6,32,33,34]. However, the relative importance of

these factors has been difficult to estimate in vivo [28,35,36], and

the rules that underlie these positioning effects are not well

understood [9,37]. Although some results indicate that the

intrinsic DNA sequence plays a dominant role in determining
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the position of nucleosomes in vivo [29,38,39], several studies have

provided evidence of TF-dependent nucleosome positioning

[13,28,37,40,41].

A number of studies have been performed in an attempt to

determine nucleosome positioning signals at the level of TFs or

transcription factor binding sites (TFBSs), which are bound by TFs

to enable gene expression (Figure 2). Studies have shown the

association of TFs with nucleosome-depleted promoters [40], the

difference in the predicted nucleosome occupancy between non-

functional and functional TFBSs [1], and the relationships

between the nucleosome occupancy of promoters and TFBSs

[28]. However, the exact influence of TFs on nucleosomal

positioning is not yet fully understood. Further exploration of

the role of TF-based nucleosome positioning on a genome-wide

scale is warranted [42]. The ability to make great advances in this

field has been limited because of the lack of high-resolution

experimental data on a large scale. The identification of

nucleosome positions throughout the genome of Saccharomyces

cerevisiae [43] has provided an unprecedented opportunity to

investigate nucleosome positioning signals based on TFs or TFBSs.

The present study employed the minimum redundancy maximum

relevance (mRMR) feature selection algorithm to identify the most

important TFs that either promote or inhibit nucleosome

positioning.

Results

Minimum redundancy maximum relevance (mRMR)
results

All DNA sequences investigated in this study were divided into

two groups: nucleosome core DNA and nucleosome linker DNA.

Both groups were represented by a feature vector with 35

dimensions; each dimension shows the number of sequences from

a particular TFBS family that existed in the group. To estimate the

importance of each TFBS family on nucleosome position, the

feature evaluation algorithm mRMR was used to rank TFBS

families according to their relevance to the sample types and

redundancy to other features. The details of this method are

described in the Materials and Methods section. The mRMR

program used in our study was downloaded from http://penglab.

janelia.org/proj/mRMR/. Please refer to the first three columns

of Table S1 for the output of the mRMR analysis and the last two

columns of Table S1 for the number of TF motifs from each TFBS

family in the nucleosome and linker DNA sequences.

Incremental feature selection (IFS) results
After ranking the numbers of different sequences from the

TFBS families that exist in the group using the mRMR method,

the IFS method was used to determine the numbers and types of

features that play the most important roles in nucleosome

positioning and the features that could improve the performance

of our prediction using a nearest neighbor algorithm (NNA). This

method is described in detail in the Materials and Methods

section.

Because each sample was originally represented by a 35-

dimensional feature vector based on the mRMR ordered feature

list, 35 candidate feature sets were built. A total of 35 NNA

classifiers based on these feature sets were constructed and tested

with jackknife cross-validation. Figure 3 shows the output of this

IFS procedure (for the exact values, see Table S2), called the IFS

curve. The highest overall rate of accurate prediction obtained

using the IFS procedure was 87.44% with nine features (Table S3),

showing that the predictor based on these nine matrix families of

fungal TFBSs performs well. In addition, these nine TFBS families

could be seen as the most important TFBSs in nucleosome

formation or inhibition.

Results of feature analysis using statistical methods
We assigned the nine features as nucleosome-forming or

nucleosome-inhibiting features (refer to the final column in Table

S3) by calculating the point biserial correlation coefficients, rpb, as

described in the Materials and Methods section. Table 1 shows the

exact values of the correlation coefficients and the significance of

the correlation.

Discussion

Of the top nine features selected by IFS, fewer features are

related to nucleosome formation (two features) than to nucleosome

exclusion (seven features). The binding sites of most TFs are short

(5–20 bp) [44] degenerate sequences that occur frequently in the

genome by chance [41], which causes many sequences with

similarity to known TFBSs that are not functional to occur in the

genome [41]. Our results suggest that TFs are more likely to bind

to linker DNA sequences instead of the sequences in the

nucleosomes (Figure 4). We speculate that the nucleosomal

sequences are not easily accessible for TFs because these sequences

are the most compact. The genome facilitates rapid nucleosomal

reassembly to a much greater extent than nucleosomal depletion

[20], which may partly explain why nucleosomes control the

binding activity of TFs by providing accessible linker DNA

sequences because strong evidence exists suggesting that nucleo-

somes regulate the accessibility of potential TFBSs [1,12,13].

Thus, nucleosome positioning is a global determinant of TF access

[13].

Figure 2. A schematic diagram of transcription factors and
transcription factor binding sites. This figure shows the binding of
transcription factors (TFs) to transcription factor binding sites (TFBS).
TFs bind to specific sites (TFBSs) to enable gene expression.
doi:10.1371/journal.pone.0012495.g002

Figure 1. A schematic diagram of a nucleosome. This figure
shows the components of nucleosomes. The nucleosome consists of a
histone octamer that is wrapped by core DNA and a linker histone H1,
which associates with the linker DNA. The histone octamer is composed
of two sets of four core histone proteins: H2A, H2B, H3, and H4.
doi:10.1371/journal.pone.0012495.g001

Nucleosome Position Prediction
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Surprisingly, some important TFs, including Abf1 and Reb1,

whose binding sites have been identified among the sites that are

the least occupied by nucleosomes [13], were not identified in our

results. Similarly, Rap1 and Hsf1, which tend to associate with

nucleosome-depleted promoters [40], were not identified by our

search methods. We speculate that all of these TFs have important

roles in nucleosome positioning, but they may not play a

significant role in discriminating between nucleosomal formation

and inhibition. Our methods place emphasis on the identification

of TFs that lead to the best distinction of the two groups of

sequences rather than on any individual TF that has a high

correlation with nucleosome formation or inhibition. The fact that

TF families that are highly represented in the genome have low

correlation coefficients (2nd F$YGCR) (Table 1) confirms this.

Up to 81% of the Saccharomyces cerevisiae genomic DNA is

organized into nucleosomes [3,28], and approximately 70% of the

nucleosomes in yeast are well positioned [13,45,46]. The percent

of nucleosome sequences in our data was 64.6%, which suggests

that between 5.4% and 16.4% of the genome was improperly

designated as linker sequences rather than nucleosome sequences

by the methods we used. Additionally, our linker regions range

from 6 bp to 2,851 bp. The long length of some linker regions

suggests that we treated some regions as linker DNA that are

actually regions where nucleosomes are poorly defined for either

Figure 3. The IFS curve and the vertex. This figure shows the results of the IFS analysis. The highest accuracy of prediction obtained with the IFS
procedure was 87.44% using 9 features.
doi:10.1371/journal.pone.0012495.g003

Table 1. The features related to nucleosome-forming or inhibiting sequences by ranking point biserial correlation coefficients(cpb).

Nucleosome forming(+) Nucleosome inhibiting(2)

Order Feature cpb p-value Order Feature cpb p-value

9 F$MREF 0.0054 0.129 3 F$YNIT 20.1268 0

8 F$CYTO 0.0033 0.3632 1 F$GATA 20.0858 0

4 F$MMAT 20.0799 0

5 F$YMAT 20.0509 0

6 F$YCAT 20.019 0

7 F$YGCN 20.0176 0

2 F$YGCR 20.0078 0.0289

doi:10.1371/journal.pone.0012495.t001

Nucleosome Position Prediction
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technical or biological reasons (e.g., repeat regions). Therefore, our

results must be affected by these imprecise estimates, and more

high-resolution data will improve our results.

In the present study, we used predicted transcription factor

binding motifs as an important input feature; however, the binding

of TFs to their sequence motifs is a dynamic process that is

regulated by specific conditions. The dynamics of binding are

poorly understood at present. In fact, only a subset of predicted

binding motifs is actually occupied by TFs, and this fact reduced

the accuracy of our analysis. The higher the fraction of motifs

bound, the more accurate our analysis would be. The size of the

TFs themselves and the complexes that interact with them might

also influence nucleosome positioning.

In this study, we approached the NNA using a new feature

selection algorithm called mRMR that can identify optimal

features with minimum redundancy. mRMR is quite different

from existing methods that either include or exclude feature

selection [47,48,49,50,51,52,53,54,55] but do not reach minimum

redundancy [4,56]. This method also allowed us to analyze the

biological implications of the identified features, which is an

improvement on methods that do not provide the potential to

analyze and interpret the biological meaning of the results

produced [47,48,49,50].

Materials and Methods

Data preparation
Sequences corresponding to the H3/H4-containing nucleosomes

were previously mapped by Mavrich et al. [43]. Saccharomyces

cerevisiae genomic sequences and data on S. cerevisiae genomic

nucleosomal distributions were all downloaded from the laboratory

website of Dr. B. Franklin Pugh (http://atlas.bx.psu.edu/). A total

of 53,021 consensus nucleosome core particle sites were identified

by at least three sequencing reads of .100 bp each (for details, see

Table S4 and Table S5). The regions between nucleosomal core

particles were defined as linker locations, and 50,299 linker DNA

sequences of at least 6 bp in length were identified (for details, see

Table S6 and Table S7). The 147-bp nucleosome formation-related

core DNA sequences were assigned as positive samples, while

nucleosome inhibition-related linker DNA sequences between 6 bp

and 2,581 bp were assigned as negative samples. An online version

of MatInspector [57] on the Genomatix website (http://www.

genomatix.de/products/index.html) was used to identify TFBSs

from nucleotide sequences in both positive and negative samples. All

options were retained at default values, except that the Fungi group

was selected as the Matrix group. Thirty-five matrix families of

fungal TFBSs were used to carry out the prediction. We counted the

number of times a given family appeared in each sequence using the

MatInspector results. Each sequence was then converted into a fixed

length (exactly 35) vector of family frequencies normalized by the

sequence length and labeled 1 and 2 for core and linker DNA

sequences, respectively. Finally, we constructed a matrix (with

sequences as row entries and with TFBS as column entries) with the

normalized frequencies of families as its element (for details, see

Table S8) for mRMR feature selection.

Nearest neighbor algorithm (NNA)
In this study, our aim was to predict whether a given sequence

belongs to nucleosomal core sequences or not. We achieved this aim

by constructing a classifier based on a nearest neighbor algorithm

(NNA), a widely used machine learning approach [58,59]. The

NNA makes its decision by calculating similarities between the test

sample and the training samples. As described above, each sample

was represented by a vector. In our study, the similarity between two

vectors pm and pn was defined as follows [60]:

D(pm,pn)~1{
pm
:pn

DDpmDD:DDpnDD

where pm
:pn is the inner product of pm and pn, and DDpDD represents

the module of vector p. As D(pm,pn) gets smaller, pm becomes more

similar to pn. With the NNA, the given vector for classification, pt, is

classified into the same group as its nearest neighbor, pN , in the

training set (i.e., the vector with the smallest distance, D(pt,pN )). If

the nearest neighbor of a given feature vector in the training set is

positive (nucleosome formation/inhibition related), the sample will

be assigned a positive value. Otherwise, it will be assigned a negative

value.

Jackknife cross-validation method
After the nucleosome position predictor is constructed, its

reliability has to be estimated. As is well known, the independent

dataset test, the sub-sampling test (K-fold cross-validation test),

and the jackknife cross-validation test [61,62] are the three most

commonly used methods for cross-validation to examine statistical

prediction quality. Among these three tests, however, the jackknife

test is deemed the most effective and objective method (see Chou

and Zhang [63] for a comprehensive discussion about this, and

Mardia et al. [64] for a detailed explanation of the mathematical

principle).

In the jackknife cross-validation method, each sample is singled

out in turn as the test sample, and the rest of the data are treated as

the training samples. Thus, each sample is tested exactly once. To

evaluate the performance of the predictor, the following accuracy

rates are used:

accurate rate @ positive dataset~
the number of correctly predicted positive samples

the number of positive samples

accurate rate @ negative dataset~
the number of correctly predicted negative samples

the number of negative samples

overall accurate rate~
the number of correctly predicted samples

the number of all samples

8>>>>>>><
>>>>>>>:

Minimum redundancy maximum relevance (mRMR)
method

In the original nucleosome position predictor that was

constructed as described above, all 35 families of TFBSs were

Figure 4. Nucleosome positioning is a global determinant of
transcription factor access. Nucleosome positioning is a global
determinant of transcription factor (TF) access. TFs are more likely to
bind transcription factor binding sites (TFBS) in linker DNA sequences
instead of their counterparts in nucleosome DNA sequences.
doi:10.1371/journal.pone.0012495.g004

Nucleosome Position Prediction
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considered; however, it is possible that only certain members of

these TFBS families play important roles in nucleosome

positioning, and redundant features would negatively influence

the performance of the predictor. To optimize our predictor and

to analyze the relationships between different families of TFBSs

and nucleosome positions, we took additional steps.

All samples were coded to a vector with 35 dimensions, with each

dimension representing one family of TFBS motifs. As a result, it

was possible to evaluate the importance of each TFBS family in the

formation or inhibition of nucleosome positioning with feature

evaluation and selection approaches that have been widely used in

different fields of computational biology. There are many feature

evaluation approaches available, and the minimum redundancy

maximum relevance (mRMR) algorithm [65], which can find the

optimal features with minimum redundancy, was used in this study.

The mRMR algorithm was originally developed by Peng et al.

[65]. It ranks each feature representing a different sample

according to both its relevance to the target and to the redundancy

between the features. In this study, each sample was represented

by the numbers of different TFBS families present, and these

frequencies correspond to the features, while the targets

correspond to the types of the sample (positive for nucleosomal

core DNAs, and negative for linker DNAs). Both the relevance and

redundancy are defined by mutual information (MI), which is

denoted by I , and the mRMR function is constructed as follows:

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj,fi)

2
4

3
5(j~1,2,:::,n)

where Vs and Vt are the previously defined feature set and the to-

be-selected feature set, respectively, and m and n are the sizes of

these two feature sets, respectively. The earlier a feature is selected,

the better it is assumed to be.

In addition, in mRMR, a parameter, t, is introduced to deal

with continuous variables. Given that mean refers to the mean

value of one feature in all samples, and std is the standard

deviation, the features of each sample are classified into one of the

three groups according to the boundaries mean+(t:std). In our

study, t was set as 1. Finally, we were able to obtain an ordered list

in the form of an mRMR table, which shows all 35 families of

TFBS motifs. TFBS families with smaller ranks are predicted to be

more important for the formation or inhibition of nucleosomes.

The mRMR program used in this study was obtained from the

following website: http://penglab.janelia.org/proj/mRMR/. One

of the mRMR outputs is a table called the mRMR list. The

mRMR program also outputs another table called the MaxRel list,

which contains the relevance of all features with the class variable.

Only the mRMR list file is needed for the feature selection.

Incremental feature selection (IFS)
After mRMR, we could determine which TFBS families were

playing more important roles than others; however, we did not

know how many and which features should be selected. The

incremental feature selection (IFS) method was used to solve the

problem.

By including one feature at a time from the mRMR feature list,

N feature sets were produced, with the i-th feature set being

Si~ff0,f1,:::,fig(0ƒiƒN{1)

For each i between 0 and N21, an NNA predictor was

constructed with the feature set, Si. Jackknife cross-validation

was then used to test the performance of each predictor. Finally,

we obtained an IFS curve with index i as its x-axis and the overall

accuracy as its y-axis. The feature set Soptimal~ff0,f1,:::,fhg was

regarded as the optimal feature set if a point in an IFS curve with h

as its x-axis has the highest overall prediction accuracy. The TFBS

families represented by the selected features were then regarded as

the most important, relevant, and non-redundant features of all

the 35 families. By using only these specified TFBSs, it was possible

to predict the influence of TFs and TFBSs on nucleosome

positioning more accurately. These TFBS families were also used

in the following additional analysis.

Investigation of relationships between TFBSs and
nucleosome formation

A direct way to determine whether a family of TFBSs is related

to the formation of nucleosomes is to apply statistical testing.

Statistical testing also allows us to discriminate the nucleosome-

forming TFBS families from the nucleosome-inhibiting ones. If a

feature in the nucleosome-forming sequences appears significantly

more frequently than in the inhibiting sequences, the feature is

regarded as a nucleosome-forming feature. In contrast, if a feature

in the nucleosome-inhibiting sequences appears significantly more

frequently than in the nucleosome-forming ones, it is regarded as a

nucleosome-inhibiting feature. For this purpose, a point biserial

correlation coefficient [66] was used to estimate the significance of

our predictions. Rather than calculating the correlation between

two variables, the point biserial correlation was calculated using

the two parts/classes into which a binary variable is divided:

cpb~
Yp{Yq

Sy

ffiffiffiffiffi
pq
p

where Yp and Yq represent the average value of each part of the

variable; Sy is the standard deviation of both parts of the variable;

and p and q are the proportions of the two parts of the binary

variable. In this study, the number of TFBSs in a TFBS family is a

binary variable, which can be divided into two parts according to

whether it is nucleosome forming or nucleosome inhibiting. Yp

and Yq are the average frequencies of a family of TFBSs appearing

in the positive and negative samples, respectively, and Sy is the

standard deviation of the frequencies of a family of TFBSs in all

sequences. The variables p and q are the frequencies of a family of

TFBSs in the positive and negative samples, respectively.

Frequency is defined as f ~n=N , where n is the total times that

the TFBSs in a family appear in a sample or in samples, and N is

the total number of all TFBSs in a family contained in the sample

or samples. A t-test [67] was then used to assess whether the

differences between a TFBS family’s frequencies in the two types

of samples were significant. If the point biserial correlation

coefficient of a feature was significantly greater/smaller than 0,

with a p-value in the t-test less than 0.05, the frequency of this

feature was determined to be significantly related to the formation

or inhibition of nucleosomes, respectively.

All statistical analyses, including the calculation of point biserial

correlated coefficients and t-tests, were implemented by the R

language (R Development Core Team [2009]), which can be

found at the following website: http://www.r-project.org/.

Supporting Information

Table S1 MaxRel and mRMR values of TF motifs and the

absolute match numbers of each TF motif in nucleosome and

linker DNA sequences.
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Found at: doi:10.1371/journal.pone.0012495.s001 (0.01 MB

XLS)

Table S2 IFS analysis output. It shows the accuracy rates of the

Jackknife cross-validation performed in each round of the IFS

analysis.

Found at: doi:10.1371/journal.pone.0012495.s002 (0.02 MB

XLS)

Table S3 The features responsible for distinguishing nucleo-

some-forming from nucleosome-inhibiting sequences.

Found at: doi:10.1371/journal.pone.0012495.s003 (0.02 MB

XLS)

Table S4 Genomic nucleosome sites. It shows the chromosome

that each nucleosome is located in as well as the start and end

position of each nucleosome.

Found at: doi:10.1371/journal.pone.0012495.s004 (3.03 MB

XLS)

Table S5 Genomic nucleosome sequences. It shows all of the S.

cerevisiae genomic DNA sequences in nucleosomes.

Found at: doi:10.1371/journal.pone.0012495.s005 (8.77 MB

TXT)

Table S6 Genomic linker sites. It shows the positions of all

linkers between nucleosomes. It is similar to Additional file 1,

showing the chromosome as well as the start and end position of

each linker.

Found at: doi:10.1371/journal.pone.0012495.s006 (2.87 MB

XLS)

Table S7 Genomic linker sequences. It shows the genomic DNA

sequences of all linkers between nucleosomes.

Found at: doi:10.1371/journal.pone.0012495.s007 (5.19 MB

TXT)

Table S8 Feature vector matrix. This is the input matrix of the

predictor, and different features of the same sample are separated

by tabs. Each row is a feature vector of one sample, while each

column shows one feature. The first column of each line shows the

type of this sample: 1 means nucleosome while 2 means linkers.

Found at: doi:10.1371/journal.pone.0012495.s008 (7.92 MB

TXT)
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