
Stonin 2 Is a Major Adaptor
Current Biology 22, 1435–1439, August 7, 2012 ª2012 Elsevier Ltd. Open access under CC BY license. DOI 10.1016/j.cub.2012.05.048
Report
Protein

for Clathrin-Mediated
Synaptic Vesicle Retrieval
Anna K. Willox1 and Stephen J. Royle1,*
1Department of Cellular and Molecular Physiology, Institute of
Translational Medicine, University of Liverpool, Crown Street,
Liverpool, L69 3BX, UK

Summary

At small synapses in the brain, clathrin-mediated endocy-

tosis (CME) is the dominant mode of synaptic vesicle
retrieval following weak stimulation [1–4]. Clathrin cannot

bind to membranes or cargo directly and instead uses
adaptor proteins to do so [5]. Although the involvement of

clathrin and dynamin in synaptic vesicle retrieval is clear, it
is unknown which adaptor proteins are used to sort the

essential components into the vesicle [1, 4, 6]. In nonneuro-
nal cells, CME of the majority of transmembrane receptors is

either directly or indirectly via the heterotetrameric AP-2
complex [5]. In neurons, RNAi of the m2 subunit of AP-2 re-

sulted in only minor inhibition of synaptic vesicle retrieval
[7, 8], a result echoed inC. elegans [9]. These results suggest

that alternative adaptors may be employed for vesicle
retrieval. Here, we tested which adaptors are required for

vesicle retrieval at hippocampal synapses using a targeted
RNAi screen coupled with optical measurements. Stonin 2

emerged as a major adaptor, whereas AP-2 played only
a minor role in endocytosis at the synapse. Moreover, using

chemically induced rerouting of stonin 2 to mitochondria it

was possible to switch endocytically competent synapses
to an impaired state on a timescale of minutes.

Results and Discussion

It was shown previously that depletion of clathrin heavy chain
(CHC) results in a strong block in synaptic vesicle endocytosis
after stimulation with 40 action potentials (APs) at 20 Hz [2].
We reasoned that if there were a single adaptor for clathrin-
mediated synaptic vesicle endocytosis, then depletion of
this protein would result in a similar phenotype. A working
panel of small interfering RNAs (siRNAs) targeting adaptor
candidates was assembled and validated (see Supplemental
Information, Figure S1 available online). Target proteins
were depleted to 5%–31% of the levels in control cultures
(Figure S1E).

RNAi Screening of Adaptor Candidates for Synaptic

Vesicle Endocytosis in Hippocampal Neurons
To test the involvement of the adaptor candidates in synaptic
vesicle retrieval, we cotransfected neurons with a single siRNA
and two plasmids to express sypHy and mCherry [10]. For
each adaptor candidate, we tested three different siRNAs
per target to minimize the chance that any endocytic defects
observed are due to an off-target effect of a particular siRNA
sequence. Each siRNA was compared to a control siRNA
(GL2). Figure 1A shows the results from this screen. Under
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the conditions of our experiments, retrieval of sypHy in cells
cotransfected with control siRNA had a time constant of
w30 s. The time taken for sypHy fluorescence to decay to
1/e of its initial value (T1/e) was calculated [8]. The average
change in T1/e, relative to control, was used to rank the candi-
dates approximately in order of severity of endocytic defect
(Figure 1B). No effect was seen in three out of three siRNAs tar-
geting CALM (Figure 1A). For Eps15, epsin 1, and endophilin 1,
two out of three siRNAs showed no effect on vesicle retrieval.
For AP-1 (m1), AP-2 (m2), AP-3 (m3), and AP180, three out of
three siRNAs showed weak but consistent slowing of sypHy
retrieval. T1/e was prolonged w1.4-fold on average compared
to control siRNA (Figure 1B). However, the most significant
defects in endocytosis were seenwith the three siRNAs target-
ing stonin 2 (Figure 1A). Synapses depleted of stonin 2 showed
a substantial slowing of synaptic vesicle retrieval (T1/e pro-
longed by 2.5-, 2-, or 2.2-fold compared to control, Figure 1B).
Interestingly, the amount of exocytosis (DF/F0) at the end of

this brief stimulus train (40 APs 20 Hz) was largely unaffected
by depletion of adaptor candidates (Figure 1C). However,
depletion of Eps15 resulted in a slight increase in the exocytic
response, whereas m1-depletion resulted in a decrease. This
suggests that Eps15-depletion may increase excitability of
synapses, perhaps by regulating the density of calcium chan-
nels. The decrease in vesicle release in m1-depleted synapses
is expected because s1B null animals have fewer vesicles at
hippocampal synapses [11]. The endocytic defects observed
following depletion of adaptor candidates were not due to
changes in the exocytic response, as the amount of exocytosis
showed no correlation with endocytic defects.
In summary, after brief stimulation, hippocampal synapses

depleted of CALM, Eps15, epsin 1, and endophilin 1 alone
had normal synaptic vesicle retrieval. Reduction of m1, m2,
m3, and AP180 produced a weak but consistent slowing of
endocytosis. Stonin 2-depletion resulted in the strongest
defects in synaptic vesicle retrieval.

AP-2 Is Not Essential for Synaptic Vesicle Endocytosis

The minor effect of m2-depletion in our screen was surprising
given the importance of the AP-2 complex in clathrin-mediated
endocytosis (CME) and the abundance of AP-2 in the brain [12,
13] but is in agreement with earlier work [7, 8]. We wanted to
further test the AP-2 requirement for synaptic vesicle retrieval.
Nine further siRNAs that targeted the a, b2, and s2 subunits of
AP-2 (three siRNAs per target) were tested individually for their
effect on sypHy retrieval compared to control RNAi (Figure 2A).
These results were similar to that for m2-depletion (Figure 1A),
with individual knockdown of each AP-2 subunit showing only
a minor impairment in retrieval.
Despite seeing evidence of good depletion (Figure S1), we

were concerned that the knockdown of AP-2 subunits might
not be extensive enough for us to uncover the contribution
of AP-2 to vesicle retrieval [14]. We carried out three more
experiments to test this point further. First, we performed
double siRNA transfections to target AP-2 hemicomplexes:
either b2 and m2 or a and s2 (Figure 2B). Even if depletion of
AP-2 subunits was not complete, then targeting both parts
of an AP-2 hemicomplex is likely to give a more extensive
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Figure 1. Targeted RNAi Screen to Identify

Adaptor Proteins for Clathrin-Mediated Synaptic

Vesicle Endocytosis

(A) Average fluorescence traces of synapses

expressing synaptophysin-pHluorin (sypHy).

Three siRNAs per target are shown compared

to control GL2 siRNA (black). In all figures (unless

indicated otherwise) responses to stimulation

with 40APs at 20Hz aremean6SEM, normalized

to allow direct comparison of fluorescence

decay. Overlaid is a fit to a function that describes

retrieval (see Supplemental Experimental Proce-

dures).

(B) Summary of the relative rates of endocytosis

for each condition in the screen. The time taken

for fluorescence to reach 1/e of its poststimulus

value (T1/e) is shown normalized to control siRNA.

(C) Summary of the average exocytic response to

40 APs at 20 Hz. Mean 6 SEM responses of

sypHy traces under the conditions of the screen

are shown normalized to control siRNA. Colors

in (B and C) correspond to the siRNAs in (A).

Nsynapse = 91–534, Nneuron = 3–10 from 3–6 inde-

pendent cultures. See also Figure S1.
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inhibition. In these experiments, the T1/e was slightly longer
than for depletion of single subunits (Figures 2D and 1B), but
was still shorter than at stonin 2-depleted synapses.

Second, we analyzed neurons at 96 hr posttransfection with
m2 siRNAs. The extension from 72 hr allowed more time for
protein depletion; however, we did not observe stronger inhi-
bition at this time point (Figure 2C).

Third, we tested whether depletion of m2 by RNAi (72 hr) was
sufficient to inhibit constitutive CME. The internalization of
transferrin is known to be completely AP-2/clathrin-dependent
[15]. Uptake of fluorescently conjugated transferrin at the
neuronal soma was substantially inhibited by m2-depletion
compared to GL2 siRNA treatment and was similar to cla-
thrin-depleted neurons (Figure 2E). Because m2 RNAi resulted
in only a minor defect in synaptic vesicle retrieval, yet was
sufficient to block constitutive CME, we conclude that AP-2
is not essential for retrieval at hippocampal synapses. This is
in contrast to large synaptic terminals where a role for AP-2
has been described [16, 17]. Note that it is unlikely that any
protein is depleted totally using RNAi. It is therefore difficult
for us to exclude the possibility that a privileged population
of AP-2 remains at synapses after RNAi and that this can
contribute to synaptic vesicle retrieval.
Stonin 2 Is a Major Adaptor for
Clathrin-Mediated Synaptic Vesicle

Endocytosis
Stonin 2 was the strongest hit in our
RNAi screen of adaptor candidates.
Across three different siRNAs, we saw
a consistent inhibition of endocytosis.
To validate these results, we tested
two further siRNA sequences. Figure 3A
shows sypHy retrieval in neurons trans-
fected with either of two new siRNAs
against stonin 2 and compared with
control GL2 siRNA. One oligo (siRNA 4)
gave the same response as the initial
three, whereas the other (siRNA 5) had
no effect on endocytosis. Western
blotting showed that siRNA 4 caused
depletion of stonin 2, whereas siRNA 5 did not (Figure S1I).
The similar results obtained with four out of five siRNAsmakes
it unlikely that the inhibition of endocytosis is due to an off-
target effect.
To further confirm that the inhibition seen with stonin 2

siRNA was due to loss of stonin 2 function, we performed
a ‘‘rescue’’ experiment (Figure 3B). Cultures were transfected
with either control (GL2) or stonin 2 siRNA, and sypHy
responses were measured from neurons expressing either
mCherry (control) or mCherry-taggedmouse stonin 2 (rescue).
This construct was resistant to stonin 2 RNAi due to differ-
ences at the nucleotide level. The inhibition of endocytosis
was rescued by re-expression of mCherry-stonin 2 (Figures
3B and 3E), confirming that the effect on endocytosis of stonin
2 siRNA is due to depletion of stonin 2.
Our initial screen had measured sypHy fluorescence, which

shows that stonin 2-depleted synapses have impaired retrieval
of synaptophysin. To test whether this reflected impaired
retrieval of whole synaptic vesicles or just of a specific protein,
we asked whether retrieval of other synaptic vesicle cargoes
was similarly impeded. Retrieval of synaptotagmin 1-pHluorin
[18] and vGlut1-pHluorin [19] was tested and all three siRNAs
resulted in impaired retrieval compared to control siRNA



Figure 2. AP-2 Is Not Essential for Synaptic

Vesicle Retrieval

(A–C) Average fluorescence traces of synapses

expressing sypHy. Three siRNAs per target are

shown compared to control GL2 siRNA (black).

Schematic diagrams (left) show the subunit(s)

targeted by RNAi (light gray).

(A) Depletion of a, b2, or s2 subunits.

(B) Hemicomplex depletion of a and s2 or b2 and

m2 subunits. Here, siRNA 1 of a or b2was cotrans-

fected with one of three siRNAs targeting s2 or

m2, respectively.

(C) Depletion of m2 subunit of AP-2 for 96 hr.

Nsynapse = 107–451, Nneuron = 3–10 from 2–5

independent cultures.

(D) Summary of the relative rates of endocytosis

for each condition in this figure. T1/e is shown

normalized to control siRNA.

(E) Representative confocal micrographs

showing the uptake of Alexa 488-transferrin

(50 mg/ml for 10 min at 37�C) in neurons express-

ing mCherry that were cotransfected with control

or AP-2 (m2) siRNA. Scale bar represents 20 mm.

Bar chart to show the quantification of fluores-

cent transferrin uptake at neuronal soma for

mCherry-expressing neurons cotransfected

with control (GL2), clathrin heavy chain, or m2

siRNA. **p < 0.01 Kruskal-Wallis test.
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(Figures 3C and 3E). Because retrieval of three synaptic vesicle
proteins is impaired in stonin 2-depleted synapses, we
propose that stonin 2 is required for synaptic vesicle retrieval
generally and not just for endocytosis of one vesicle
component.

The extent of inhibition of vesicle retrieval at stonin 2-
depleted synapses was, on average, not as complete as at
clathrin-depleted synapses [2, 3]. Our prediction was that if
stonin 2 is the sole adaptor for clathrin-mediated synaptic
vesicle retrieval, then its depletion would phenocopy clathrin
knockdown. To investigate this point, we tested for endocytic
blockade using weaker stimulation, as continued sypHy
retrieval at stonin 2-depleted synapses could be a result of
a compensatory mechanism that is activated after release of
many vesicles. When the exocytic load was reduced (10 APs
20 Hz), retrieval was similar to that seen after 40 APs (Fig-
ure 3D). This indicates that the effect of stonin 2-depletion
on synaptic vesicle retrieval is evident after very brief, weak
stimulation; but endocytosis is not completely blocked. This
suggests that there is redundancy between adaptors for
synaptic vesicle retrieval. This redundancy is most likely
between stonin 2 and those adaptors (AP180 and AP-1/2/3)
that showedweak but consistent inhibition in our RNAi screen.

Role of Stonin 2 as a Major Clathrin Adaptor Revealed

by Rapid, Chemically Induced Rerouting to Mitochondria
RNAi causes the gradual loss of protein over a period of a few
days. In this time, compensatory changes may occur and also
the vesicles that have been retrieved in this timemay no longer
be normal. To address the importance of stonin 2, we used an
alternative, rapid interference method. The recent description
of rapamycin-induced rerouting of proteins [20] to mitochon-
dria is ideally suited to studying protein function at synapses
because mitochondria are abundant and obligatory in presyn-
aptic terminals [21].
Figure 4A shows a schematic diagram of our experimental
strategy to reroute stonin 2 tomitochondria. We first visualized
the rerouting of stonin 2 to mitochondria using confocal
microscopy of fixed cultures (Figure 4B). Following application
of rapamycin, mCherry-FKBP-stonin 2 colocalizes with mito-
chondria in the axon, whereas in untreated cultures,
mCherry-FKBP-stonin 2 showed only limited overlap with
MitoTrap (Figure 4B).
To test the effect of adaptor rerouting on synaptic vesicle

retrieval, we used the experimental protocol depicted in
Figure 4C. At synapses expressing mCherry-FKBP-stonin 2,
sypHy retrieval after a 40 AP (20 Hz) stimulus was normal (Fig-
ure 4D). Following drug application (1 mM for 6min), exocytosis
was triggered again but this time, retrieval was impaired (Fig-
ure 4D, T1/e increased 1.9-fold). Importantly, the inhibition of
endocytosis was not caused by a nonspecific effect of rapa-
mycin or a second stimulation episode, because synapses
expressing mCherry-stonin 2, which lacks the FKBP domain
and cannot therefore be rerouted, did not show this effect (Fig-
ure 4D, control). This suggests that rerouting can be used to
switch endocytically competent synapses to an inhibited state
on the timescale of minutes.
For comparison, similar experiments where clathrin was re-

routed to mitochondria using mCherry-FKBP-tagged clathrin
light chain were carried out (Figure 4D). Inhibition of retrieval
was seen with clathrin rerouting, and again, this was specific
because no effect was seen with rapamycin treatment of
neurons expressing mCherry-clathrin light chain with no
FKBP domain (Figure 4D). As with our RNAi observations,
the effect of clathrin rerouting was stronger than for stonin 2
(Figure 4F). The T1/e for stonin 2 rerouting was w1.9 times
longer than at synapses before rerouting, whereas sypHy fluo-
rescence at synapses in which clathrin had been rerouted did
not recover to 1/e during the course of the movie (Figure 4F).
These data support our conclusion that stonin 2 is a major



Figure 3. Stonin 2 Is a Major Adaptor for Synaptic Vesicle Endocytosis

(A) Average fluorescence traces of synapses expressing sypHy. Two further

siRNAs designed to target stonin 2 are shown compared to control GL2

siRNA.

(B) Rescue of endocytic defects caused by stonin 2-depletion. SypHy

responses were measured in control or stonin 2-depleted cultures express-

ing either mCherry or mCherry-Stonin 2 as indicated.

(C) Average fluorescence traces of synapses expressing vGlut1-pHluorin

(above) or synaptotagmin 1-pHluorin (below). Three stonin 2 siRNAs are

shown compared to control siRNA (black). Nsynapse = 49–338, Nneuron = 3–

11 from 2–7 independent cultures.

(D) Average fluorescence traces of synapses expressing sypHy. Three sto-

nin 2 siRNAs are shown compared to control siRNA (black). Responses to

stimulation with 10 APs at 20 Hz are shown (D only). Nsynapse = 25–48,

Nneuron = 2 from one experiment.

(E) Summaries of the relative rates of endocytosis for each condition in this

figure. T1/e is shown normalized to control GL2 siRNA + mCherry (bar chart)

or control GL2 siRNA (dot plot).
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adaptor, but not the sole adaptor for clathrin-mediated vesicle
retrieval at the synapse.

As a negative control for adaptor rerouting, we tested the
effect of rerouting CALM. Depletion of this protein was most
similar to control RNAi in our screen (Figure 1). As expected,
there was little effect of rerouting mCherry-FKBP-CALM
when compared with mCherry-CALM. Finally, we tested the
effect on sypHy retrieval of rerouting AP-2. When AP-2 was
rerouted using FKBP-tagged a or s2 subunits, there was
a small delay in retrieval compared to controls (Figure 4D).
This delay was similar to that seen by RNAi but was not as
extensive as that produced by stonin 2 rerouting.

Rerouting has two main advantages over RNAi: it is more
acute and it also allows a before-and-after comparison of
synapses that weremeasurably competent for vesicle retrieval
prior to interference. However, effective rerouting relies on
incorporation of the FKBP-tagged protein into complexes
with the endogenous protein. For clathrin and AP-2, the
incorporation of heterologous subunits into endogenous
complexes is well established, but for stonin 2, this assumes
that theprotein acts asamultimer [22]. Tovalidate the rerouting
experiments, we performed a ‘‘knocksideways’’ experiment
[20], where endogenous stonin 2 or s2 was depleted by RNAi
and re-expressed mCherry-FKBP-stonin 2 or s2-mCherry-
FKBP was rerouted to mitochondria. These experiments pro-
duced similar results to rerouting alone (Figures 4E and 4F).
These experiments underscore the comparatively minor role

for AP-2 in synaptic vesicle retrieval. This has important
implications for stonin 2 function. Stonin 2 has previously
been proposed to act as a synaptotagmin 1-specific adaptor
that links to the clathrin coat via the a subunit of AP-2 [23,
24]. We found that sypHy retrieval was normal in neurons
that expressed a stonin 2 mutant (DWWWDNPF) that cannot
bind to AP-2 or Eps15 [23, 25] (Figure S2). Together, our results
argue that stonin 2 may act as a conventional clathrin adaptor,
independently of AP-2, at the synapse (see Supplemental
Information). Future work will determine precisely how
cargo-stonin 2 complexes are incorporated into the forming
clathrin-coated pit.

Supplemental Information

Supplemental Information includes two figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online

at doi:10.1016/j.cub.2012.05.048.
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(A) Schematic diagram to show the rerouting

method [20]. A presynaptic terminal expressing

MitoTrap (mito-XFP-FRB) and mCherry-FKBP-

stonin 2 is shown. Rapamycin binds the FKBP

and FRB domains tightly so that its application

causes dimerization of MitoTrap and mCherry-

FKBP-stonin 2.

(B) Representative confocal images from fixed

cultures to show rapamycin-dependent rerouting

of mCherry-FKBP-Stonin 2 to mitochondria ex-

pressing MitoTrap (mito-YFP-FRB). Scale bar

represents 10 mm.

(C) Experimental protocol showing the two

imaging periods (pre and post), stimulations,

and rapamycin application.

(D) Effect on sypHy retrieval of rerouting stonin 2,

clathrin, CALM, or AP-2. FKBP-tagged contructs

(rerouting) are shown to the left and thosewithout

FKBP (control) to the right. Average sypHy fluo-

rescence traces of synapses expressing sypHy

and MitoTrap (mito-PAGFP-FRB) together with

the indicated construct for rerouting.

(E) Knocksideways experiments were performed

as described for rerouting but with the concomi-

tant depletion of stonin 2 or s2. In (D) and (E), the

first stimulation (40 AP 20 Hz) is shown in black

(pre) and the second following rapamycin appli-

cation (1 mM, 6 min) is shown in a different color

(post). Nsynapse = 56–455, Nneuron = 2–9 from 1–7

independent cultures.

(F) Summary of the relative rates of endocytosis

for each condition in this figure. T1/e is shown

normalized to the prerapamycin recovery. See

also Figure S2.
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