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Simple Summary: Cultivation of industrial hemp Cannabis sativa in the United States is now being
expanded due to the recent legalization of the crop. Multiple insect pests attack the crop. One of the
common pests is the corn earworm Helicoverpa zea that causes extensive damage to the marketable
parts of hemp. Changing global climate may lead to expansion of the geographic range of insect pests.
Thus, growers of this crop in the United States have to face new and intense pest problems now and
in the years to come. Here, we assess the potential relationship between corn earworm infestation
and hemp production in the US in the face of climate change. We also provide an update on the
arthropods associated with hemp cultivation across the US. Climate change can affect aspects of
interactions between hemp and corn earworm. Temperature and photoperiod affect the development
and diapause process in H. zea. Drought leads to a reduction in hemp growth. Overall, our assessment
suggests the selection of varieties resistant to stresses from climate and insects. Host plant diversity
may prevent populations of corn earworm from reaching outbreak levels. Ongoing research on
effective management of H. zea on hemp is critical.

Abstract: There has been a resurgence in the cultivation of industrial hemp, Cannabis sativa L., in the
United States since its recent legalization. This may facilitate increased populations of arthropods
associated with the plant. Hemp pests target highly marketable parts of the plant, such as flowers,
stalks, and leaves, which ultimately results in a decline in the quality. Industrial hemp can be used
for several purposes including production of fiber, grain, and cannabidiol. Thus, proper management
of pests is essential to achieve a substantial yield of hemp in the face of climate change. In this review,
we provide updates on various arthropods associated with industrial hemp in the United States and
examine the potential impact of climate change on corn earworm (CEW) Helicoverpa zea Boddie, a
major hemp pest. For example, temperature and photoperiod affect the development and diapause
process in CEW. Additionally, drought can lead to a reduction in hemp growth. Host plant diversity
of CEW may prevent populations of the pest from reaching outbreak levels. It is suggested that hemp
varieties resistant to drought, high soil salinity, cold, heat, humidity, and common pests and diseases
should be selected. Ongoing research on effective management of CEW in hemp is critical.

Keywords: industrial hemp; Cannabis sativa; climate change; pests; beneficials; corn earworm

1. Introduction

Industrial hemp or hemp (Cannabis sativa L.) cultivation is assuming new geographical
borders around the world [1–3]. It is of medicinal, industrial, and economic importance.
It is usually cultivated for production of long and strong bast fibers, seeds, oil, and food
(Figure 1) [4]. Hemp contains extremely low amounts of the psychoactive cannabinoid
∆ 9-tetrahydrocannabinol (THC). Cannabis plants that contain a concentration of less
than 0.3% THC are considered hemp; while those above this concentration are considered
marijuana [5]. Here, we regard industrial hemp as hemp varieties with amounts of less
than 0.3% THC.
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programs [7]. In 2018, the Agriculture Improvement Act, also known as the 2018 Farm 
Bill, re-legalized commercial hemp production in the US [8]. These decades of prohibition 
of cultivation resulted in little to no research on hemp in the US. Since 2014, however, 
legalization of industrial hemp in the US has resulted in increased interest in the cultiva-
tion of the crop (Figure 2) [7,9]. Despite this increase, the hemp industry is still regarded 
as emerging; and there is a lack of established production methods around the country 
[10]. This has resulted in many producers modifying and experimenting with hemp pro-
duction. Presently, there are efforts around North America to develop improved cultivars 
for production of one or more of the commodities derived from industrial hemp [4,11,12]. 
Some varieties are being developed for improvement of their CBD contents, fiber produc-
tion, and grain content [7]. Stakeholders in the US want breeding and genetics research to 
produce stable and uniform cultivars and regional adaptability [13]. 
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The legality of hemp cultivation varies worldwide. A unique aspect of hemp history
in the US is the ban of its cultivation in 1937 when the federal Marihuana Tax Act effectively
criminalized almost all cannabis cultivation [6]. The Agricultural Act of 2014 (also called the
2014 Farm Bill) reintroduced industrial hemp production through state pilot programs [7].
In 2018, the Agriculture Improvement Act, also known as the 2018 Farm Bill, re-legalized
commercial hemp production in the US [8]. These decades of prohibition of cultivation
resulted in little to no research on hemp in the US. Since 2014, however, legalization of
industrial hemp in the US has resulted in increased interest in the cultivation of the crop
(Figure 2) [7,9]. Despite this increase, the hemp industry is still regarded as emerging; and
there is a lack of established production methods around the country [10]. This has resulted
in many producers modifying and experimenting with hemp production. Presently, there
are efforts around North America to develop improved cultivars for production of one or
more of the commodities derived from industrial hemp [4,11,12]. Some varieties are being
developed for improvement of their CBD contents, fiber production, and grain content [7].
Stakeholders in the US want breeding and genetics research to produce stable and uniform
cultivars and regional adaptability [13].

Growing conditions for hemp cultivation are documented in the literature [14]; how-
ever, optimal growing conditions are expected to vary according to cultivar. An important
aspect of hemp cultivation is the management of arthropod pests. As with any crop, suc-
cessful cultivation of hemp can include integrated pest management strategies. Efficient
management of arthropod pests on hemp starts with surveying and properly identifying its
insect community. There are reports of arthropods associated with hemp globally [15] and
within the US [12]. However, with the current expansion in the cultivation of hemp across
several states, reports/knowledge of arthropod pests needs to be updated. Furthermore,
surveys have suggested negative grower experiences with hemp production especially
from first-time or inexperienced hemp growers [10]. This highlights the need to educate
growers on arthropod communities and pest control on hemp.
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Figure 2. United States hemp acreage and greenhouse area, reported 2014–2018. Graphic is from Tyler et al. [7]. 
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Figure 2. United States hemp acreage and greenhouse area, reported 2014–2018. Graphic is from Tyler et al. [7].

One of the most important challenges facing agriculture worldwide is management
of abiotic stressors, including increasing temperatures and prolonged periods of drought.
Such climatic anomalies are expected to drive the spread of arthropods [16,17], including
those associated with hemp. In addition, biotic factors play a decisive role in species
spatial distributions presently and will continue under future climate change [18]. The
market value of industrial hemp in the US is impacted due to several pest insect species
increasingly located on the crop [12]. Some authors have previously reviewed arthropods
of hemp. Mostafa and Messenger [19] reported about 272 species of insect and mite species
associated with Cannabis globally. McPartland et al. [15] described about 150 species of
insects and mites associated with hemp. Cranshaw et al. [12] described several arthropod
pests associated with the production of hemp and the associated pest management needs
in the US. Here, we review and update the arthropods (both pests and beneficials) affecting
industrial hemp across the US. Furthermore, we discuss how climate change could affect
one of the prevalent pests.

2. Industrial Hemp Pests

Many phytophagous insects feed on industrial hemp, though only some species attain
pest status [12,15]. Cranshaw et al. [12] arranged arthropods on hemp across the United
States into the following categories—pests: defoliators, sucking insects and mites on leaves,
stem and stalk borers, sucking insects associated with flowers and seeds, chewing insects
that damage flower buds and seeds, and root feeders; natural enemy species: predators,
parasitoids, pathogens; and pollinators.

Some pests and beneficial arthropods reported on hemp in the US are listed in
Tables 1 and 2, respectively. Some arthropods that are currently considered as neither
pest nor beneficial to hemp that exist in the US are listed in Table 3.
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Table 1. A list of some pest arthropods reported on hemp in the United States.

Family Common Name
Scientific Name (for
Those Identified to

Species)
Damage Type Location

Found References

Acrididae Grasshopper Pest Field [20]
Aeolothripidae Thrips Pest Field [20,21]

Aphididae Cannabis aphid Phorodon cannabis Field &
greenhouse [20–25]

Cercopidae Spittlebug Pest Field [20]

Chrysomelidae
e.g., Spotted

cucumber beetle,
Leaf beetle

Diabrotica
undecimpunctata;

Diabrotica v. virgifera;
Herbaceous pest Field [20,21,26]

Cicadellidae Leafhoppers, e.g.,
Beet leafhopper e.g., Circulifer tenellus Pest (some transmits

beet curly top virus) Field [20,21,27,28]

Coreidae Leaf-footed bug Sucking-piercing
pest Field [26]

Crambidae European corn borer Ostrinia nubilalis Pest Field [21]
Curculionidae Weevil Herbaceous pest Field [20,26]

Elateridae Click beetle Pest Field [20]
Formicidae Fire ant Solenopsis invicta Pest Field [20,23]
Meloidae Blister beetle Herbaceous pest Field [26]

Membracidae Treehopper Pest Field [20]

Miridae Tarnished plant bug Lygus lineolaris Sucking-piercing
pest Field [20,26]

Noctuidae Corn earworm Helicoverpa zea
Primarily, laceration

of reproductive
branch tip

Field [23,26,28–32]

Pentatomidae Stink bug Sucking-piercing
pest Field [20,26,28]

Rhopalidae Hibiscus scentless
plant bug Niesthrea louisianica Sucking-piercing

pest Field [26]

Rhyparochromidae Seed bug Pest Field [20]

Scarabaeidae
Scarabs, e.g.,

Japanese beetle,
Green June beetle

e.g., Popillia japonica Herbaceous pest Field [20,21,26]

Tarsonemidae Broad mites Polyphagotarsonemus
latus Pest Greenhouse [28]

Tetranychidae Two-spotted spider
mite Tetranychus urticae Pest Greenhouse [29,31]

Tortricidae
Euroasian hemp
borer (adults &

larvae)
Grapholita delineana Pest Field [20,23]

Table 2. A list of some beneficial arthropods reported on hemp in the United States.

Family Common Name
(If Any)

Scientific Name (for
Those Identified to

Species)
Association Type Location

Found References

Anthocoridae Insidious flower bug Orius insidiosus Beneficial Field [20]
Anthicidae Ant-like beetle Beneficial Field [20]

Araneae Spiders Natural enemy
(predator) Field [20,33]

Braconidae Braconids Cardiochiles spp. Natural enemy
(parasitoid) Field [33]

Carabidae Tiger beetles Beneficial Field [20]

Chrysopidae Green lacewing Natural enemy
(predator) Field [20,26]
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Table 2. Cont.

Family Common Name
(If Any)

Scientific Name (for
Those Identified to

Species)
Association Type Location

Found References

Coccinellidae Lady beetle

Hippodamia convergens;
Coleomegilla maculata;
Hyperaspis lugubris;
Cycloneda munda;

Cycloneda sanguinea;
Harmonia axyridis

Natural enemy
(predator)

Field &
greenhouse [20,24,26]

Dolichopodidae Long-legged flies Beneficial Field [20]
Geocoridae Big-eyed bug Geocoris spp. Natural enemy Field [26]

Hemerobiidae Brown lacewings Beneficial Field [20]

Ichneumonidae Ichneumonids Natural enemy
(parasitoid) Field [33]

Nabidae Damsel bugs Beneficial Field [20]
Pentatomidae Spined soldier bug Podisus maculiventris Natural enemy Field [26]

Reduviidae Assassin bug Beneficial Field [20]

Syrphidae Syrphid larvae Natural enemy
(predator) Field [20,33]

Tachinidae Tachinids Natural enemy
(parasitoid) Field [33]

Vespidae Paper wasps Natural enemy
(predator) Field [33]

Opiliones (spider) Beneficial Field [20]

Table 3. A list of some arthropods considered neither pest nor beneficial reported on hemp in the United States.

Family Common Name (If Any) Association Type Location Found References

Cerambycidae Longhorn beetle Other Field [20]
Cleridae Checkered beetles Other Field [20]
Gryllidae Cricket Other Field [20]

Latridiidae Minute brown scavenger beetles or fungus beetle Other Field [20]
Mordellidae Tumbling flower beetles Other Field [20]
Nitidulidae Sap beetle Other Field [20]

Pieridae Pierid butterfly Other Field [20]
Silvanidae Silvan flat bark beetles Other Field [20]

Staphylinidae Rove beetle Other Field [20]
Tipulidae Crane fly Other Field [20]

Caddisflies (in the order Trichoptera) Other Field [20]
Centipede (in the class Chilopoda) Other Field [20]
Millipede (in the class Diplopoda) Other Field [20]

Booklice, barklice or barkflies (in the order
Psocoptera) Other Field [20]

Leaf mining fly (larvae) Other Field [28]

There are some challenges to sampling in hemp, therefore future directions should
include some standardization of methods. For example, there are limitations in using just a
visual count in comparison to sweep-net and beat-into-alcohol methods. Other methods
of collection used are pitfall traps and yellow sticky cards. A factor that could strongly
influence sampling in hemp is that neighboring crops to hemp can impact insect community.
Furthermore, weather pattern can impact the insect types and the population densities.

3. Corn Earworm and Hemp: Potential Effects of Climate Change

Corn earworm Helicoverpa zea (Boddie, 1850) (Lepidoptera: Noctuidae) is native to
the Americas [15]. Helicoverpa zea is very common on hemp plants across the United
States (Table 1). It is a polyphagous, multivoltine insect pest and has a wide range of
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hosts, including many vegetables, field crops, fruits, flowers, and weeds. It causes serious
damage in several crops, including corn, tomato, pepper, cotton, sorghum, and lettuce [34].
Around the world, it is called by a plethora of common names, including corn earworm,
cotton bollworm, tobacco budworm, tobacco fruitworm, and vetchworm [15].

Helicoverpa zea overwinters as a pupa within the soil; in the US, successful overwin-
tering occurs only in the southern USA, as H. zea cannot successfully overwinter at areas
above 39◦ N [15,35]. Adults emerge from overwintering pupae in spring, and can then
migrate throughout most of the United States and southern Canada during the growing
season [36]. Adults mate and females lay eggs in floral inflorescences. A single female
can lay up to 1500 eggs in her lifetime [37,38]. Emerged larvae feed on and injure hemp
bud material, causing “bud rot” [39]. In North America, H. zea produces one to seven
generations per year, depending on the latitude (e.g., one to two generations in Ontario,
seven generations in south Texas) [40–44]. Like most multivoltine insects, its development
and diapause termination are expected to be driven by temperature, while its diapause
initiation triggered by photoperiod [45]. Helicoverpa zea pupae are chill-intolerant, thus
they are unable to withstand freezing and are subject to much prefreeze mortality [46]. Sex
does not influence the cold response of H. zea pupae [46,47]. Enhanced cold hardiness is
gained through diapause in H. zea pupae [46–48]. It has been predicted that H. zea would
respond to climate change by altering its voltinism [49].

Over the last decades, many studies on climate trends have been carried out and
results demonstrate that patterns of temperature and precipitation are rapidly shifting,
affecting large parts of our planet, in both animals and plants [50–54]. Some plant and
animal species may react to climate change by showing some degree of adaptation and
mitigation of its effects [55,56]. It is expected that over the coming decades, many plant
and animal species will be affected in all aspects of their biology [57], and that adaptation
to counterbalance impacts of climate change will be a challenge. Several aspects of insect
biology can be affected by warmer temperatures, including survival and reproduction [58].
Furthermore, climate change can impact aspects of plant-insect interactions including host
resistance and quality [59–62]. Natural enemies of pest insects can also be impacted by
climate change [63–65]. These natural enemies, including parasitoids and predators, are
dependent on the resilience of their host insects in the face of climate change, thus further
exacerbating the stress on them [64].

In the US, climate change is a growing threat to biodiversity and ecosystems, and
their services [66]. For example, in the Mid-Atlantic region of the US, where Cannabis
hemp is widely cultivated, it is anticipated that by mid- to late- century (i.e., 2035–2049 and
2085–2099), there will be a warmer climate with a wetter Autumn and Spring and a drier
late summer season; this is expected to cause damage to plants [67]. An increasing number
of studies show a link between drought and reduced hemp growth, including stem and
fiber yield e.g., [68]. Furthermore, climate change is making the western US more arid [69].
This has contributed to drier soils [70], widespread plant death [71], and more severe
wildfires [72]. Hemp is a tall plant with a wide root system (at least 0.5 m deep) and it is a
good candidate for soil phytoremediation as it grows fast and easily in dense stands [73].
However, several environmental conditions such as drought, flooding, heat, and salinity
affect the level of hormones in plants [68,74–78]. For example, under water stress, there is
reduced transport of cytokinins from the root (the site of biosynthesis) to shoots [79,80].
This reduction in cytokinin is expected to bring about a shift towards maleness [78,81]. If
this occurs in Cannabis plants, then it would ultimately influence the quantity and type of
insects such as pollinators on hemp plants. Furthermore, it has been predicted that the US
may experience warmer winters, resulting in diminished vernalization [82,83], a process
required to promote flowering in certain types of crops. It is suggested that hemp varieties
resistant to drought, high soil salinity, cold, heat, humidity, and common pests and diseases
should be selected [84].

The mouthpart type of phytophagous insects influences their reaction to stress-
induced plant changes [85]. For instance, decreased water content, tougher foliage, elevated
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levels of allelochemicals and reduced nitrogen availability all reduce nutritional quality of
host plant tissue for chewing insects (e.g., corn earworm) [86]. Corn earworm herbivory
increases the levels of chemical defense in cotton and has caused a significant decline in the
nutritional quality of the plant as a host [87]. A similar severe decline in the nutritional qual-
ity of other plants such as soybean, geranium, and clover also occurred by corn earworm
herbivory [88–91]. Recent studies have demonstrated that infestations of corn earworm on
C. sativa increases the levels of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC)
beyond the 0.3% legal limit [92].

Some of the most prevalent and consistent pests of hemp are also major insect pests of
corn (Zea mays L.). These include the European corn borer [Ostrinia nubilalis (Hübner)] and
corn earworm [Helicoverpa zea (Boddie)]. Studies have shown that O. nubilalis antennae
consistently responded to at least four chemical compounds, which all co-occur in both
corn and hemp [93]. This suggests that these plant volatile compounds are cues used by
these insects in herbivory. More research into the role of plant volatile compounds in the
mechanisms of host location by these pests on hemp plants is needed.

Though outbreaks of H. zea have occured in some regions of the United States where
C. sativa is cultivated, host-plant diversity may prevent populations of H. zea from reaching
outbreak levels [94]. Host plants of the generalist H. zea larvae include corn, tomato, and
cotton, which are all economically important crops in the United States. H. zea is regarded
as a serious pest of these crops making effective management of H. zea necessary. In the
evaluation of biological insecticides to manage H. zea in CBD hemp in Virginia, Entrust
SC (Spinosad) had a significantly lower incidence of bud rot than all other treatments [95].
Furthermore, no signs of phytotoxicity were observed from any of the biopesticide treat-
ments in the study. In a similar study, Entrust (Spinosad) resulted in significantly fewer
corn earworms and less damage than untreated control [96]. Furthermore, in another
study, Entrust (Spinosad) resulted in a significantly higher corn earworm mortality (95%)
than any other tested biological or organic insecticide products on field-collected corn
earworms tested in laboratory assays after four days [97]. In a second bioassay, Pyganic
and Entrust performed significantly better than all other treatments, resulting in 100%
and 97.5% respective mortality in lab-reared corn earworms [97]. A likely reason for the
difference between lab-reared and wild-caught populations could be that resistance to
Cry1AB Bt proteins is widespread in Virginia corn earworms [97].

Stressed plants are expected to have reduced defenses and therefore greater vulnera-
bility to herbivores (plant stress hypothesis; [98–100]). A similar pattern might be expected
with the vulnerability of stressed C. sativa plants to herbivores such as H. zea. However,
the plant vigor hypothesis contradicts this. For example, Inbar et al. [101] reported that
larval growth rates of H. zea were higher on tomato (Lycopersicon esculentum) exposed to
optimal growing conditions, but lower on those exposed to stress. Whether stressed or not,
morphological defense mechanisms of C. sativa may override the extent to which chewing
herbivores such as H. zea damage the plant. For example, H. zea was negatively affected by
trichome density on yellow monkey flower Mimulus guttatus [100]. This may be similar to
the response of H. zea to stressed C. sativa.

4. Conclusions

Helicoverpa zea is a polyphagous insect pest on hemp, Cannabis sativa. In North
America, the pest produces one to seven generations per year, depending on the latitude.
Like most multivoltine insects, its development and diapause termination are expected
to be driven by temperature, while its diapause initiation by photoperiod. Helicoverpa zea
pupae are chill-intolerant, thus subject to much prefreeze mortality. H. zea could respond
to climate change by altering its voltinism. Furthermore, climate change can affect aspects
of interactions between hemp and corn earworm, including host resistance and quality.
Natural enemies of corn earworm are dependent on the resilience of their host in the face
of climate change. Water stress on hemp could bring about a shift towards maleness in
the plant, and this could ultimately influence the quantity and type of insects such as
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pollinators on hemp. Drought leads to a reduction in hemp growth. Infestations of corn
earworm on hemp increases the level of THC beyond the 0.3% threshold point at which
cannabinoid content is used to distinguish strains of hemp from marijuana. Plant volatile
compounds could be involved in cues used by H. zea in herbivory. Though outbreaks of
corn earworm have been experienced in some regions of the United States where hemp is
cultivated, host-plant diversity may prevent populations of corn earworm from reaching
outbreak levels in regions with such diversity compared with those without. Ongoing
research on effective management of H. zea on hemp is critical. Future research should
focus on understanding abiotic stress responses in hemp, corn earworm and its natural
enemies in hemp. Impacts of climate change on industrial hemp production mediated
through changes in populations of serious insect pests such as corn earworm need to
be given more attention for planning and devising adaptation and mitigation strategies
for future management programs. There are still gaps in information that need to be
addressed in order to allow production of management plans for these arthropod pests. It
is also necessary to encourage the conservation of beneficial insects on hemp, to use these
arthropods as pest control strategies.
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