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A convolutional neural-network framework for
modelling auditory sensory cells and synapses

Fotios Drakopoulos® '™ Deepak Baby® ' & Sarah Verhulst® '

In classical computational neuroscience, analytical model descriptions are derived from
neuronal recordings to mimic the underlying biological system. These neuronal models are
typically slow to compute and cannot be integrated within large-scale neuronal simulation
frameworks. We present a hybrid, machine-learning and computational-neuroscience
approach that transforms analytical models of sensory neurons and synapses into deep-
neural-network (DNN) neuronal units with the same biophysical properties. Our DNN-model
architecture comprises parallel and differentiable equations that can be used for back-
propagation in neuro-engineering applications, and offers a simulation run-time improvement
factor of 70 and 280 on CPU or GPU systems respectively. We focussed our development on
auditory neurons and synapses, and show that our DNN-model architecture can be extended
to a variety of existing analytical models. We describe how our approach for auditory models
can be applied to other neuron and synapse types to help accelerate the development of
large-scale brain networks and DNN-based treatments of the pathological system.
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modelling action-potential generation and propagation!,

numerous specific neuronal models were developed that
proved essential for shaping and driving modern-day
neuroscience?, In classical computational neuroscience, transfer
functions between stimulation and recorded neural activity are
derived and approximated analytically. This approach resulted in
a variety of stimulus-driven models of neuronal firing and was
successful in describing the non-linear and adaptation properties
of sensory systems3>©. For example, the mechano-electrical
transduction of cochlear inner-hair-cells (IHCs) was described
using conductance models”"10 and the IHC-synapse firing rate
using multi-compartment diffusion models!!-13. Such mechan-
istic models have substantially improved our understanding of
how individual neurons function, but even the most basic models
use coupled sets of ordinary differential equations (ODEs) in their
descriptions. This computational complexity hinders their further
development to simulate more complex behaviour, limits their
integration within large-scale neuronal simulation platforms!41°,
and their uptake in neuro-engineering applications that require
real-time, closed-loop neuron model units'®17,

To meet this demand, neuroscience recently embraced deep
learning!8, a technique that quickly revolutionised our ability to
construct large-scale neuronal networks and to quantify complex
neuronal behaviour!®-2?7. These machine-learning methods can
yield efficient, end-to-end descriptions of neuronal transfer
functions, population responses or neuro-imaging data without
having to rely on detailed analytical descriptions of the individual
neurons responsible for this behaviour. Deep neural networks
(DNNs) learn to map input to output representations and are
composed of multiple layers with simplified units that loosely
mimic the integration and activation properties of real neurons2.
Examples include DNN-based models that were successfully
trained to mimic the representational transformations of sensory
input?>3%, or DNNSs that use neural activity to manipulate sen-
sory stimuli3l:32, Even though deep learning has become a
powerful research tool to help interpret the ever-growing pool of
neuroscience and neuroimaging recordings®334, these models
have an important drawback when it comes to predicting
responses to novel inputs. DNNs suffer from their data-driven
nature that requires a vast amount of data to accurately describe
an unknown system, and can essentially be only as good as the
data that were used for training. Insufficient experimental data
can easily lead to overfitted models that describe the biophysical
systems poorly while following artifacts or noise present in the
recordings3>. The boundaries of experimental neuroscience and
associated limited experiment duration hence pose a serious
constraint on the ultimate success of DNN-based models of
neuronal systems.

To overcome these difficulties and merge the advantages of
analytical and DNN model descriptions, we propose a hybrid
approach in which analytical neuronal models are used to gen-
erate a sufficiently large and diverse dataset to train DNN-based
models of sensory cells and synapses. Combinations of traditional
and machine-learning approaches were recently adopted to
optimise analytical model descriptions3©-38, but our method
moves in the opposite direction and takes advantage of deep-
learning benefits to develop convolutional-neural-network
(CNN) models from mechanistic descriptions of neurons and
synapses. We show here that the resulting CNN models can
accurately simulate outcomes of state-of-the-art auditory neuro-
nal and synaptic diffusion models, but in a differentiable and
computationally efficient manner. The CNN-based model archi-
tecture is compatible with GPU computing and facilitates the
integration of our model units within large-scale, closed-loop, or
spiking neuronal networks. The most promising design feature

Following the fundamental work of Hodgkin and Huxley in

relates to the backpropagation property, a mathematically com-
plex trait to achieve for non-linear, coupled ODEs of traditional
neural models. We will illustrate here how normal and patholo-
gical CNN models can be used in backpropagation to modify the
sensory stimuli to yield an optimised (near-normal) response of
the pathological system.

We develop and test our hybrid approach on sensory neurons
and synapses within the auditory system. The cochlea, or inner-
ear, encodes sound via the inner hair cells (IHCs). IHCs sense the
vibration of the basilar membrane in response to sound using
their stereocilia and translate this movement into receptor
potential changes. By virtue of Ca?*-driven exocytosis, glutamate
is released to drive the synaptic transmission between the THC
and the innervated auditory-nerve fiber (ANF) synapses and
neurons>®. Experimentally extracted IHC parameters from in-
vitro, whole-cell patch clamp measurements of the cellular
structures and channel properties??4! have led to different model
descriptions of the non-linear and frequency-dependent THC
transduction19:42-44, Parameters for analytical IHC-ANTF synapse
models are mainly derived from single-unit auditory-nerve (AN)
recordings to basic auditory stimuli in cats and small
rodents*~>1. Progressive insight into the function of IHC-ANF
synapses over the past decades has inspired numerous analytical
model descriptions of the IHC, IHC-ANF synapse, and ANF
neuron complex!1-13.52-62,

To generate sufficient training data for our CNN-based models
of IHC-ANF processing, we adopted a state-of-the-art biophy-
sical model of the human auditory periphery that simulates
mechanical as well as neural processing of sound®!. We describe
here how the CNN model architecture and hyperparameters can
be optimised for such neuron or synapse models and we evaluate
the quality of our CNN models on the basis of key IHC-ANF
complex properties described in experimental studies, i.e., IHC
excitation patterns, AC/DC ratio® and potential-level growth®40,
ANF firing rate, rate-level curves®®%4, and modulation
synchrony®1:65, The considered evaluation metrics had stimula-
tion paradigms that were not part of the training dataset, to allow
for a fair evaluation of the neuroscientific properties of the trained
CNN models. These metrics stem from classical neuroscience
experiments that characterised the presynaptic IHC receptor
potential and postsynaptic AN processing, and together they form
a critical evaluation of the adaptation, tuning, and level-
dependent properties of the IHC-ANF complex. After deter-
mining the final CNN model architectures, we compute their run-
time benefit over analytical models and investigate the extent to
which our methodology is applicable to different existing
mechanistic descriptions of the IHC-ANF complex. Lastly, we
provide two use cases: one in which IHC-ANF models are con-
nected to a CNN-based cochlear mechanics model
(CoNNear ,cn1ea®®) to capture the full transformation of acoustic
stimuli into THC receptor potentials and ANF firing rates along
the cochlear tonotopy and hearing range, and a second one where
we illustrate how backpropagation can be used to modify the
CNN model input to restore a pathological output.

Results

Figure 1a depicts the adopted training and evaluation method to
calibrate the parameters of each CoNNear module. Three mod-
ules that correspond to different stages of the reference analytical
auditory periphery model®! were considered: cochlear processing,
IHC transduction and ANF firing. The calibration of the cochlear
mechanics module (CoNNear ,hiea) is described elsewhere®0:67;
here we focus on developing the sensory neuron models (i.e.,
CoNNearyyc and CoNNearyr). Figure 1a illustrates the training
procedure for the CoNNear,yy module of a low-spontaneous-
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Fig. 1 CoNNear overview. a Overview of the CoNNear model training and evaluation procedure. b Architecture of the CoNNear inner-hair-cell transduction
model. ¢ Generic architecture used for the CoNNear auditory-nerve-fiber synapse models.

rate ANF. Acoustic speech material is given as input to the
analytical descriptions of cochlear and IHC-ANF processing,
after which simulated ANF firing rates are used as training
material to determine the CoNNear,yy, parameters. CoNNear
modules were trained separately for each stage of the IHC-ANF
complex, resulting in one model for IHC transduction and three
models for different ANF types: a high- (H; 68.5 spikes/s),
medium- (M; 10 spikes/s), and low- (L; 1 spike/s) spontaneous-
rate (SR) ANF. We chose a modular approach because this
facilitates future simulations of the pathological system, where the
IHC receptor potential can be impaired through presbycusis®®, or
where selective damage to the ANF population can be introduced
through cochlear synaptopathy®®.

Each module was modelled using a convolutional
encoder—decoder architecture, consisting of a distinct number of
CNN layers, as shown in Fig. 1b, c. Within these architectures,
each CNN layer is comprised of a set of filterbanks followed by a
non-linear operation!8, except for the last layer where the non-
linear operation was omitted. These end-to-end architectures
process input waveforms of length L, across Ncr frequency
channels to generate outputs of the same size L.x Ncg. The
encoder CNN layers use strided one-dimensional convolutions,
ie, the filters are shifted by a time-step of two to halve the
temporal dimension after every CNN layer. Thus, after N encoder
CNN layers, the input signal is encoded into a representation of
size L./2N x ky, where ky equals the number of filters in the Nth
CNN layer. The decoder uses N deconvolution, or transposed-
convolutional, layers, to double the temporal dimension after
every layer to re-obtain the original temporal dimension of the
input (L.). Skip connections were used to bypass temporal
information from encoder to decoder layers to preserve the sti-
mulus phase information across the architecture. Skip connec-
tions have earlier been adopted for speech enhancement
applications to avoid the loss of temporal information through
the encoder compression’%-73 and can benefit the model training
to best simulate non-linear and level-dependent properties of

auditory processing by providing interconnections between sev-
eral CNN layers®®74. Lastly, the input dimension L, included a
number of previous and following input samples, to provide
context information to the CoNNear modules when simulating
an input of length L. Because CNN models treat each input
independently, providing context is essential to avoid dis-
continuities at the simulation boundaries and take into account
neural adaptation processes®®. A final cropping layer was added
to remove the context after the last CNN decoder layer.

To provide realistic input to the IHC-ANF models for training,
acoustic speech waveforms were input to the cochlear model and
the simulated cochlear basilar-membrane (BM) outputs were
used to train and evaluate the IHC-ANF models. To this end, the
THC transduction model was trained using Ncp =201 cochlear
filter outputs with centre frequencies (CFs) that span the human
hearing range (0.1-12 kHz) and that were spaced according to the
Greenwood place-frequency description of the human cochlea”>.
Similarly, simulated THC receptor potentials of the analytical
model cochlear regions (Ncp=201) were used as training
material for the different ANF models. It should be noted that
even though we trained the models on the basis of 201 inputs of
fixed length L, the optimal weights for a single CF-independent
THC or ANF model were determined during the training phase.
Thus, these model units can afterwards be connected to inputs of
any length L or Ncg to simulate CF-dependent IHC or ANF
processing of the entire cochlea.

To evaluate the CoNNear IHC-ANF models, it is important to
characterise their properties to acoustic stimuli that were not seen
during training. Training was performed using a single speech
corpus’®, but THC and ANF processing have very distinct adap-
tation, and frequency- and level-dependent properties to basic
auditory stimuli such as tones, clicks, or noise. Hence, to test how
well the CoNNear modules generalise to unseen stimuli and
whether they capture key properties of biological THC-ANF
processing, we evaluated their performance on a set of classical
experimental neuroscience stimuli and recordings that

COMMUNICATIONS BIOLOGY | (2021)4:827 | https://doi.org/10.1038/s42003-021-02341-5 | www.nature.com/commsbio 3


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02341-5

Table 1 Final parameter selection of the CoNNear architectures.

Parameters L L, L L. Total layers Filters/ Filter length Encoder Decoder
layer activation activation
CoNNear ¢ 2048 256 256 2560 6 128 16 tanh sigmoid
CoNNear g, 8192 7936 256 16384 28 64 PReLU PReLU
CoNNearp,, 8192 7936 256 16384 28 64 8 PReLU PReLU
CoNNear g, 8192 7936 256 16384 28 64 8 tanh sigmoid

lengths L after training.

The input length of each model was L. =L, + L + L, and the output length (after cropping) L samples. The specified lengths L were used during training, but each architecture can process inputs of variable

characterise IHC transduction and ANF firing. The six considered
evaluation metrics (described in Methods) together form a
thorough evaluation of the CoNNear IHC-ANF complex, and
outcomes of these simulations were used to optimise the final
model architecture and its hyperparameters. Lastly, to study the
application range of our framework, we evaluated how well it
generalises to other existing IHC-ANF model descriptions.
Additional details on the model architecture, training procedure,
and THC-ANF evaluation metrics are given in Methods.

Determining the CoNNear hyperparameters. Table 1 shows the
final layouts of all the CoNNear modules we obtained after taking
into account: (i) the L1-loss on the training speech material (i.e.,
the absolute difference between simulated CNN and analytical
responses), (ii) the desired auditory processing characteristics,
and (iii) the computational load. The L1-loss was considered
during training to determine the epochs needed to train each
module and to get an initial indication of the architectures that
best approximate the IHC-ANF model units. The auditory pro-
cessing characteristics of each trained architecture were then
evaluated on the basis of the six evaluation metrics to determine
which architectures provide the most biophysically realistic
description of the IHC-ANF complex. Our primary concern was
to develop a biophysically realistic CNN model of the IHC-ANF
complex, hence computational time was not the primary goal.
However, where possible, we limited the hyperparameters of the
architectures to keep the number of trained parameters (and
associated computational complexity) as low as possible without
compromising on the biophysical properties. Here, we describe
the principled fine-tuning approach we followed for each CoN-
Near module architecture and additional details are given in
Methods. For each CoNNear module, we first describe the initial
set of hyperparameters that we kept fixed, and then motivate how
the remaining hyperparameters were chosen to best predict the
biophysical response properties of the reference mechanistic
models.

CoNNear THC model

Fixed parameters. We opted for an architecture with 6 convolu-
tion layers and a filter length of 16 to capture the computations
performed by the analytical ITHC model®!. In each layer, 128
convolution filters were used and the input length was set to L. =
2048 + 2 x 256 =2560 samples (102.8 ms). The initial archi-
tecture was based on an existing CNN model we fine-tuned for
cochlear processing®, which we adjusted based on the shorter
adaptation time constants associated with IHC processing®.
Specifically, we decreased the number of layers from 8 to 6 and
the filter lengths from 64 to 16. Since the level- and frequency-
dependent non-linear characteristics of IHC processing are not
expected to differ much from cochlear processing, the same
number of convolution filters was used in each layer (128). We
evaluated a number of architectures with different layer numbers,
filter numbers or filter durations, but these did not show

significant L1-loss improvements on the training set over the
chosen architecture. The hyperparameter selection procedure is
extended in Discussion, where we explain how the relationship
between the adaptation properties of mechanistic models and the
selected CNN architecture can be empirically quantified.

Optimised hyperparameters. The shape of the activation function,
or non-linearity, is crucial to enable CoNNear to learn the level-
dependent cochlear compressive growth properties and negative
signal deflections present in BM and IHC processing. A tanh
non-linearity was initially preferred for each CNN layer, since it
shows a compressive characteristic similar to the outer-hair-cell
(OHC) and IHC input/output function®77 and crosses the x-axis.
Figure 2 shows that the trained architecture (b) generally followed
the pure-tone excitation patterns (Metric 1) of the reference
model (a), but showed a rather noisy response across CF, espe-
cially for the higher stimulation levels. To optimise the trained
IHC model, different non-linear activation functions were com-
pared for the encoder and decoder layers. Because the THC
receptor potential is expressed as a (negative) voltage difference,
we opted for a sigmoid non-linear function in the decoding
layers to better capture the reference model outputs, while
ensuring that the compressive nature present in the fanh could be
preserved. Figure 2c shows that using a sigmoid activation func-
tion instead of a tanh for the decoder layers outperformed the
tanh architecture (b) and better predicted the excitation patterns
of the reference model (a). Our selection is further supported by
Supplementary Fig. 1, that shows the root-mean-square error
(RMSE) between the simulated reference and CoNNear
IHC model excitation patterns for six different stimulus
frequencies.

Figure 3 furthermore depicts how the different activation-
function combinations affected the simulated AC/DC ratios of
the THC responses across CF (Metric 2), and the half-wave
rectified IHC receptor potential as a function of stimulus level
(Metric 3). The logarithmic decrease of the AC/DC ratio and the
linear-like growth of the IHC potential were predicted similarly
using both architectures, but the tanh architecture overestimated
the responses for high stimulus frequencies and levels. Overall, a
much smoother response was achieved when using a sigmoid
activation function in the decoder layers, motivating our final
choice for the CoNNear IHC architecture (Table 1).

CoNNear ANF models

Fixed parameters. Our modular approach enables the use of
preceding CoNNear stages to optimise our ANF model para-
meters. To determine a suitable architecture, we first took into
account the longer adaptation time constants (and the associated
slow decay to the steady-state response) of the analytical ANF
model description compared to the adaptation time constants
accociated with cochlear or IHC processing!2. Figure 4a visualises
the exponential decay over time of simulated ANF firing rates of
the reference mechanistic model to sustained stimulation, i.e., for
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an acoustic pure tone. Since CNNs treat each input window
independently, the choice of the window size L is important as it
will determine the time dependencies that our ANF models will
be able to encode and capture after training. Figure 4a shows that
at the time corresponding to a window size of 2048 samples
(~100 ms for f, = 20 kHz), the firing rates of the three ANFs have
not significantly decayed to their steady state and hence we opted
for a longer window duration L of 8192 samples ( ~400 ms). At
400 ms, the firing rates of the HSR, MSR, and LSR fibers have,
respectively, reached 99.5, 95, and 93.4 % of their final (1-second)
firing rate (Fig. 4a), providing a realistic description of the ANF
adaptation properties to the CNN architecture.

Another important factor in the architecture design relates to
capturing the experimentally®® and computationally®! observed
slow recovery of the ANF onset-peak response after prior
stimulation. The duration of the context window preceding the
input window will be crucial to sufficiently capture the effect of
prior stimulation on the response of CoNNear ANF models.
Figure 4b shows the exponential recovery of the onset peak, for
simulated responses of the three ANF types, as a function of the
interstimulus interval between a pair of pure tones. Since the
longest (1.9-second) interval corresponds to 38,000 samples, we
compromised to select a final context window that was short
enough to limit the computational complexity of the architecture,
while still being able to capture the recovery properties of the
reference ANF models faithfully. We chose 7936 samples for the
left context window (~400 ms) which resulted in a total input size
of L.=7936+ 8192 + 256 =16384 samples. For a 400-ms
interstimulus interval, the onset peak of the HSR, MSR, and
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LSR fibers has recovered to the 92.4, 94.2, and 95.8 % of the
onset peak of the 1.9-s interval tone, respectively (Fig. 4b).
Additional information regarding the context window selection is
provided in Methods and Supplementary Fig. 2.

Even though the selected window size L of the CNN
architecture adequately captures the ANF response time course,
the length of the input that the architecture can actually encode is
determined by the number of strided convolutional layers and the
length of the filters in each layer. Thus, a much deeper
architecture than chosen for the IHC model is required to
capture the slower adaptation properties of the ANF responses to
step-like stimuli (Fig. 4a). As shown in Fig. 4c, a trained
architecture with 16 layers still failed to capture the exponential
decay of the LSR ANF response, ie., the fiber type with the
slowest adaptation properties. By further increasing the receptive
field of the CNN architecture (Eq. (4)) and encoding the input to
a maximally condensed time representation, we can ensure that
the long-term correlations existent in the input can be captured
by the convolutional filters and the adaptation properties can be
faithfully described by the resulting architecture. To this end, we
opted for an architecture of 28 total layers and a filter length of 8,
that downsamples the input size of L.= 16384 samples to a
condensed representation of size 1 in its encoder. The selected
architecture was able to accurately capture the adaptation of the
reference LSR ANF firing rate over time, as shown in the bottom
panel of Fig. 4c. Lastly, we were able to decrease the number of
filters in each layer from 128 (IHC) to 64 without compromising
the L1-loss on the training dataset and the evaluated auditory
characteristics of the trained architecture.
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Optimised hyperparameters. The compressive properties of BM and
IHC processing are not observed in ANF processing, so a linear
activation function (a Parametric ReLU; PReLU) was initially used
for each CNN layer. Figure 5 shows the responses of the three

trained CoNNear ANF models (b) for different tonal stimuli in
comparison to the reference ANF model (a). The firing rates (Metric
4) of the three ANF models, CoNNear 5 , CoNNear,yp , and

CoNNear yy, , are visualised in red, blue, and cyan, respectively.
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Fig. 6 Level-dependent properties of the different ANF models. a From left to right, ANF rate-level curves (Metric 5) were simulated for the HSR, MSR,
and LSR ANF models, respectively, at CFs of 1 (dashed lines) and 4 kHz (solid lines). The reference data stemmed from guinea pig (fibers with SRs of
65, 10, and O spikes/s at a CF of ~1.5kHz; Fig. 1in ref. 48) and mouse recordings (CF of 18.8 kHz for SR of 47.6 spikes/s and CF of 23.7 kHz for SR of
0.1 spikes/s; Fig. 6 in ref. ©4). b From left to right, ANF synchrony-level functions (Metric 6) were calculated for the HSR, MSR, and LSR ANF models. For
each ANF model, TkHz and 4 kHz pure-tone carriers were modulated by an f,, =100 Hz pure tone and presented at CFs of 1 (dashed) and 4 kHz (solid).
For each CF, vector strength to the f,,, is reported against the stimulus intensity for the three fiber types. The reference data came from cat ANF recordings
(fibers of 8.1kHz CF and 2.6 spikes/s, 1.14 kHz CF and 6.3 spikes/s, and 2.83 kHz and 73 spikes/s, respectively; Figs. 5 and 8 in ref. 51).

The good match between analytical and CoNNear predictions
in Fig. 5 was extended to ANF rate- and synchrony-level growth
as well (Fig. 6; Metrics 5 and 6), and together, these simulations
show that the chosen architecture and PReLU non-linearity were
suitable to model the three ANF types. Compared to the reference
firing rates, the architectures in panel (b) introduced noise, that
we attempted to eliminate by using a more compressive activation
function (tanh) between the encoder layers. The tanh function
was able to transform the negative potential of the IHC stage to
the positive firing response of the ANFs (Fig. 5¢) and yielded
similar firing rates for all ANF models. However, for the
CoNNear,yp and CoNNear,; architectures, the tanh non-

H M

linearity introduced an undesired compressive behaviour at
higher stimulus levels, as depicted in Fig. 6a. This was not the
case for CoNNear g, , and hence we also tested whether using a
sigmoid non-linearity in the decoder layers would further
improve the predicted responses. Although this combination of
non-linearities (d) compressed the responses of the CoNNear
and CoNNear,y; ~models even more, this combination was
found to best approximate the firing rates of the analytical LSR
ANF model. We further quantified the observed trends by
calculating the RMSEs between the reference and CoNNear ANF
firing rates to the same stimuli across different levels (Supple-
mentary Fig. 3).

Evaluating the biophysical properties of CoONNear IHC-ANF.
Even though different CNN architectures can be trained to yield a
sufficiently low L1-loss on the speech dataset, it is important that
the final CoNNear model also matches the biophysical properties
of the mechanistic models and eletrophysiological recordings. To
this end, we evaluated the performance of the CoNNear modules
on six electrophysiology-based experiments using stimuli that

were not part of the training set (Metrics 1-6). The excitation
patterns of the final CoNNear IHC model (Fig. 2¢c) were generally
consistent with the reference IHC model (a). The IHC AC/DC
components (Fig. 3a) followed the simulated and measured
curves well, and showed a slight overestimation for the lower
frequency responses. The simulated half-wave rectified IHC
receptor potential (Fig. 3a) corroborated the in-vivo guinea-pig
IHC measurements’8 by showing an unsaturated, almost linear,
growth of the half-wave rectified IHC receptor potential for sti-
mulation levels up to 90 dB.

For each ANF model, the final CoNNear architectures (Table 1)
followed the reference model firing rates across time (Fig. 5). As
expected, phase-locking to the stimulus fine structure was present
for the 1-kHz ANF response and absent for the 4-kHz ANF.
Phase-locking differences between the 1 and 4-kHz CF fibers were
also evident from their responses to amplitude-modulated tones.
The level-dependent properties of different ANF types were also
captured by our CoNNear architectures, as shown in Fig. 6.
Compared to the reference data, the 4-kHz simulations captured
the qualitative differences between LSR, MSR, and HSR guinea-
pig ANF rates well. The mouse rate-level curves show somewhat
steeper growth than our simulations, especially when comparing
the lower SR fiber data with the simulated MSR fiber responses.
Given that the cochlear mechanics are fundamentally different
across species, it is expected that the level- and CF-dependence of
the ANF responses are not overly generalisable across species.
The shape of the simulated rate-level curves was different for the
different CF fibers (1-kHz dashed lines compared to 4-kHz solid
lines) despite the use of CF-independent parameters in the ANF
model. This illustrates that differences in BM processing across
CF, given as input to the IHC-ANF model, are still reflected in
the shape of ANF rate-level curves. The smaller dynamic range of
levels encoded by the BM for the 1-kHz than the 4-kHz CF (e.g,,
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Table 2 CoNNear execution time.
Model Trainable parameters Window (ms) CPU (s) GPU (ms)
201-CF 1-CF 201-CF 1-CF
IHC model - 102.4 1.2707 0.6117 -
CoNNearyc 1,317,505 102.4 1.0262 0.0102 56.40 218
ANFy model - 819.2 1.0553 0.7197 -
CoNNear g, 1,250,177 819.2 2.6792 0.0289 178.25 7.21
ANFy model - 819.2 1.0508 0.7015 -
CoNNearANFM 1,250,177 819.2 2.6820 0.0279 175.97 6.95
ANF_ model - 819.2 1.0590 0.7019 -
CoNNear sy, 1,248,449 819.2 2.2074 0.0243 115.86 4.53
IHC-ANF model - 819.2 9.7798 4.6532 -
CoNNearpyc-anF 5,066,308 819.2 1.8147 0.0676 803.48 16.61
Cochlea-IHC-ANF model - 819.2 167.4808 - -
CONNEar cochienHC-ANE 16,756,292 819.2 12.6016 - 805.83 -
Comparison of the average time required to calculate each stage of the reference and the CoNNear model on a CPU (Intel Xeon E5-2620) and a GPU (Nvidia GTX 1080). For each of the separate stages,
the reported time corresponds to the average time needed to process a fixed-size input of Ncr = 201 frequency channels (population response) and N¢r =1 channel (single-unit response), corresponding
to the output of the preceding stage of the analytical model to a speech stimulus. The same results are shown for the CoNNear IHC-ANF complex, after connecting all the individual modules. The last
row shows the computation time needed to transform a speech window input to ANF firing rates, after connecting the CoNNear cochlea and IHC-ANF modules together.

Fig. 2 in ref. 1) was also reflected in the ANF level-curves, which
showed compression at lower stimulus levels for the 1-kHz CF.

Lastly, our CoNNear ANF architectures captured ANF
synchrony-level curves well, while showing no apparent differ-
ences between the different non-linearities (Fig. 6b). In qualitative
agreement with the reference experimental data, the maxima of
the synchrony-level curves shifted towards higher levels as the
fibers’ threshold and rate-level slope increased. At the same time,
enhanced synchrony for LSR over HSR fibers was observed for
medium to high stimulus levels, with the most pronounced
difference for the 1-kHz simulations (dashed lines). For MSR and
LSR fibers, the CoNNear models were able to simulate
modulation gain, i.e., vector strength >0.5°1. Taken together, we
conclude that CoNNeargc_anr simulates the properties of IHC
and ANF processing on six classical neuroscience experiments
well, even though the stimuli for these experiments were unseen,
i.e., not presented during the training procedure.

CoNNear as a real-time model for audio applications. Due to its
CNN architecture, the CoNNear IHC-ANF computations can be
sped up when run on an Al accelerator (GPU, VPU etc.). Table 2
summarises the computation time required to execute the final
CoNNear architectures on a CPU and GPU, for 201-channel and
single-channel inputs. The average computation time is shown
for each separate module of the IHC-ANF complex and the
respective input length, as well as for the merged IHC-ANF
model (CoNNearjyc ang) after connecting all the separate
modules together (see Methods for more information). Lastly, our
previously developed CoNNear cochlear model®® was connected
with CoNNearjyc_anp to directly transform acoustic speech
inputs to ANF firing rates.

We did not observe a processing time benefit when running
the ITHC-ANF stages with 201-channel inputs on a CPU: the
CoNNear ANF models actually increased the computation
time compared to when the reference models were computed
on the same CPU. However, the execution of the 201-channel
THC-ANF models reduced the computation time 12-fold on a
GPU, when compared to the execution time of the reference
model on the CPU. Our modular design choice makes it possible
to use CoNNearryc anr modules only for a subset of CFs, or for
single-unit responses. A significant speed up was seen in this
latter case: an almost 70-fold faster CPU computation, and a 280-
fold speed up for GPU computation. When connected to
CoNNearocpea (Supplementary Fig. 4), ANF firing rates can be

simulated in ~800 ms on a CPU and in less than 20 ms on a GPU
for an audio input of ~820 ms.

Similar speed-up benefits were observed when simulating
single-unit responses for longer inputs on the CPU (Supplemen-
tary Table 1), with the ANF models providing a somewhat faster
execution. The achieved speed up was more significant on the
GPU, with a 1600 times faster CoNNearc execution than the
reference IHC model and a ~550 times faster CoONNear 5 g model
execution on average. Different from Table 2, the single-channel
CoNNearjc_anr models were used for all simulations of longer
inputs to avoid large memory allocation. This resulted in lower
speed-up benefits for the population-response simulations of
Supplementary Table 1, but, for high-end systems that can
support this additional memory requirement, the parallel
simulation of all N¢r channels can provide a speed-up benefit
comparable to the results of Table 2.

Extension of the framework to other auditory model descrip-
tions. To demonstrate that the presented neural-network fra-
mework is applicable to different Hodgkin-Huxley and diffusion-
store auditory model desciptions, we used our CNN-based
architectures to approximate two other state-of-the-art descrip-
tions of the IHC-ANF complex with varying levels of complexity
(see Methods). First, we applied our CoNNearpyc architecture
and training approach to approximate the analytical Dierich et al.
IHC model description!?. Figure 7a shows that the trained CNN
model (Dierich2020-CNNyyc) accurately simulated the steady-
state responses of this detailed IHC description (Dierich2020-
THC), as reflected by the AC/DC ratio (Metric 2). However, a
property that was not fully captured by our architecture was the
adaptation time course of the responses after stimulus onset, as
shown in Fig. 7b. The Dierich et al. IHC model requires ~37.5 ms
(t,—11) to decay to its steady-state response while the architecture
we used can only accommodate adaptation time course in the
order of ~5ms (Eq. (4)). The higher number of non-linearities
and longer time constants that comprise this analytical model
(i.e, 7 conductance branches in the Hodgkin-Huxley model)
require further adjustments to the CNN architecture (see Dis-
cussion for more details). For comparison purposes, the simu-
lated AC/DC ratios of CoNNearyc and another IHC analytical
description, ie., the Zilany et al. model®8, are also shown in
Fig. 7a alongside the experimental data.

Furthermore, we applied the training approach of CoNNearng
to approximate the instantaneous firing rates of the HSR, MSR,
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Fig. 7 Comparison between different IHC-ANF analytical and CNN model descriptions. a The ratio of the AC and DC components of the IHC responses
(Metric 2) is compared across CF between different IHC analytical descriptions'®.58 and the trained CNN models, as well as against guinea-pig data®3.
b The IHC receptor potential output of the CNN approximation is compared against the reference Dierich et al. IHC model'©, in response to a 1-kHz pure
tone of 70 dB SPL. ¢ Rate-level curves (Metric 5) were calculated for the HSR, MSR, and LSR models of different ANF analytical descriptions®8>9 and the
CNN models, in response to tone bursts at CFs of 1 (dashed lines) and 4 kHz (solid lines). The experimental data came from guinea-pig#8 and mouse®4
recordings. d Synchrony-level functions (Metric 6) were calculated for the HSR, MSR, and LSR models of different ANF analytical descriptions>8>° and the
CNN models, in response to modulated tones with carrier frequencies of 1 (dashed) and 4 kHz (solid) presented at CF. The experimental data came from
cat ANF recordings®'. e For each fiber type, the ANF mean firing rate outputs (Metric 4) of the CNN approximations are compared against the reference
Zilany et al. ANF model®8, in response to a 1-kHz tone burst and a 1-kHz SAM tone of 70 dB SPL (f,, =100 Hz).

and LSR fiber models included in the Zilany et al. AN analytical
description®8, without including the additive Gaussian noise and
subsequent spike generator stages of this description. Modelling
the schocastic processes of ANF spikes on the basis of post-
stimulus time histogram (PSTH) predictions is beyond the scope of
the present study. However, after training the CNN models, the
generated instantaneous firing rates can be used as input to a spike
generator to simulate spike times. The trained CNN models
accurately approximated mean firing rates of the analytical ANF
models, as shown in response to different tonal stimuli (Fig. 7e and
Supplementary Fig. 5b). With the predicted outputs given as inputs
to the spike generator model, the simulated PSTH responses were
used to compute the ANF rate- and synchrony-level curves
(Metrics 5-6) of the different types of ANFs (Fig. 7¢c, d). The
predicted curves (Zilany2014-CNN s ng) show a similar trend to the
Zilany et al. ANF model (Zilany2014-ANF); however, it is not
possible to directly compare the resulting curves due to the
inherent noise of the spike generator included in the reference

analytical model. Once again, the simulated rate- and synchrony-
level curves are also shown in Fig. 7c, d for CoNNear g and for
another state-of-the-art ANF description, the Bruce et al.>® model.
In conclusion, our CoNNear architectures extended well to other
analytical auditory models with a similar complexity, but need to
be adjusted to accommodate the properties of models with higher
complexity or longer time constants.

CoNNear applications. An important benefit of CNN models
over their respective analytical descriptions is given by their dif-
ferentiable character. As a result, backpropagation algorithms can
be computed from the outputs of these models to train new
neural networks. An example use case is presented in Fig. 8a,
where a DNN model was trained to minimise the difference
between the outputs of two IHC-ANF models: a normal and
pathological model. Each model comprised the CoNNearyyc and
CoNNear,yp, modules, and the firing rates of each model were
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Fig. 8 Using CoNNear for backpropagation. a The audio-signal processing DNN model is trained to minimise the difference between the outputs of the
two CoNNear IHC-ANF models (orange pathway). b When processed by the trained DNN model, the input stimulus results to a firing rate output for the

second model that closely matches the firing rate of the first model.

multiplied by a factor of 10 and 8, respectively, to simulate
innervations of a normal-hearing human IHC at 4 kHz (Fig. 5 in
ref. 79), and a pathological THC that has a 20% fiber deaf-
ferentation due to cochlear synaptopathy®®. The DNN model was
trained based on the responses of these two CoNNear models to
modify the stimulus such to restore the output of the pathological
model back to the normal-hearing model output. Training was
done using a small input dataset of 4 kHz tones with different
levels and modulation depths, normalised to the amplitude ranges
of IHC inputs, and the DNN model was trained to minimise the
L1-loss between the time and frequency representations of the
outputs. After training, the DNN model provides a processed
input X to the 8-fiber model to generate an output 7 that matches
the normal-hearing firing rate rr as much as possible. The result
for a modulated tone stimulus is shown in Fig. 8b, for which the
amplitude of the 8-fiber model response is restored to that of the
normal-hearing THC-ANF. This example demonstrates the
backpropagation capabilites of our CNN models and can, in
future studies, be extended to more complex datasets. For
instance, the same method could be applied to train on a speech
corpus and derive suitable signal-processing strategies for speech
processing restoration in hearing-impaired auditory peripheries.

Discussion

CoNNear presents a new method for projecting complex math-
ematical descriptions of auditory neuron and synapse models to
DNN architectures, while providing a differentiable solution and
accelerated run-time. While hybrid approaches have in past
studies focussed on optimising analytical model descriptions to
reduce their complexity and computation effort36-33, our method
takes advantage of deep learning to develop DNN-based
descriptions that can be used for backpropagation in closed-
loop systems. Our proposed framework was applied to different
auditory Hodgkin-Huxley neuron and synapse models, providing

a baseline methodology that can be extended to more complex
biophysical models of sensory systems. The presented
CoNNearjyc_ang  model accurately simulates — single-unit
responses, speeds up the IHC-ANF processing time, and can
simulate population responses across a number of simulated
tonotopic locations (default Ncp=201) when connected to a
cochlear model.

Framework. The general methodology we followed to model each
auditory processing step can be summarised as follows: (i) Derive
an analytical description of the biophysical system using available
neuroscience recordings. (ii) Use this analytical description to
generate a training dataset that contains a broad and repre-
sentative set of sensory stimuli. (iii) Define a suitable DNN
architecture and determine initial values of its hyperparameters
based on the properties of the analytical model. (iv) Train the
architecture to predict the behaviour of the biophysical system
and evaluate its performance on known physiological character-
istics using unseen data. A broad set of evaluation metrics derived
from experimental neuroscience is used to characterise the phy-
siological aspects of the biophysical system. (v) Adjust and
optimise the architecture and its hyperparameters on the basis of
the evaluation outcomes. Apart from requiring a careful design of
the DNN architecture and a broad range of sensory input stimuli,
steps (iii) to (v) need to be repeated to optimise the architecture
iteratively and yield a maximally generalisable DNN model.
Here, we focussed our development on creating CNN
architectures that optimally approximate the Verhulst et al.
THC-ANTF description®l, and showed how these architectures can
be optimised based on the specific parameters of each analytical
model and the evaluation outcomes. We demonstrated that the
proposed framework and CNN architectures generalise well to
unseen stimuli, and we used these architectures to show that
other auditory sensory cell and synapse model descriptions of
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similar complexity can be approximated using the same
methodology. This provides a promising outlook because it
suggests that our DNN-method might be applicable to other
neuronal systems that depend on non-linear and/or coupled
ODEs (e.g., see also the application of this method to cochlear
mechanics®). To further support this claim, we provide a simple
example in Supplementary Fig. 6 where our methodology was
applied to a non-auditory neuron model, the standard
Hodgkin-Huxley model!. After determining the baseline CNN
architectures of each supplementary model, our outlined iterative
procedure can be applied to further improve the accuracy of each
approximation, e.g., to fully capture the adaptation properties of
the Dierich et al. ITHC model or to further reduce the RMSEs of
the Zilany et al. ANF model predictions (Supplementary Fig. 5).

The results of our fine-tuning approach for a range of auditory
models can provide insight as to how an appropriate initial CNN
architecture can be selected depending on the characteristics of
the biophysical system that needs to be approximated. For the
encoder-decoder CNN architectures we used, the adaptation time
constants of the reference analytical descriptions (~8 ms for
IHC?, ~60 ms for AN!2) guided our choice for the number of
convolutional layers and the filter lengths. Using Eq. (4), these
two hyperparameters can be selected to yield an architecture with
a receptive field (RF) length that roughly corresponds to the
adaptation time course of the analytical model to be approxi-
mated. The adaptation properties of a model can be estimated
from the step response to sustained stimulation (i.e., pure tones
for the auditory models and step currents for the standard
Hodkin-Huxley model), from which the peak-to-steady-state
duration of the response can be computed. For example, the ANF
reponses of Verhulst et al. require the whole duration of the
selected input window to sufficiently decay to their steady-state
response (Fig. 4a and Supplementary Table 2). Equation (4)
predicts that at least 12 strided layers were necessary in the
encoder (24 in total) to yield a RF larger than the input window
and fully capture the adaptation time course of the ANF
responses. Using the same formula, we estimate that N = 6 layers
with a filter length k,, = 16 or N = 3 layers with filter length k, =
128 are necessary in the encoder to accurately approximate the
adaptation properties of the Dierich et al. IHC model (Fig. 7b),
which require a RF greater than (f, — f;) X fs =750 samples. On
the other hand, the Zilany et al. AN model had a shorter
adaptation time course than the selected window and RF size of
CoNNearanr (Supplementary Table 2), so the same architecture
was sufficient to approximate all different fiber types included in
this model description. Based on the estimated adaptation
properties and Eq. (4), we expect that the number of layers in
the CNN architecture can be further reduced without compro-
mising the quality of the predictions for this description.

Supplementary Table 2 summarises the characteristics of all the
analytical models we approximated along with their respective
CNN encoder-decoder architecture properties. It is important to
note that the fine-tuning approach we followed to optimise
CoNNear resulted in an architecture for CoNNearyyc that has
shorter RF duration than the estimated adaptation of the respective
IHC analytical description. This demonstrates the importance of
this iterative evaluation procedure to derive maximally generali-
sable models. While the theoretical RF size (Eq. (4)) can provide an
initial estimate of the needed architecture and hyperparameters,
this step alone does not take into account the effect of the chosen
activation functions between the layers or the RF size that is
eventually considered by the convolutional filters after training (see
also Methods). These latter aspects can influence the number of
units (or effective RF) that the architecture effectively uses after
training®?; thus the evaluation procedure is still necessary to further
improve the architectures.

Finally, depending on the time course of the response of an
analytical model and the selected number of encoder layers N,
any multiple of 2V samples can be chosen as input window for the
training, as long as it captures the full response time course of the
analytical model for a broad range of stimulation paradigms. The
number of filters in each layer relate to the non-linear level- and
frequency-dependent characteristics of the analytical model and
can be selected based on the complexity of the description (e.g.,
number of ODEs). Since 128 filters per layer were sufficient to
describe the properties of the transmission-line cochlear model®®,
a highly complex and non-linear system, this number should
prove a good starting point for approximating different non-
linear systems. By examining whether the properties of the model
are faithfully captured by the trained CNN architecture across a
broad range of stimulus levels and frequencies, the filter size can
be further optimised.

Limitations. A limitation of DNN-based descriptions is that,
when trained, specific model parameters cannot be adjusted based
on physiological insight, as in the case of their analytical coun-
terparts. Instead, the parameters of the mechanistic model need to
be adjusted and generate a new training dataset that can be used
to derive a new DNN model. In a recent study, we showed how
transfer learning can be used to speed up the process of retraining
parameters of a known CNN model with the same architecture,
where CoNNear s Was retrained to approximate the patho-
logical (hearing-impaired) output of the reference analytical
cochlear model in less than 10 min®’. We can use the same
approach to retrain or further optimise all CoNNear modules on
the basis of improved analytical model descriptions or large
neural datasets, when these become available. As DNN approa-
ches learn the properties of a biophysical system solely based on
input and output data, DNN-based neuronal models could pro-
vide new tools for neuroscientists to explain complex neuronal
mechanisms such as heterogenous neural activity, circuit con-
nectivity or optimisation, when properly benchmarked3%-33.34,

Approximately three and eigth days were needed to train each
CoNNear ANF model and IHC model, respectively. To shorten
these training durations, a different scaling of the datasets, or
batch normalisation between the convolutional layers, could
prove beneficial®!. When considering the adaptation and recovery
properties of the CONNear ANF models, a compromise was made
to limit the computational complexity of the resulting architec-
tures. As shown in Fig. 4a, b, the selected context and input
lengths resulted in ANF models that can simulate up to ~400 ms
recovery from prior stimulation and up to ~400 ms adaptation to
the steady-state response, respectively. Depending on their
application, the CoNNear ANF architectures could be extended
to train using longer context or input window lengths, but this
choice could sacrifice the speed-up benefits of the models while
only improving the accuracy by ~4% for sustained stimulation of
>400ms or for >400ms interstimulus intervals. On the other
hand, when considering their use for real-time applications,
where ANF adaptation and recovery properties may be of lesser
importance, it is possible to further reduce the context and
window sizes and bring execution times below 10 ms. In studies
where the saturated, steady-state responses are utilised, faster
ANF models that are blind to long interstimulus intervals and
unable to describe adaptation over time (Supplementary Fig. 2)
might be desirable.

The most significant speed-up benefit compared to the
analytical model was observed when connecting the previously
developed CoNNear,cpie.®® to our CoNNearjyc_ang (Table 2).
The reason for this performance difference relates to the higher
complexity (and frequency resolution) of the reference
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transmission-line cochlear model®® and the modular approach we
adopted for modelling the IHC-ANF complex. Supplementary
Table 1 compares how the execution time and associated
complexity of each analytical model implementation impacted
the achieved speed-up benefit. Although the CoNNear IHC-ANF
architectures use considerably less trainable parameters than the
CoNNear cochlear model, the same operations are applied Ncp =
201 times, i.e., for each frequency channel of the BM output. This
leads to a larger memory allocation and associated increased
computation time when compared to CoNNear ,piea» Which uses
a single channel throughout the architecture and only adds a 201-
sized output layer at the end. Thus, our modular modelling
approach negatively affected the computation speed of
CoNNearygc_anp but resulted in a biophysically correct and
rather versatile model, where the number of channels can easily
be adjusted depending on the application (e.g., cochlear implants
with different numbers of electrodes). Even though significant
speed-up benefits might not be achieved when approximating
computationally efficient analytical models, our framework can
still generate differentiable descriptions that can be backpropa-
gated through.

Depending on the number N of strided convolutional layers
used in the encoder of each architecture, the input L. to each
specific CoNNear model needs to be a multiple of 2M: a multiple
of 8 samples for the IHC model and a multiple of 16384 samples
for the ANF models. This particularly limits the performance
scalability of CoNNearyr to different input sizes, since shorter
inputs need to be zero-padded. Additionally, when simulating
longer inputs with Ncp =201 frequency channels, it is better to
use the single-channel CoNNearjyc_ang models and simulate
each channel consecutively, rather than simultaneously, to avoid
large memory allocation in mid-range systems (Supplementary
Table 1).

The training material we used (TIMIT speech corpus) had a
sampling frequency of 16 kHz; therefore, the trained IHC-ANF
models are roughly limited to operating frequencies up to 8 kHz.
This effect is demonstrated in Supplementary Fig. 1, where the
RMSE of the ITHC excitation pattern of our final IHC architecture
is significantly higher for an 8-kHz pure tone than for lower
frequencies. To extend the operating frequency of our models,
training datasets with a higher sampling frequency or broader
frequency content could be used and the sampling frequency of
the CoNNear models (f; =20 kHz) could be increased. It should
be noted that, when adapting the CoNNear sampling frequency,
the input lengths L and filter lengths of each CNN model need to
be adjusted accordingly to correspond to the same window
durations. This may compromise the real-time capabilities of the
models for applications that require low latencies, but may not be
an issue for neuroscience studies.

Lastly, the developed CoNNear models are suitable for
implementation in data processing devices such as a cochlear
implant to provide biophysically accurate stimuli to the auditory
nerve. The ANF responses could also be used to drive neural-
network back-ends that simulate brainstem processing or even
the generation of auditory evoked potentials, such as the auditory
brainstem response®®°! or the compound action potential®2. All
developed CoNNear modules can be integrated as part of brain
networks, neurosimulators, or closed-loop systems for auditory
enhancement or neuronal-network based treatments of the
pathological system. Our framework for auditory neurons and
synapses can inspire new neural-network models or large-scale
neural networks that advance our understanding of the under-
lying mechanisms of such systems, while making use of the
transformative ability of backpropagating through these large-
scale systems. We think that this type of neural networks can

provide a powerful tool to delve deeper into unknown systems of
higher processing levels, such as the brainstem, midbrain, and
cortical pathway of the human auditory processing.

Methods

The procedure depicted in Fig. 1a was used to train the CoNNear IHC and ANF
modules using simulated responses of an analytical Hodgkin-Huxley-type IHC
model** and a three-store diffusion model of the ANF synapse?, respectively. We
adopted the implementations described in ref. ®! and found on https://doi.org/
10.5281/zenodo.3717431. The choice of using CNN encoder-decoder architectures
for our model was made because of their increased efficiency and parallelism
compared to other DNN architectures, such as recurrent neural networks (RNNs),
that require sequential processing®>. CNN architectures only rely on convolutions
to transform input to output and are able to apply the same filter functions across
multiple windows of the input in parallel'®34, The same convolutional operations
are applied regardless of the size of the input, making these architectures paral-
lelisable and scalable. Recurrent layers such as LSTMs can still be used in con-
nection to CoNNear (e.g., to capture the dependency on prior stimulation without
requiring long context windows, or when approximating other systems), but this
would lead to sequential systems that are less computationally efficient and unfit
for parallel computing.

Figure 1b depicts the CoNNear IHC encoder-decoder architecture we used: an
input of size L. x Ncr cochlear BM waveforms is processed by an encoder (com-
prised of three CNN layers) which encodes the input signal into a condensed
representation, after which the decoder layers map this representation onto L X Ng
THC receptor potential outputs, for Ncg = 201 cochlear locations corresponding to
the filters’ centre frequencies. Context is provided by making the previous L; =256
and following L, = 256 input samples also available to an input of length L = 2048,
yielding a total input size of L. =L;+ L + L, = 2560 samples.

The three CoNNear ANF models follow an encoder-decoder architecture as
depicted in Fig. 1c: an THC receptor potential input of size L. x N is first pro-
cessed by an encoder (comprised of N=14 CNN layers) that encodes the IHC
input signal into a condensed representation of size 1 x ky using strided con-
volutions, after which the decoder, using the same number of layers, maps this
representation onto L x Ncg ANF firing outputs corresponding to Ncg = 201
cochlear centre frequencies. Context is provided by making the previous L; = 7936
and following L, = 256 input samples also available to an input of length L = 8192,
yielding a total input size of L.=L;+ L + L, = 16384 samples.

We illustrate the effect of the context window duration in Supplementary Fig. 2,
that shows simulated responses of two trained CoNNear ANF; models to a 8192-
sample long 70-dB-SPL speech segment. Considering an architecture with a short
context window (c), the simulated response was unable to reach the onset
amplitude of the reference LSR fiber model (b) observed for the high CFs at
approximately 100 ms (grey dashed box). At the same time, the response for the
short-context architecture decayed to a more saturated output after the onset peak,
compared to the reference model. In contrast, when using a longer context window,
our final CoNNear ANF; architecture (d) captured the onset peak observed after
the long interstimulus interval while showing an unsaturated fiber response that
matched the reference model (b). These observations can better be assessed in
panels (e) and (f), where the difference between the outputs of the two trained
models and the reference LSR model is visualised.

Training the CoNNear IHC-ANF complex. IHC-ANF models were trained using
reference analytical BM, or IHC, model simulations®! to 2310 randomly selected
recordings from the TIMIT speech corpus’®, which contains a large number of
phonetically balanced sentences with sufficient acoustic diversity. The 2310 TIMIT
sentences were upsampled to 100 kHz to solve the analytical model accurately®>.
The root-mean-square (RMS) energy of half the sentences was adjusted to 70 dB
and 130 dB sound pressure level (SPL), respectively. These levels were chosen to
ensure that the stimuli contained a broad range of instantaneous intensities,
necessary for the CoNNear models to capture the characteristic input-output and
saturation properties of individual IHC*® and ANFs’8. The RMS sound intensity of
the whole dataset within 4-ms time bins had an average value of 81 +33 dB SPL.

BM displacements, IHC potentials, and ANF firing rates were simulated across
1000 cochlear sections with CFs between 25 Hz and 20 kHz%!. The corresponding
1000 ypm, Vi, and ANfy,, output waveforms were downsampled to 20 kHz, and
only 201 uniformly distributed CFs between 112 Hz and 12 kHz were selected to
train the CoNNear models. Above 12 kHz, human hearing sensitivity becomes very
poor8®, motivating the chosen upper limit of considered CFs. The simulated data
were then transformed into a one-dimensional dataset of 2310 x 201 = 464,310
different training sequences. This dimension reduction was necessary because the
THC and ANF models are assumed to have CF-independent parameters, whereas
the simulated BM displacements have different impulse responses for different CFs,
due to the cochlear mechanics®’. Hence, parameters for a single IHC or ANF
model (Ncg = 1) were determined during training, based on simulated CF-specific
BM inputs and corresponding IHC, or ANF, outputs from the same CF. The
parameters of the non-linear operations were shared across the time and frequency
dimensions (first two dimensions) of the model, i.e., weights were applied only to
the filter dimension (third dimension).
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For each of the resulting 464,310 training pairs, the simulated BM and IHC
outputs were sliced into windows of 2048 samples with 50% overlap and 256
context samples for the IHC model. For the ANF models, silence was also added
before and after each sentence with a duration of 0.5 and 1 s, respectively, to ensure
that our trained models can accurately capture the recovery and adaptation
properties observed in ANF firing rates. The resulting simulated IHC and ANF
outputs were sliced into windows of 8192 samples with 50% overlap, using 7936
context samples before and 256 samples after each window.

A scaling of 10° was applied to the simulated BM displacement outputs before
they were given as inputs to the CoNNear IHC model, expressing them in [pum]
rather than in [m]. Similarly, the simulated IHC potential outputs were multiplied
by a factor of 10, expressed in [dV] instead of [V], and a scaling of 1072 was
applied to the simulated ANF outputs, expressing them in [x100 spikes/s]. These
scalings were necessary to enforce training of CoNNear with sufficiently high
digital numbers, while maximally retaining the datasets’ statistical mean close to 0
and standard deviation close to 1 to accelerate training®!. For visual comparison
between the original and CoNNear outputs, the values of the CoNNear models
were scaled back to their original units in all shown figures and analyses.

CoNNear model parameters were optimised to minimise the mean absolute
error (L1-loss) between the predicted CoNNear outputs and the reference
analytical model outputs. A learning rate of 0.0001 was used with an Adam
optimiser®® and the entire framework was developed using the Keras machine
learning library® with a Tensorflow?® back-end.

After completing the training phase, the IHC and ANF models were
extrapolated to compute the responses across all 201 channels corresponding to the
Ncg = 201 tonotopic CFs located along the BM. The trained architectures were
adjusted to apply the same calculated weights (acquired during training) to each of
the N channels of the input, providing an output with the same size, as shown in
Fig. 1c. In the same way, the trained models can easily simulate single-CF IHC
responses, or be used for different numbers of channels or frequencies than those
we used in the cochlear model.

Evaluating the CoNNear IHC-ANF complex. Three IHC and three ANF eva-
luation metrics were used to determine the final model architecture and its
hyperparameters, and to ensure that the trained models accurately captured
auditory properties, while not overfitting to the training data and generalising to
new inputs. The metrics were based on classical experimental neuroscience mea-
surements and together form a comprehensive set of characteristics that describe
ITHC-ANF processing. Even though any speech fragment can be seen as a com-
bination of basic stimuli such as impulses and tones of varying levels and fre-
quencies, the acoustic stimuli used for the evaluation can be considered as unseen
to the models, as they were not explicitly present in the training material.

The evaluation stimuli were sampled at 20 kHz and had a total duration of 128
ms (2560 samples) and 819.2 ms (16384 samples) for the CoNNear IHC model and
the CoNNear ANF models, respectively. The first 256 samples of the IHC stimuli
and 7936 samples of the ANF stimuli consisted of silence, to account for the
respective context of the models. Each time, the evaluation stimuli were passed
through the preceding processing stages of the analytical model to provide the
necessary input for each CoNNear model, i.e., through the cochlear model for
evaluating the CoNNear IHC model and through the cochlear and IHC models for
evaluating the CoNNear ANF models.

Metric 1: IHC excitation patterns. Experimentally, excitation patterns are hard to
construct from IHC recordings, but such patterns can be simulated from the mean
THC receptor potential at each CF in response to tonal stimuli of different levels to
reflect the properties of BM processing. Similar to cochlear excitation patterns, ITHC
patterns show a characteristic half-octave basal-ward shift of their maxima as
stimulus level increases®!. These excitation patterns also reflect the non-linear
compressive growth of BM responses with level observed when stimulating the
cochlea with a pure tone that has the same frequency as the CF of the measurement
site in the cochlea®2.

We calculated excitation patterns for all 201 simulated IHC receptor potentials
in response to pure tones of 0.5, 1, and 2 kHz frequencies and levels between 10
and 90 dB SPL using:

tone (t) = py - ¥/2 - 1042 - sin(nf . b), (1)

where py =2 x 107 Pa, L corresponds to the desired RMS level in dB SPL, and fi.
to the stimulus frequencies. The pure tones were multiplied with Hanning-shaped
5-ms ramps to ensure gradual onsets and offsets.

Metric 2: IHC AC/DC ratio. Palmer and Russel recorded intracellular receptor
potentials from an IHC in the basal turn of a guinea-pig cochlea, in response to 80-
dB-SPL tone bursts®3. For low-frequency tones, the IHC receptor potential shows a
sinusoidal and asymmetrical response compared to the resting potential (Fig. 9 in
ref. 93). As the stimulus frequency increases, responses become more asymmetrical
in the depolarising direction with the AC component gradually becoming a frac-
tion of the DC component. To further quantify this observation, Palmer and Russel
reported the ratio between the AC and DC response components as a function of
stimulus frequency. The AC/DC ratio shows a smooth logarithmic decrease across
frequency (mainly observed for frequencies higher than ~600-700 Hz), which has

been ascribed to the properties of the IHC membrane potential!%44, As reported in
ref. 63, the AC/DC ratio can be used as a metric to characterise synchronisation in
IHCs, with higher ratios indicating more efficient phase-locking of the IHC to the
stimulus phase.

Our simulations were conducted for 80-ms, 80-dB-SPL tone bursts of different
frequencies presented at the respective CFs, and were compared against
experimental AC/DC ratios reported for two guinea-pig IHCs. We used a longer
stimulus than adopted during the experimental procedures (50 ms), to ensure that
the AC component would reach a steady-state response after the stimulus onset. A
5-ms rise and fall ramp was used for the stimuli, and the AC and DC components
of the responses were computed within windows of 50-70 ms after and 5-15 ms
before the stimulus onset, respectively. For each frequency, the AC/DC ratio was
computed by dividing the RMS value of the AC component, defined as the
sinusoidal amplitude of the response, by the DC component, defined as the
difference between the AC sinusoidal mean value and the resting potential of the
response’.

Metric 3: IHC potential-level growth. Capturing the dynamics of outward THC K+
currents has an important role in shaping ANF response properties of the whole
THC-ANF complex?10, This feature of mechanical-to-electrical transduction
compresses IHC responses dynamically and thereby extends the range of vgy
amplitudes that can be encoded by the IHC, as postulated in experimental and
theoretical studies®40. As the vy responses only show compressive growth up to
levels of 80 dB SPLOL%6, the simulated half-wave rectified THC receptor potential is
expected to grow roughly linearly with SPL (in dB) for stimulus levels up to 90 dB
SPL, thus extending the compressive growth range by 10 dB. To simulate the IHC
receptor potential, 4-kHz tonal stimuli with levels from 0 to 100 dB SPL were
generated, using the same parameters as before (80-ms duration, 5-ms rise/fall
ramp). The responses were half-wave rectified by subtracting their DC component,
and the RMS of the rectified responses was computed for each level.

Metric 4: ANF firing rates. We evaluate key properties of simulated ANF responses
to amplitude-modulated and pure-tone stimuli for which single-unit reference
ANF recordings are available. We simulated the firing rate for low-, medium-, and
high- SR fibers to 1 and 4 kHz tone bursts and amplitude-modulated tones, pre-
sented at 70 dB SPL and calculated at the respective CFs. Based on physiological
studies that describe phase-locking properties of the ANF?165, stronger phase-
locking to the stimulus fine structure is expected for the 1-kHz fiber response than
for the 4-kHz, where the response is expected to follow the stimulus envelope after
its onset. Similar differences are expected for the amplitude-modulated tone
responses as well.

Pure-tone stimuli were generated according to Eq. (1) and the amplitude-
modulated tone stimuli using:

SAM — tone (t) = [1 + m - cos(2nf 4t + 7)] - sin(27f 1), 2)

where m =100% is the modulation depth, f,,,; = 100 Hz the modulation
frequency, and fi,,. the stimulus frequency. Amplitude-modulated tones were
multiplied with a 7.8-ms rise/fall ramp to ensure a gradual onset and offset. The
stimulus levels L were adjusted using the reference pressure of po =2 x 105 Pa, to
adjust their RMS energy to the desired level.

Metric 5: ANF rate-level curves. Rate-level curves can be computed to evaluate ANF
responses to stimulus level changes, in agreement with experimental
procedures?®:64, Rate-level functions were recorded and studied in different
mammals, including cat?’, guinea pig?$, gerbil®, and mouse®*. Among species, it
was observed that the dynamic range of ANF responses across level is strongly
affected by the SR of the fiber®. Fibers with HSRs show sharp rate-saturation and a
small dynamic range, whereas LSR fibers show sloping saturation, or non-satur-
ating, rate-level functions with significantly larger dynamic ranges.

Using Eq. (1), we generated pure-tone stimuli (50-ms duration, 2.5-ms rise/fall
ramp) with levels between 0 and 100 dB and frequencies of approximately 1 and 4
kHz, based on the corresponding CFs of the ANF models (1007 and 3972.7 Hz).
The rate-level functions were derived by computing the average response 10-40 ms
after the stimulus onset (i.e., excluding the initial and final 10 ms, where some spike
intervals may include spontaneous discharge®*). Data from the experimental
studies are plotted alongside our simulations and reflect a variety of experimental
ANF rate-level curves from different species and CFs.

Metric 6: ANF synchrony-level curves. Responses to modulated tones as a function
of stimulus level have also been measured in different mammals (e.g., guinea pig?4,
chinchilla®, cat®!, gerbil®®). Although rate-level curves to SAM tones show small
differences to those obtained to unmodulated carrier stimuli®%°, differences
between fiber types have been exhibited in the synchronisation of the ANF
responses to the envelope of SAM stimuli. Lower SR fibers synchronise more
strongly to the modulation envelope than HSR fibers and at higher sound inten-
sities close to comfortable listening levels®1:7. At the same time, LSR fibers show a
larger dynamic range where significant synchronisation is present®%4, supporting
the hypothesis that fibers with lower SRs are important for hearing at high levels.
Computationally, synchrony to the stimulus envelope can be quantified using
the synchronisation index or vector strength®>%8. Fully modulated 400-ms long
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pure tones with a modulation frequency f,, of 100 Hz’! and carrier frequencies of
1007 and 3972.7 kHz (henceforth referred to as 1 and 4 kHz) were simulated using
Eq. (2), and the synchrony-level functions were calculated by extracting the
magnitude of the f,,, component from the Fourier spectrum of the fibers’ firing rate.
The f,, magnitude was normalised to the DC component (0 Hz) of the Fourier
spectrum, corresponding to the average firing rate of the fiber®. Experimental
synchrony-level functions®! show a non-monotonic relation to the stimulus level
and exhibit maxima that occur near the steepest part of ANF rate-level curves.

Root-mean-square error. The RMSE was predicted between the evaluation metrics
to better quantify the accuracy of each trained architecture and to optimise its
hyperparameters. The computed error has the same units of measurement as the
estimated quantity (expressed in [mV] for the IHC responses and in [spikes/s] for
the ANF firing rates), thus it can be directly compared to the evaluation results of
the quantified metric to estimate the accuracy of each architecture. For each metric,
the RMSE was computed between the outputs of the reference model and each
CoNNear model using:

(€)

where i corresponds to each sample number, N to the number of samples, x; to
each sample of the reference model simulated results, and X; to each sample of the
respective CoNNear model results.

Connecting the different CONNear modules. We considered the evaluation of
each CoNNear module separately, without taking into account the CoNNear
models of the preceding stages and thus eliminating the contamination of the
results by other factors. Each time, the evaluation stimuli were given as inputs to
the reference analytical model of the auditory periphery and the necessary outputs
were extracted and given as inputs to the respective CoNNear models. However,
the different CoNNear models can be merged together to form different subsets of
the human auditory periphery, such as CoNNearyc_ang Or
CoNNearochiea-1HC-ANE> DY connecting the output of the second last layer of each
model (before cropping) to the input layer of the next one. This coupling of
different modules can show how well these models work together and whether
potential internal noise in these neural-network architectures would affect the final
response for each module. Using a CNN model of the whole auditory periphery
(Supplementary Fig. 4), population responses can be simulated and additional
DNN-based back-ends can be added in future studies to expand the pathways and
simulate higher levels of auditory processing.

Evaluating CoNNear execution time. A TIMIT speech utterance of 3.6 s was used
for the evaluation of the CoNNear execution time, and served as input to the
analytical model®! to simulate the outputs of the cochlear and IHC stages. The
cochlear BM outputs were then framed into windows of 2560 samples (102.4 ms) to
evaluate the CoNNear IHC model and the IHC outputs into windows of
16384 samples (819.2 ms) to evaluate the CoNNear ANF models. The execution
time of each stage was estimated by computing the average time required to process
all the resulting windows (Table 2). The same sentence was used to evaluate the
total execution time required to transform the auditory stimulus to ANF firing
rates using each successive stage of the reference and CoNNear models (Supple-
mentary Table 1). Due to their convolutional nature, our CoNNear architectures
are parallelisable, making the performance results scalable, since the same opera-
tions are applied for any input length.

Evaluation of the CoNNear execution time was performed on a computer with
64 GB of RAM, an Intel Xeon E5-2620 v4 @ 2.10GHz CPU and a Nvidia GTX 1080
Ti 12GB GPU. All stages of the reference auditory model®! were implemented in
Python, except for the cochlear stage where a C implementation was used for the
tridiagonal matrix solver. Thus, both IHC-ANF implementations use general-
purpose frameworks which were not optimised for CPU/GPU computing, i.e.,
Python for the reference models and Keras-Tensorflow-Python for the CoNNear
models, to allow for a fair comparison. The CoNNear models were developed and
evaluated using Keras and Tensorflow v1. We observed an even larger speed-up
when executing the models using Tensorflow v2 (non-quantified) and we expect
additional improvements when using dedicated CNN platforms.

Applying the framework to other analytical models. To attest the extension of
our method to other analytical auditory model descriptions, our framework was
first applied to approximate the Dierich et al. IHC description!. The cochlear
responses of the Verhulst et al. model to the speech sentences used for training
CoNNearyyc were used as inputs to the Dierich et al. model, and the same CNN
architecture was trained with the new datasets. The AC/DC ratios of Fig. 7a were
computed from the simulated IHC responses of the reference model and the
trained CNN approximation, using the tonal stimuli of Metric 2. The same stimuli
were used to simulate the AC/DC ratios of the Zilany et al. IHC description®8,
given as inputs to its cochlea-THC model. In line with CoNNear, a sampling
frequency of 100 kHz was used for all analytical auditory models and 20 kHz for all
trained CNN models.

To approximate the three ANF descriptions included in the Zilany et al.
analytical model®$, the speech sentences we used for training CoNNear were first
used as inputs to its cochlea—-THC module to extract the IHC potential responses.
Subsequently, the IHC outputs were given as inputs to its ANF module to extract
the instantaneous firing rates for each fiber type. The implementation of the ANF
module was adapted so that the additive Gaussian noise and the spike generator
stages included in the Zilany et al. model can be omitted and the mean firing rates
can be used for the training datasets. The spike generator module was decoupled
from the ANF implementation and then used separately to generate the PSTH
responses and simulate the rate- and synchrony-level functions of the trained CNN
approximation (Fig. 7¢, d). The rate- and synchrony-level curves of the reference
Zilany et al.’® and Bruce et al.®® ANF models were directly computed from their
post-stimulus time histogram (PSTH) responses using 100 stimulus repetitions.
The auditory stimulus set, described in the corresponding subsections of Metrics 5
and 6, was used as input to each respective cochlea-THC and ANF description.

The baseline CoNNear architectures were sufficient for approximating the
properties of similar state-of-the-art IHC-ANF analytical models, but different
architectures might be necessary to approximate other sensory systems or more
complex auditory descriptions. Depending on the characteristics of the analytical
model that needs to be approximated, an initial estimation of the required CNN
architecture can be derived from the adaptation time properties that characterise
the response of the analytical model to sustained stimulation. The receptive field
(RF) of a selected CNN architecture can be computed® to estimate whether the
adaptation time course of a reference model can be sufficiently captured by the
architecture. Assuming a CNN encoder-decoder architecture with N layers in the
encoder, the RF size ry of the architecture is given by the summation of the RF
sizes of all encoder layers:

n—1
(I ) RSY @
- i=1

where k,, is the filter length of each layer # and s; is the stride of the previous layers
i. In our case, the same filter length and stride was used for each layer of the
architectures, so the variables k, and s; were constant. While the above formula
yields the maximum RF an architecture has access to, a given neuron or layer can
be more affected by input units near the center of the RF and may not actually train
to use all of the RF8, As a result, it is common practise for the maximum RF of a
network to even exceed the input dimensions to capture long time
dependencies!?0. The set of units that effectively influence a specific architecture is
called the effective RF and can be estimated by backpropagating a gradient signal
from the output layer to the input through the networks?. A better understanding
of the relative importance of units in a CNN architecture, paired with an accurate
procedure to estimate the effective RF of an architecture3%%%, will yield even better-
informed decisions of the initial hyperparameter selection.

Finally, to demonstrate how our framework can be extended to non-auditory
mechanistic models, we applied our training procedure to approximate the
standard Hodgkin-Huxley (HH) model for the squid giant axon!. The
implementation of the Python repository of Kramer et al.!%! was adopted for this
purpose. To generate the training datasets, a set of step-like pulse stimuli with
randomly selected amplitudes from 0 to 1000 pA/cm? was given as input to the HH
model to simulate the voltage outputs. Using the resulting datasets, we initially
trained the same architecture that we used for CoNNearyyc (Table 1), but found
that the number of encoder-decoder layers was insufficient to fully transform step-
like inputs to spike trains over the whole time window. Currents >7.5 uA/cm? can
generate an infinite train of spikes, so we needed an architecture with a total RF
that exceeds the input window to capture the full spike generation across time for
high current levels. Thus, we changed the number of layers to 9, the filter lengths to
16 and the number of filters per layer to 64, as shown in Supplementary Table 2.

To establish an empirical relationship between the adaptation time course of
each analytical model and the final CNN architecture, we summarised the
estimated adaptation time properties, RF and hyperparameters in Supplementary
Table 2. For all auditory models, the reported durations reflect the time that the
envelope of the model response needed to decay to its steady state when stimulated
with a 1-kHz pure tone of 70 dB SPL (passed through each preceding auditory
stage). When choosing the stimulus, we ensured that the resulting response could
realistically reflect the adaptation properties of the model, and that the estimated
adaptation time course did not increase significantly when using different stimulus
levels or frequencies. Depending on the characteristics of each model, the
adaptation times can be level- or frequency-dependent, thus the longest duration
needs to be considered when determining the model architecture.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The source code of the auditory periphery model v1.1 used for training is available via
https://doi.org/10.5281/zenodo.3717431or https://github.com/HearingTechnology/
Verhulstetal2018Model, the TIMIT speech corpus used for training can be found
online’®. The source data underlying all graphs presented in the main and supplementary
figures are available from the CoNNear IHC-ANF model repository https://github.com/
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HearingTechnology/CoNNear_IHC-ANF. Figures 2, 3, 5, 6 and 7 in this paper can be
reproduced using this repository.

Code availability

The code for running and evaluating the trained CNN models, including instructions of

how to execute it, is available via https://doi.org/10.5281/zenodo.4889696 or https://
github.com/HearingTechnology/CoNNear_IHC-ANF. A non-commercial, academic
UGent license applies.
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