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Abstract: This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the
genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary
selection against changes to the genetic code that cause devastating global proteome modification.
However, numerous efforts have demonstrated the viability of both natural and artificial genetic code
variations. Recent advances in genetic engineering allow the creation of synthetic organisms that
incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful
genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase
pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize
the current progress in genetic code engineering and discuss the challenges, current understanding,
and future perspectives regarding genetic code modification.
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1. Introduction

In 1968, Francis Crick first proposed the frozen accident theory of the genetic code [1]. The 20
canonical amino acids were once believed to be immutable elements of the code. The genetic code
appears to be universal, from simple unicellular organisms to complex vertebrates. Yet in contrast to
studies of the natural selection of lifeforms wherein the gradual evolution of species can be observed
in a myriad of taxa, relatively few examples of natural genetic code variations (e.g., selenocysteine [2],
pyrrolysine [3,4], and stop codon read through [5,6]) have been observed. Different explanations have
been proposed to address these variations, such as the codon capture hypothesis [7], the ambiguous
intermediate hypothesis [8], and the genome streamlining hypothesis [9]. These hypotheses have been
reviewed elsewhere [10,11]. Although some existing noncanonical amino acids (NCAAs) are known to
be compatible with enzymatic aminoacylation [12–20], the 20 canonical amino acids in the standard
genetic code have been stringently selected over the course of biological evolution. Organisms that
require peptides with modified side chains will often resort to pre-translational or post-translational
modifications to incorporate NCAAs [21–26]. Some organisms require alternative genetic codes to
survive in harsh living conditions [27].

Genetic code engineering refers to the modification, or the directed evolution of cellular
machineries, in order to incorporate NCAAs into the proteome of an organism. In general, NCAAs
can be artificially incorporated in a site-specific or proteome-wide manner. In the former, scientists
have attempted to artificially engineer organisms for compatibility with various NCAAs by employing
orthogonal tRNA/aminoacyl-tRNA synthetase pairs [28–32]. In the latter, an organism is forced
to take up specific NCAAs, followed by isolating mutants in media containing NCAAs [33–35].
Currently, researchers are recording cellular responses and genetic changes in engineered organisms
to understand the mechanisms behind the use of alternative genetic codes. Such efforts enable
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an understanding of the evolutionary course of the genetic code and provide a foundation for the
derivation of additional alternative codes, a particularly important feature in the era of synthetic biology
given the increased focus on engineering synthetic organisms with modified genetic codes [36,37].
Engineered genetic code holds tremendous potential in the field of protein engineering and xenobiology,
which was extensively reviewed by Budisa et al. in 2017 [38].

In this review, we first give a brief introduction of current studies on both site-specific and
proteome-wide incorporation of NCAAs. Next, we will focus on the challenges of engineering
organisms to use modified genetic codes and their implications, such as inhibitory effects caused by
NCAAs. Finally, we will discuss current trends in this research area.

2. Genetic Code Engineering

2.1. Incorporation of NCAAs into Specific Sites

Currently, three major approaches are used to engineer the genetic code in a site-specific manner:
(1) amber codon suppression; (2) rare sense codon reassignment; and (3) quadruplet codon. Figure 1
provides a schematic illustration of each method. Because organisms such as E. coli BL21 rarely use the
amber stop codon (UAG) (only 275 of 4160 stop codons in BL21 are amber codons), which minimizes
disturbances to existing protein termination signals, this codon has been preferably selected for NCAA
encoding [30,39,40]. To enhance the efficiency of amber codon recognition by the orthogonal tRNACUA,
Release Factor 1 [41,42] is usually mutated or knocked out [43], thus enabling orthogonal tRNACUA

to recognize and increase its competitive binding to the amber codon [30] (Figure 1a). The role of
different artificial tRNA/tRNA synthetase pairs, as well as their structural relationship with different
NCAAs, were extensively reviewed by Anaëlle et al. [44].

Rare sense codon assignment [45–47], which is based on a similar principle, repurposes rare
sense codons, particularly rare codons including AGG [45,46] and AUA [47], using newly designed
tRNA/aminoacyl-tRNA synthetase pairs. In this method, the introduction of a NCAA during protein
synthesis requires either competition between a genetically modified tRNA and the corresponding
wild-type tRNA [45] or the inhibition of wild-type tRNA via the deletion of its tRNA synthetase [47]
(Figure 1b).

To circumvent the limitations of reprogramming existing codons, some researchers have explored
NCAA encoding via expansion of the genetic code using quadruplet codons [48–53]. In brief, a
single-base (e.g., “U”) is inserted after a canonical triplet codon (e.g., a “CUC” triplet codon) to
form a frameshift mutation at the specific position (Figure 1c). The additional base also creates a
new quadruplet codon (e.g., “CUCU”) at this position, which can be recognized by an engineered
quadruplet tRNA (e.g., tRNAAGAG). Early versions of the quadruplet in vivo coding system were
initially tested in E. coli [48,51,52], followed by Xenopus oocytes [49] and mammalian cells [50,53]. It is
also worth mentioning that noncanonical RNA translations, such as the use of tetra- and penta-codon,
were observed in mitochondria; however, the 4th and 5th nucleotides were found to be silent during
translation [54]. More mechanistic studies would be required to establish their roles in genetic
code engineering.

Although the site-specific incorporation approach is arguably the most widely used to produce
artificial proteins with NCAAs, some challenges can limit the stability of the engineered code.
The efficiency of an engineered tRNA/aminoacyl-tRNA synthetase pair must be high enough to
minimize the generation of truncated proteins [55]. Methods such as orthogonal ribosome use can lead
to a threefold improvement in the efficiency of unnatural amino acid incorporation [55]. Endogenous
tRNA/aminoacyl-tRNA synthetase pairs can also be engineered to incorporate unnatural amino
acids. For example, by changing the phenylalanyl-tRNA synthetase amino acid recognition site,
phenylalanine analogs such as p-Cl-phenylalanine or p-Br-phenylalanine can be successfully charged
to tRNAPhe [14,56]. Advances in genome editing techniques, such as multiplex automated genomic



Life 2017, 7, 12 3 of 12

engineering [31] and CRISPR/Cas [51], may further increase the efficiency and accuracy of NCAA
incorporation in specific sites of the proteome.Life 2017, 7, 12  3 of 11 

 

 
Figure 1. An overview of approaches to incorporate NCAAs into specific sites. (a) The wild-type 
release factor is mutated or knocked out, allowing the newly introduced tRNACUA to read through the 
stop codon, followed by NCAA incorporation with assistance from the compatible aminoacyl-tRNA 
synthetase. (b) The tRNA and corresponding tRNA synthetase for a rare sense codon are genetically 
engineered to confer the ability to encode NCAA. (c) A single-base is inserted after the canonical 
codon (e.g. “CUC” for Leu). The newly introduced quadruplet tRNA (e.g., tRNAAGAG) can encode 
NCAA by targeting the quadruplet codon “CUCU.” 

2.2. Proteome-Wide Incorporation of NCAAs 

Proteome-wide incorporation offers an alternative approach toward unnatural amino acid 
incorporation. In the most common approach, amino acid uptake is artificially controlled by feeding 
auxotrophs with NCAAs [33–35] (Figure 2a). Attempts to control NCAA synthesis have involved 
supplying organisms with NCAA precursors [57–62] (Figure 2b), which is also known as metabolic 
engineering [63,64]. In one example, the precursor L-β-thieno[3,2-b]pyrrolyl ([3,2]Trp) was fed to a 
tryptophan (Trp)-auxotrophic E. coli capable of synthesizing [3,2]Tpa (a Trp analog) to generate 
mutants that could propagate on L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) [57] (Figure 2b). 
Although directly feeding auxotrophs with NCAAs is a simpler approach, metabolic engineering 
could reduce the unwanted effects of impure commercial NCAAs [57]. 

Figure 1. An overview of approaches to incorporate NCAAs into specific sites. (a) The wild-type
release factor is mutated or knocked out, allowing the newly introduced tRNACUA to read through the
stop codon, followed by NCAA incorporation with assistance from the compatible aminoacyl-tRNA
synthetase. (b) The tRNA and corresponding tRNA synthetase for a rare sense codon are genetically
engineered to confer the ability to encode NCAA. (c) A single-base is inserted after the canonical codon
(e.g. “CUC” for Leu). The newly introduced quadruplet tRNA (e.g., tRNAAGAG) can encode NCAA by
targeting the quadruplet codon “CUCU.”

2.2. Proteome-Wide Incorporation of NCAAs

Proteome-wide incorporation offers an alternative approach toward unnatural amino acid
incorporation. In the most common approach, amino acid uptake is artificially controlled by feeding
auxotrophs with NCAAs [33–35] (Figure 2a). Attempts to control NCAA synthesis have involved
supplying organisms with NCAA precursors [57–62] (Figure 2b), which is also known as metabolic
engineering [63,64]. In one example, the precursor L-β-thieno [3,2-b]pyrrolyl ([3,2]Trp) was fed to a
tryptophan (Trp)-auxotrophic E. coli capable of synthesizing [3,2]Tpa (a Trp analog) to generate mutants
that could propagate on L-β-(thieno [3,2-b]pyrrolyl)alanine ([3,2]Tpa) [57] (Figure 2b). Although
directly feeding auxotrophs with NCAAs is a simpler approach, metabolic engineering could reduce
the unwanted effects of impure commercial NCAAs [57].
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Figure 2. An overview of proteome-wide approaches to incorporate NCAAs. (a) The NCAA enters a cell 
via membrane transporters or diffusion across the membrane. (b) The NCAA precursor similarly enters 
a cell in which it will be used to synthesize NCAAs. Following several generations of propagation with 
either the NCAA or its precursor, cells that can stably utilize the NCAA are selected. 

Regardless of approach, the incorporation of NCAAs in the proteome may negatively affect the 
growth of an organism. The inherent toxicities of many unnatural amino acids could suppress 
propagation of the wild-type strain and select mutants that respond favorably to the NCAA, 
ultimately causing rejection of the expanded genetic code [34,35]. In the following section, we will 
focus on the challenges in genetic code modification. 

3. Challenges of Genetic Code Engineering 

3.1. Inhibitory Effects of Engineered Genetic Codes 

The growth inhibitory effects caused by NCAAs, which have been demonstrated in different 
species including bacteria [65–67], yeasts [68], insects [69,70], and mammals [71], comprise one major 
challenge encountered during genetic code modification. The inhibitory effects of NCAAs are mainly 
attributable to two aspects. First, minor structural and chemical differences between NCAAs and 
their canonical counterparts can drastically affect enzymatic activities [72–75]. Second, these 
structural and chemical differences may also negatively affect protein synthesis, as some NCAAs 
cannot be efficiently charged to tRNAs by aminoacyl-tRNA synthetases [15,76]. A better 
understanding of the key genes and cellular responses associated with these modified genetic codes 
is of paramount importance to alleviating these inhibitory effects. 

3.2. Discovering the Key Genes Controlling the Genetic Code 

The growth inhibitory potentials of NCAAs create negative selective pressure, while the 
organism adapts to the modified genetic code. One effective strategy for overcoming this 
evolutionary barrier comprises an increase in the mutation rate via mutagenesis with the expectation 
of generating beneficial mutations that would favor the NCAA. Wong and colleagues isolated 
mutants from a Trp auxotroph (Bacillus subtilis str. QB928) via sequential mutagenesis in an early 
attempt to modify the genetic code. The resultant HR23 strain could propagate indefinitely on 4-
fluoro-tryptophan (4FTrp) but became inviable on canonical Trp [34,35]. As Trp is encoded by a single 
codon (UGG), the research by Wong and colleagues provided the first evidence of codon membership 
malleability under external selection pressure. Subsequently, Yu et al. traced mutations in 
intermediate mutants, as well as the HR23 strain [77]. A nonsense mutation in the Trp operon RNA-

Figure 2. An overview of proteome-wide approaches to incorporate NCAAs. (a) The NCAA enters a
cell via membrane transporters or diffusion across the membrane. (b) The NCAA precursor similarly
enters a cell in which it will be used to synthesize NCAAs. Following several generations of propagation
with either the NCAA or its precursor, cells that can stably utilize the NCAA are selected.

Regardless of approach, the incorporation of NCAAs in the proteome may negatively affect
the growth of an organism. The inherent toxicities of many unnatural amino acids could suppress
propagation of the wild-type strain and select mutants that respond favorably to the NCAA, ultimately
causing rejection of the expanded genetic code [34,35]. In the following section, we will focus on the
challenges in genetic code modification.

3. Challenges of Genetic Code Engineering

3.1. Inhibitory Effects of Engineered Genetic Codes

The growth inhibitory effects caused by NCAAs, which have been demonstrated in different
species including bacteria [65–67], yeasts [68], insects [69,70], and mammals [71], comprise one major
challenge encountered during genetic code modification. The inhibitory effects of NCAAs are mainly
attributable to two aspects. First, minor structural and chemical differences between NCAAs and their
canonical counterparts can drastically affect enzymatic activities [72–75]. Second, these structural and
chemical differences may also negatively affect protein synthesis, as some NCAAs cannot be efficiently
charged to tRNAs by aminoacyl-tRNA synthetases [15,76]. A better understanding of the key genes
and cellular responses associated with these modified genetic codes is of paramount importance to
alleviating these inhibitory effects.

3.2. Discovering the Key Genes Controlling the Genetic Code

The growth inhibitory potentials of NCAAs create negative selective pressure, while the organism
adapts to the modified genetic code. One effective strategy for overcoming this evolutionary barrier
comprises an increase in the mutation rate via mutagenesis with the expectation of generating beneficial
mutations that would favor the NCAA. Wong and colleagues isolated mutants from a Trp auxotroph
(Bacillus subtilis str. QB928) via sequential mutagenesis in an early attempt to modify the genetic
code. The resultant HR23 strain could propagate indefinitely on 4-fluoro-tryptophan (4FTrp) but
became inviable on canonical Trp [34,35]. As Trp is encoded by a single codon (UGG), the research by
Wong and colleagues provided the first evidence of codon membership malleability under external
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selection pressure. Subsequently, Yu et al. traced mutations in intermediate mutants, as well as the
HR23 strain [77]. A nonsense mutation in the Trp operon RNA-binding attenuation protein (TRAP),
which controls transcriptional attenuation of the Trp operon [78,79] and translational repression of Trp
transporters [80–83], was shared by all mutants. This lack of TRAP would increase 4-FTrp uptake to
compensate for the relatively low charge rate of 4-FTrp to tRNATrp [15].

In a separate attempt, Bacher et al. isolated E. coli mutants that could propagate in medium
wherein 4-FTrp comprised ~99% of available Trp. However, the mutant strains could not grow
indefinitely under these conditions and required minimal canonical Trp [33]. E. coli mutants were
found to harbor several mutations affecting genes such as aroP, which encodes an aromatic amino
acid transporter [84], and tyrR, which encodes the associated regulator [85]. Mutated aroP and tyrR
might cooperatively increase 4-FTrp uptake, similar to the effect of TRAP knockout in B. subtilis. Taken
together, these findings suggest that an efficient NCAA uptake system is essential to accommodation
of the modified genetic codes.

RNA polymerase might also play a key role in controlling the genetic code. The above-mentioned
B. subtilis mutant HR23 was found to harbor a nonsynonymous mutation in the RNA polymerase
subunit gene (rpoB) that was absent from all other intermediate strains that could still propagate on Trp,
suggesting a potential role for this mutation in switching membership of the UGG codon from Trp to
4-FTrp [77]. In an independent study of amber codon-directed 3-iodotyrosine (3-iodoTyr) incorporation
in E. coli, a rpoB mutation was found to confer rifampicin resistance via amber suppression at
Gln513 [86], and the same research group also engineered a bacteriophage, T7, that could incorporate
3-iodoTyr at amber codons [29]. In that study, Hammerling et al. observed high mutation frequencies
in genes encoding RNA polymerase and the lysis timing regulator type II holin. The authors suggested
that these two genes played important roles in the evolution of the expanded genetic code [29].
These studies have shed light on the previously unexplored roles of key genes in genetic code identity.

3.3. Lack of Transcriptomic and Proteomic Studies Related to Engineered Genetic Codes

In addition to mutations, gene and protein expression profiles might also reveal key factors needed
to fine-tune the use of modified genetic codes. Technologies such as RNA-seq and mass spectrometry
can be used to investigate the cellular responses of organisms in high resolution. RNA-seq was used
to compare the cellular responses between mutant (grown on 4-FTrp) and wild-type strains of the
above-mentioned B. subtilis HR23 mutant (unpublished data). Here, a gene ontology analysis of the
gene expression profiles of these strains demonstrated enrichment of genes related to reactive oxygen
species responses and branched-chain amino acid biosynthetic processes among upregulated genes,
and enrichment of genes related to siderophore biosynthetic processes among downregulated genes
(unpublished data). Unsurprisingly, stress response genes were modulated in response to the new
genetic code, and the downregulation of siderophore biosynthetic process related genes was consistent
with a previous observation of the reduced growth rate of HR23 cells grown on 4-FTrp [77] because
iron homeostasis is closely related to bacterial growth [87]. This unique set of data was the first to
demonstrate the adaptation of an organism to a new genetic code at the transcriptomic level.

Methanosarcina acetivorans is a methanogenic archaea strain that uses the alternative genetic codon
UAG to encode pyrrolysine (Pyl) [88]. O’Donoghue et al. attempted to reduce the genetic code of this
strain by deleting tRNAPyl, thus blocking the incorporation of Pyl in the proteome. A comparison of
the proteomes of mutant and wild-type M. acetivorans strains revealed that most upregulated peptides
were related to methanogenesis, protein synthesis, and the stress response [89], suggesting that, in this
organism, various stress response genes must be fine-tuned before a reduced genetic code can be used.

Very few transcriptomic and proteomic studies of organisms with modified genetic codes have
been conducted, and we have only glimpsed the potential factors involved in adaptation to modified
genetic codes. Additional genes that contribute to this adaptation might remain to be discovered.
In the future, studies of gene and protein expression in organisms with modified genetic codes will
be necessary.
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3.4. Environmental Factors Affecting Adaptation to Engineered Genetic Codes

Environmental factors, such as the growth medium and selection method, are important when
optimizing the use of a modified genetic code. The amino acid source is the first and most obvious
factor, as an organism can either take up NCAAs directly from the environment or synthesize them
using environmentally available molecules. If the source of NCAAs is from the environment, mutations
in amino acid transporters are often needed to facilitate NCAA uptake [33,77].

Positive selection pressure is also needed to maintain stability of the modified genetic code.
In a previous study, incorporation of the methionine analog azidohomoalanine (Aha) into the coat
protein of a human adenovirus and the subsequent addition of a folate group to Aha facilitated
adenoviral infection in mouse hosts [90]. In other words, adenovirus strains that can use modified
Aha have a selective survival advantage over other strains. In a more recent study of different
E. coli strains, the site-specific incorporation of two tyrosine analogs in β-lactamase was selected,
and enzymatic function was found to depend on the presence of these analogs [91]. As described
above regarding adenovirus, E. coli mutants that could utilize NCAAs enjoyed a selective advantage
under growth mediums containing certain classes of antibiotics [91]. In one interesting example, even
the carbon source may affect the selection of genetic codes by the Pyl-utilizing bacteria Acetohalobium
arabaticum [92]. A. arabaticum used the standard genetic code when grown on pyruvate, but gained
the ability to use an expanded genetic code that included Pyl in the presence of the alternative carbon
source trimethylamine [92].

4. Future Directions

Current efforts in genetic code engineering have reshaped our ideas regarding genetic code
evolution and have paved the way for expanding the genetic alphabet. Based on these studies, we have
outlined the key steps by which an organism accommodates a modified genetic code (Figure 3). During
adaptation, mutations in amino acid transporters and/or their key regulators allow more efficient
NCAA uptake, possibly by increasing the number of amino acid transporters [33,77]. Mutations in the
key genes might also favor the use of a modified genetic code [29,33,77,86]. Additionally, environmental
positive selection forces contribute to stability of the modified genetic code [77,91,92]. Currently, the
genomic changes in organisms with modified genetic codes have been well explored [29,33,77,86]
relative to transcriptomic (unpublished data) and proteomic [89] changes. Future trends in elucidation
of the biological mechanisms underlying genetic code modifications include the integration of genomic,
transcriptomic, and proteomic data and the refining of functional study targets.

From the viewpoint of synthetic biology and xenobiology, genetic code engineering increases the
repertoire of building blocks available for protein engineering, thus enabling the development of novel
proteins that would be impossible with canonical amino acids [38,93]. Xenobiology is an emerging
field that involves synthesizing xenonucleic acids other than the canonical nucleic acids with adenine
(A), thymine (T), cytosine (C), and guanine (G) as bases, with alternative pairing rules for protein
engineering [94]. It has been demonstrated experimentally that two such xenonucleic acids can be
integrated into the current DNA backbone [95–97], and more have been tested for their potentials as
novel building blocks of DNA [98]. With the addition of xenonucleic acids, the number of encoded
amino acids is likely to be increased to far beyond 20 [94].

High-throughput genome editing technologies, such as MAGE [36] and the emerging CRISPR/Cas
technology [99], allow an organism’s genetic code to be directly rewritten [37,100] and facilitate the
creation of synthetic life [101]. Although the first synthetic minimal bacterial genome still uses the
standard genetic code [101], it is now possible to synthesize genomes based on alternative genetic codes.
A full exploration of the possibilities enabled by genetic code engineering requires an understanding
of the key molecular biological and biochemical mechanisms underlying the modifications. Gradual
efforts to address this main question may improve our understanding of the process of genetic code
evolution and lay a better foundation for future synthetic biology research.
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Figure 3. Key steps in the accommodation of a modified genetic code. 
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