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Introduction: Bone marrow mesenchymal stem cells (BMMSCs) ameliorate tissue damage after ischemic
injury. Erythropoietin (Epo) has pleiotropic effects in addition to hematopoietic activity. The aim of this
study was to investigate whether Epo enhanced cell survival and angiogenic effect of BMMSC implan-
tation in rat limb ischemia model.
Methods and results: MSCs were isolated from BM in GFP-transgenic rats. In a culture study, Epo pro-
moted BMMSC proliferation in normoxia and enhanced cell survival under the culture condition
mimicking ischemia (1% oxygen and nutrient deprivation). BMMSCs with and without 48 h of pre-
treatment by Epo (80 IU/ml) were locally administered to rat hindlimb ischemia models in vivo. At 3 days
after implantation, BMMSC engraftment in the perivascular area of the injured muscle was significantly
higher in the cells preconditioned with Epo than in the cells without preconditioning. Stromal derived
factor-1a and fibroblast growth factor-2 expressions were detected in the engrafted BMMSCs. At 14 days
after implantation, the Epo-preconditioned BMMSCs significantly promoted blood perfusion and capil-
lary growth compared to the controls in laser Doppler and histological studies. In addition to promoting
neovascularization, the Epo-preconditioned BMMSCs significantly inhibited macrophage infiltration in
the perivascular area.
Conclusion: Epo elicited pro-survival potential in the BMMSCs. Pharmacological cell modification with
Epo before implantation may become a feasible and promising strategy for improving current thera-
peutic angiogenesis with BMMSCs.
© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Therapeutic angiogenesis with bone marrow mononuclear cells
has shown promise as a less invasive intervention for no-option
patients with critical limb ischemia [1]. Optimism is guarded,
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however, as the cell therapy has failed to confer sufficient effects on
limb salvage in patients with atherosclerotic critical limb ischemia
[2]. Among the bone marrow cells used in clinical cell therapy, our
group previously demonstrated the important contributions of
stem/progenitor cells in ameliorating limb ischemia [3].

Bone marrow mesenchymal stem cells (BMMSCs) are multi-
potent and capable of secreting pro-angiogenic and cytoprotective
factors such as vascular endothelial growth factor (VEGF) and
fibroblast growth factor (FGF)-2 [4]. Accumulating evidence from
animal studies has shown that BMMSC implantation promotes
angiogenesis and tissue repair in injured organs [5e9]. Previous
studies by our group have also demonstrated the therapeutic
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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efficacy of BMMSCs in animal models of cardiovascular disease
[10e13].

Two important challenges, however, still impede the effective-
ness of BMMSC implantation. The first is the marginal or incom-
plete grafting of BMMSCs additionally injected into ischemic
tissues. The second is the scarcity of clinically relevant methods to
further enhance the tissue-repairing properties of BMMSCs. These
challenges may be surmountable by modifying the paracrine
effects of the implanted cells in order to protect and preserve the
injured tissues [14]. Many investigators have attempted to modify
implanted BMMSCs using gene engineering techniques and/or
particular culture conditions [15e17]. Few, however, have reported
on the implantation of BMMSCs modified by pharmacological
preconditioning for clinical application [18,19].

Erythropoietin (Epo) was first characterized as a hematopoietic
factor that stimulates the differentiation of hematopoietic pro-
genitor cells into erythroid cells [20e23]. Epo is widely adminis-
tered in clinical settings to promote the production of red blood
cells in patients with anemia caused by chronic kidney disease.
Besides stimulating erythropoiesis, Epo has elicited pleiotropic
effects such as anti-apoptosis in various types of cells [20,23]. We
therefore speculated that Epo would also be effective in protecting
and activating BMMSCs.

In the present study we investigated whether pharmacological
cell modification by priming with Epo promoted the paracrine ef-
fects of BMMSCs or enhanced the effectiveness of BMMSC
implantation.
2. Materials and methods

2.1. Isolation and culture of GFP-transgenic BMMSCs

We isolated and cultured the BMMSCs of adult transgenic
SpragueeDawley rats ubiquitously expressing enhanced green
fluorescent protein (GFP), as previously described [13,24]. Briefly,
mononuclear cells were purified from GFP-rat bone marrow by
density centrifugation and re-suspended in a complete culture
medium (CCM) consisting of alpha-MEM (Life Technologies, CA, US)
with 20% fetal bovine serum (Atlanta Biologicals, GA, US), 100 U/ml
penicillin, 100 mg/ml streptomycin, and 1mM L-glutamine. The cells
were cultured in 20ml CCM of a 150 cm2 culture dish and incubated
in a humidified incubator with 95% air and 5% CO2 at 37 �C. After
24 h, the non-adherent cells were removed and the primary
adherent cells were cultured and propagated. Passages 3 to 7 were
used for the experiments.
2.2. Proliferation and survival assays

Recombinant erythropoietin was kindly provided by Chugai
Pharmaceutical Co., Ltd. (Tokyo, Japan). For a proliferation assay,
BMMSCs were plated separately at a density of 5,000 cells/cm2 in
20 ml of CCM in a 150 cm2 culture dish. The cells were cultured in a
normoxic humidified incubator (ASTEC, SCA-165DS) with 95% air
and 5% CO2 at 37 �C and then treatedwith various concentrations of
Epo (0, 40, 80 IU/ml) (n¼ 3). After 5 days, the cells were deattached
by trypsin and counted. The cell number ratio was defined as the
ratio of cell counts at baseline and 5 days after the treatment.

For a survival assay, BMMSCs were plated separately at a density
of 5,000 cells/cm2 in 20 ml of CCM in a 150 cm2 culture dish. After
reaching 50% confluence in a normoxic condition, the cells were
treated with serum-free mediumwith or without 80 IU/ml Epo and
cultured in a hypoxic condition with 1% O2, 5% CO2, and 94% N2 for
48 h (n ¼ 3). After 48 h, the cells were deattached by trypsin and
counted. The cell number ratio was defined as the ratio of cell
counts before and 48 h after the treatment under the condition
with hypoxia and nutrient depletion.

2.3. Rat hindlimb ischemic model and cell implantation

This study was performed in accordance with the Guide for the
Care and Use of Laboratory Animals published by the US National
Institutes of Health. The Animal Care and Use Committee of Showa
University approved the experimental protocol.

We created hindlimb ischemia models of 8-week-old male rats
as previously described [13,25]. In brief, the right femoral arteries of
the animals were ligated under anesthesia. The distal portion of the
saphenous artery and all of the side branches were ligated, along
with the vein. The left hindlimb was kept intact and used as a
non-ischemic limb. After the operation, BMMSCs preconditioned
with or without EPO were injected into the ischemic adductor
muscles at four sites (Epo-preconditioned group, 5 � 105 cells,
n ¼ 15; Control, 5 � 105 cells, n ¼ 14). The preconditioned BMMSCs
were treatedwith Epo at a concentration of 80 IU/ml for 48 h before
the injection. Epo (5000 IU/kg) was simultaneously injected into
the ischemic limbs during the cell implantation in both groups.

Blood perfusion was assessed by laser Doppler perfusion im-
aging (LDPI) (Omega Zone, Tokyo, Japan) before and at 14 days after
the implantation (n ¼ 11 in each group). Hair in lower limbs was
carefully and completely removed before scanning. The blood flow
distribution of the limb was then mapped out as a color-coded
image directly proportional to the blood flow perfusion. Area of
the lower limbs (femur and the below knee part) was traced, and
the traced images were analyzed to quantify blood flow. The LDPI
index was used to calculate the blood perfusion ratio of the
ischemic and non-ischemic hindlimbs [13,25]. Tissue samples were
obtained from rat ischemic adductor muscles at 3 and 14 days after
surgery for immunohistochemistry.

2.4. Immunohistochemistry

Immunohistochemical staining of the hindlimb sections was
performed as previously described [13,25]. Tissue sections were
incubated with primary antibodies overnight at 4 �C, washed in PBS
thrice, and incubated with peroxidase-labeled anti-rabbit or anti-
mouse antibody (Histofine Simplestain Max PO; Nichirei, Tokyo,
Japan). The binding antibody was finally visualized by 3,30-dia-
minobenzidine staining followed by counter-staining with hema-
toxylin. The primary antibodies were raised against CD31 at a 1:100
dilution (DAKO, CA, USA), GFP at a 1:1000 dilution (Life Technolo-
gies), and RM-4 at a 1:1000 dilution (Trans Genic Inc., Hyogo,
Japan).

To assess the capillary density, three fields from each tissue
section (n ¼ 6) were randomly selected and the number of CD31-
positive cells was counted in each field. To avoid over- or under-
estimating the capillaries as a consequence of myocyte atrophy or
interstitial edema, the number of capillaries adjusted per muscle
fiber was used to compare differences in the capillary density
[13,25].

To assess engrafted GFP-positive BMMSCs in injured muscles at
3 days after transplantation, three fields (200� 250 mm2/field) from
each section (n¼ 3 to 4) were randomly selected and the number of
GFP-positive cells was counted in each field.

The anti-rat macrophagemonoclonal antibody, RM-4, is used for
identifying macrophages. RM-4 recognizes a membrane protein of
endolysosomes in macrophages [26]. To assess macrophage infil-
tration into ischemic limb sections on postimplantation day 14,
three fields (200� 250 mm2/field) from each tissue section (n¼ 7 to
8) were randomly selected and the number of RM-4-positive cells
in the perivascular area was counted in each field.



T. Mizukami et al. / Regenerative Therapy 4 (2016) 1e8 3
2.5. Immunofluorescence

The BMMSCswere plated at a density of 5000 cells/cm2 in 2ml of
CCM in a Chamber Slide® (Lab-Tak, CO, USA). After 48 h of culture in a
normoxic humidified incubator, the cells were sequentially washed
with PBS and treated with 0.2%Triton-100 for 15 min in three
repeated cycles. The slides were blocked in 2% goat serum at room
temperature for 1 h, incubated overnight with Epo receptor (Epo-R)
(1:1000, Novus Biologicals, CO, USA) and raised against GFP (1:1000)
diluted in PBS. After rinsing with PBS, the slides were treated with
Alexa Fluor® 488 (1:200) and Alexa Fluor® 594 (1:400) (Invitrogen,
CA, USA) for 1 h at room temperature. After 3 washes with PBS, the
dishes were mounted, cover slipped, and photographed under a
florescent microscope DP73 (Olympus, Tokyo, Japan).

The immunofluorescence of the histological sections was per-
formed as previously described [10]. The primary antibodies were
raised against GFP at a 1:1000 dilution, stromal derived factor
(SDF)-1a at a 1:2000 dilution (Santa Cruz Biotechnology, CA, USA),
FGF-2 at a 1:1000 dilution (Santa Cruz Biotechnology), CD34 at a
1:400 dilution (abcam, MA, USA), and KDR/Flk-1 at a 1:400 dilution
(abcam, MA, USA). The secondary antibodies used were raised
against Alexa Fluor® 488 (1:200) and Alexa Fluor® 594 (1:400)
(Invitrogen, CA, USA).
Fig. 1. Epo-R expression in BMMSCs from GFP rats. Epo-R (red) expression in GFP (green)-pos
in BMMSCs. Nuclei were stained with DAPI (blue). BMMSCs, bone marrow mesenchymal s
green fluorescent protein.
2.6. Statistical analysis

All data were expressed as means ± SD. Comparisons between
two groups were performed using unpaired student's t -tests.
P < 0.05 was considered significant.

3. Results

3.1. The Epo/Epo-R system promoted proliferation and survival of
cultured BMMSCs

BMMSCs from the GFP transgenic rats were immunostained
using antibodies against GFP and Epo-R. The immunostaining
revealed the expression of Epo-R in GFP-positive BMMSCs (Fig. 1a).
In our observation, Epo-R ubiquitously expressed in the BMMSCs
(Fig. 1b).

We examined whether the Epo influenced propagation in the
BMMSCs under a standard culture condition. The BMMSCs were
cultured with Epo at concentrations of 0 (control), 40, and 80 IU/ml
in the CCM for 5 days. By the end of the culture on day 5, Epo had
significantly promoted the proliferation of the BMMSCs compared
with the controls in a dose-dependent fashion (p < 0.05 for each
dose) (Fig. 2a).
itive BMMSCs. (a) Epo-R expression in single cell. (b) Epo-R was ubiquitously expressed
tem cells; DAPI, 40 ,6-Diamidino-2-phenylindole; Epo-R, erythropoietin receptor; GFP,



Fig. 2. Survival effect of Epo in BMMSCs. (a) Epo significantly increased the number of BMMSCs under standard culture condition in dose dependent fashion. The cell number ratio
was defined as the ratio of cell counts at baseline and 5 days after the treatment. N ¼ 6 in each group *, p < 0.05. (b) Epo protected the BMMSCs against the condition with hypoxia
(1%O2) and serum deprivation. The cell number ratio was defined as the ratio of cell counts before and 48 h after the treatment under the condition with hypoxia and nutrient
depletion. N ¼ 6 in each group *, p < 0.05.
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Because cells transplanted to the injured tissues may encounter
ischemic environments, we next examinedwhether Epo could protect
BMMSCs under a condition mimicking ischemia (hypoxia (1% oxygen)
Fig. 3. BMMSC engraftment in rat ischemic muscles at 3 days after implantation. (a) Left,
priming with Epo significantly increased the number of engrafted BMMSCs in ischemic hind
BMMSCs. Left, immunofluorescence of FGF-2 (red) and GFP (green). FGF-2 and GFP double-
stained with DAPI (blue). Bar ¼ 20 mm. Right, immunofluorescence of SDF-1a (red) and GFP
after implantation. Nuclei were stained with DAPI (blue). Bar ¼ 100 mm.
and nutrient deprivation) for 48 h ex vivo. The rate of untreated
BMMSC survival was 81 ± 4% compared to the baseline, whereas that
of BMMSCs treatedwith 80 IU/ml Epowas 105±4% (p< 0.05) (Fig. 2b).
immunohistochemical images of engrafted BMMSCs stained with GFP antibody. Right,
limb muscles. N ¼ 3 to 4. *, p < 0.05. (b) Secretion of FGF-2 and SDF-1a from engrafted
positive cells were found in ischemic muscles on day 3 after implantation. Nuclei was
(green). SDF-1a and GFP double-positive cells were found in ischemic muscles on day 3
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This result demonstrated the proliferative and protective effects of
the Epo/Epo-R system on non-hematopoietic stem cells. The Epo
treatment appeared to enhanceMSC engraftment in ischemic tissues.

3.2. Priming with Epo enhanced the cell survival and angiogenic
effect of BMMSC implantation

The results of our in vitro study encouraged us to attempt an
investigation into the in vivo effects of BMMSCs preconditioned
with Epo. Specifically, we investigated whether priming with Epo
ameliorated the cell survival and angiogenic effect of BMMSCs in a
rat model of limb ischemia, compared with BMMSCs implanted
without pretreatment.

Our previous study demonstrated that BMMSC implantation
promoted neovascularization even in the early phase (day 3) after
the treatment [13]. However, the engrafted cells was not detected
after 7 days. Thus, we evaluated the MSC engraftment at day 3 after
the implantation. BMMSCs positive for GFP were detected in the
perivascular area of the muscle tissue 3 days after the cell
implantation (Fig. 3a). Counting the number of GFP-positive cells in
muscle sections was performed with the use of 3,30-dia-
minobenzidine staining followed by counter-staining with hema-
toxylin. The engrafted BMMSCs preconditioned with Epo
significantly outnumbered the control BMMSCs (p < 0.05).
Fig. 4. Blood flow recovery and capillary density after BMMSC implantation. (a) Left, rep
preconditioned group. Right, the LDPI index was used to calculate the blood perfusion
ischemic limb were significantly higher in the Epo-pretreated BMMSC implantation group
tochemical staining for CD31 in muscle sections on day 14 after the ligation. Bar ¼ 200 mm
BMMSC implantation group than in the controls. N ¼ 6 in each group. *, p < 0.05.
Immunofluorescence staining was performed to detect angiogenic
factors in the engrafted BMMSCs. GFP-and-FGF-2 and GFP-and-
SDF-1a double-positive cells were both found in ischemic muscles
after the implantation (Fig. 3b).

Blood perfusion recovery of the ischemic hindlimb was evalu-
ated by LDPI before and on day 14 after the implantation. Blood
perfusion before the implantation (immediately after the ligation)
was decreased in the both groups (Fig. 4a), and the LDPI index was
not significantly different between the two groups (0.55 ± 0.06 vs
0.58 ± 0.05). Hindlimb ischemia on day 14 after the implantation
was markedly improved in the Epo-preconditioned group
compared with that in the control group (Fig. 4a). A quantitative
analysis of the LDPI findings revealed significantly higher perfusion
recovery in the Epo-preconditioned MSCs than in the controls
(p < 0.05). Apart from the LDPI, a histological study was performed
to assess the capillary density in the muscle on day 14 after the
treatment (Fig. 4b). The capillary/muscle fiber ratio in ischemic
muscle was significantly higher in the Epo-preconditioned group
than in the control group (p < 0.05).

An earlier study by our group demonstrated that BMMSC
implantation promoted angiogenesis in rat ischemic limbs without
persistent cell engraftment [13]. The preconditioning with Epo in
the present study was thus found to further promote the beneficial
effects of the BMMSC implantation.
resentative images of laser Doppler blood flow (LDPI) in the control group and Epo-
ratio of the ischemic and non-ischemic hindlimbs. Blood perfusion signals of the
than in the control on day 14. N ¼ 11 in each group. *, p < 0.05. (b) Left, immunohis-
. Right, the capillary/muscle fiber ratio was significantly higher in the Epo-pretreated
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3.3. Efficacy of Epo-preconditioned BMMSCs on infiltration of bone
marrow derived cells into ischemic limbs

The SDF-1a chemokine is known to induce the mobilization of
endothelial progenitor cells (EPCs) [27]. EPCs are generally char-
acterized by the cell surface expression of CD34 and KDR/Flk-1 [27].
A number of CD34-and-KDR/Flk-1 double-positive EPCs were
detected in the muscles injected with the Epo-preconditioned
BMMSCs (Fig. 5a), while no EPCs appeared in the controls. This
finding suggested that the increased BMMSC engraftment by Epo
priming induced to mobilize EPCs via increased production of
SDF-1a in themuscle tissue as comparedwith the BMMSCswithout
preconditioning.

Factors secreted from BMMSCs preconditioned with Epo may or
may not attract inflammatory cells as efficiently as EPCs. To inves-
tigate further, we evaluated macrophage infiltration into the
muscles 14 days after the cell implantation (Fig. 5b). Macrophage
counts were significantly lower in the Epo-preconditioned group
than in the control group (p < 0.05). This result suggested that the
Epo-preconditioning ameliorated the anti-inflammatory properties
of the BMMSCs.

4. Discussion

A few reports have demonstrated tissue-repair effects in tissues
injected with stem cells and Epo in combination [28,29]. None of
Fig. 5. Mobilization of bone-marrow derived cells into ischemic muscles. (a) Migrated EPCs i
of KDR/Flk-1 (red) and CD34 (green), EPC markers. EPCs were found in ischemic muscles tr
stained with DAPI (blue). Bar ¼ 10 mm. EPC, endothelial progenitor cell. (b) Macrophage in
images of macrophages stained with the RM-4 antibody on day 14 after implantation. Red
significantly lower in the Epo-preconditioned group (n ¼ 7) than in the control group (n ¼
them, however, elucidated the precise mechanisms of the effects.
Now, in our present culture study, we find that the Epo/Epo-R
system promotes BMMSC proliferation under regular conditions
and BMMSC survival under conditions with hypoxia and serum
depletion. Based on the results, we attempted a preconditioning
strategy in addition to co-administering the cells and reagent, in rat
ischemic limbs. The BMMSCs preconditioned with Epo induced
more neovascularization than the unconditioned BMMSCs by
enhancing cell engraftment.

Our previous clinical study showed the efficacy of a single dose
of Epo in treating patients with acute myocardial infarction [30].
We speculate that the mechanisms underlying the benefits may be
responsible for the anti-apoptotic and tissue-protective effects of
Epo on the myocardium. Animal studies support this hypothesis.
Epo administration has exhibited several actions independent of its
hematopoietic activity, including the repression of myocardial cell
death in a rabbit myocardial infarction model [31], an acute
cardioprotective effect in rat ischemiaereperfusion injuries [32],
and the prevention of cardiac dysfunction in doxorubicin-induced
cardiomyopathy in mice [33].

Poor graft success is a common problem after implantation of
cultured cells into injured tissues and occurs with implants of adult
stem cells, embryonic stem cells, and cell derivatives [14,34,35].
Recent efforts to improve graft success have utilized genetic
manipulation to over-express pro-survival factors such as Akt in
implanted cells or co-administer cells with accessory scaffolds to
n rat ischemic muscles treated with Epo-preconditioned BMMSCs. Immunofluorescence
eated with the Epo-preconditioned BMMSCs on day 3 after implantation. Nuclei were
filtration in ischemic muscles after BMMSC implantation. Left, immunohistochemical
arrows indicate RM-4 positive cells. Bar ¼ 200 mm. Right, macrophage counts were
8). *, p < 0.05.
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support the graft [36,37]. Epo treatment in the present study
rescued BMMSCs from cell death under culture conditions with
hypoxia and serum depletion. Earlier we reported improved limb
perfusion even in the absence of persistent BMMSC engraftment in
rat ischemic limbs. We now find that short-term pharmacological
(non-genetic) modification with Epo appears to induce more
neovascularization, partly via its effect in promoting the cell
engraftment.

The secretion of paracrine factors that alter the tissue micro-
environment may play a more prominent role in BMMSC-induced
tissue and organ repair than cell transdifferentiation [38].
BMMSCs express a number of proangiogenic factors, as well as
proteins that modulate endothelial cell migration [10,11]. In our
experiments comparing cultured human BMMSCs with hemato-
poietic stem cells, the former expressed higher mRNA levels for
proangiogenic factors such as VEGF [10]. VEGF plays a demon-
strable role as a crucial mediator of MSC-mediated effects in the
injured rat myocardium [39].

The BMMSCs engrafted in the ischemicmuscle produced SDF-1a
and FGF-2. The factors secreted from BMMSCs play critical roles in
angiogenesis and vasculogenesis in ischemic tissues, as well as
VEGF. FGF-2 enhances functional neovascularization in ischemic
tissues via not only angiogenesis and arteriogenesis, but also syn-
ergistic effects with VEGF [40]. SDF-1a stimulates endothelial cell
migration, EPC mobilization, and the associated enhancement of
angiogenesis in damaged vessels and hearts [31,41]. Increased
number of engrafted BMMSCs in the Epo preconditioning group
may produce higher levels of the angiogenic cytokines as compared
with the unconditioned BMMSC group. Epo priming also appeared
to exert anti-inflammatory potential in the BMMSCs.

In conclusion, short-term preconditioning with Epo elicited
pro-survival potential in BMMSCs. Cell modification with phar-
macological priming before the implantation may become a
feasible and promising strategy for improving therapeutic angio-
genesis with cells.
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