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MicroRNAs (miRNAs) are small noncoding RNAs that play a prominent role in
post-transcriptional gene regulation mechanisms in the brain tuning synaptic plasticity,
memory formation, and cognitive functions in physiological and pathological conditions [1].
miRNAs are fine regulators expressed at different levels and in a neuronal-specific-type
manner, and in a spatially and temporally controlled manner in the nervous system.
Argonaute proteins are a core component of effector complexes (RISC/miRNP complex) of
silencing mechanisms by miRNAs. The RNA-induced silencing complex (RISC), composed
of Ago-2 and miRNAs, inhibits the target mRNA translation by an imperfect pairing
between miRNAs and the 3′UTRs of the mRNA targets [2]. In biomedical and clinical
research, miRNAs are important molecules in diagnostic and therapeutic strategies with
special emphasis on neuroscience and neurological disease [3].

In this Special Issue are presented important findings on MicroRNA-Mediated Silenc-
ing Pathways in the Nervous System and Neurological Diseases in a series of publications.
The basic mechanism of cooperation between miRNA, RNA-binding protein, and Ago2
silencing mechanism is investigated in neurons showing a novel finding that SERBP1
modulates Ago2/miR-92-mediated KCC2 regulation in neuronal cells [4]. From a future
perspective might be interesting to explore the role of SERBP1/Ago2 complex and miR-
92 on KCC2 regulation in Rett syndrome and other neurological disorders. In a study
from Austria, Stojanovic et al. combined biophysical and pharmacological approaches
to evaluate the miRNA-132/212 gene-deletion and nicotine stimulation age-dependent
effect on synaptic plasticity in the mice hippocampus [5]. In addition, they investigated
the effects of miRNA-132/212 gene-deletion in an established electrophysiological model
of ischemia, indicating the miRNAs and oxygen-glucose deprivation are connected [6].
Two manuscripts from Di Pietro’s lab focused on miRNAs expression profile combined
with proteins, in the late stage of Alzheimer's Disease, suggesting early Rap1 signaling
activation [7]. Moreover, they confirm, as reported in the literature, the differentially ex-
pressed miRNAs and mutual signaling pathways, adding new unexplored interactions
between microRNA and protein targets. The co-expression network analysis of miRNAs
and proteins in the Alzheimer’s brain are reviewed in the second contribution [8]. In a
study from Song lab, Kim et al. measured miR-1273g-3p in plasma and cerebrospinal fluid
from AD patients. miR-1273g-3p enhanced amyloid beta production by inducing oxidative
stress and mitochondrial impairments in AD model cell lines suggesting that miR-1273g-3p
could be a candidate biomarker for early diagnosis of AD [9].

The potential pathophysiological mechanism and translational approaches to miRNA-
mediated silencing pathways in neurological diseases are discussed in five excellent review
articles. Liu et al. recapitulate advancements in the study of the roles of miRNAs in
Amyotrophic lateral sclerosis (ALS) pathogenesis and its application to gene therapy [10].
Thomas and Zakharenko present the existing research evidence regarding the possible
role of miRNAs in the pathology of schizophrenia [11]. Florian et al. attempt to collate
the experimental evidence regarding microRNA and brain arteriovenous malformations
(BAVMs) and cerebral cavernous malformations (CCMs) and other cerebral pathologies,
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showing a selected pool of associated miRNA [12]. Campos Pereira updates more recent
studies on miRNA deregulation in prion disease, elucidating a translational approach from
molecular to miRNA-based therapies, as frontier research in neurodegenerative disease [13].
Lastly, Blount et al. close this Special Issue with a critical review on the topic with a focus on
miRNAs involvement in cognitive processes and dementia, mentioning the last suggestion
generated by a new clinical frame of COVID-19 and SARS-CoV-2 virus [14].

The present Special Issue demonstrates advancement in the understanding of how
miRNA works in the brain from studies on miRNA expression profile signatures from
pathological and normal tissues in animal models and patients. An emerging research
flow of in vitro and in vivo investigations of miRNA biological functions in neurogenesis,
neurodevelopment, differentiation, axon morphogenesis, dendritic spine development,
synaptic plasticity, and local protein synthesis prompts a molecular and cellular neurobio-
logical exploration of the miRNA-mediated gene silencing in the nervous system.

Recent research works indicate two emerging aspects of microRNA-mediated silenc-
ing pathways: (i) the mechanisms of miRNA modification called tailing and trimming, and
turnover [15] and (ii) that Argonaute proteins interact with a plethora of protein-binding
partners [16]. The combination of this new evidences from basic research on microRNA
biology, potentially integrated with significant progress that has been made in our under-
standing of miRNAs in the nervous system, as described in this Special Issue, provides an
encouraging starting point to investigate miRNA pathway involvement in the development
and progression of neurological and psychiatric diseases and to search future therapeutic
applications.

This Special Issue is dedicated to Nadia Canu, who passed away on 19 May 2022. I
was lucky enough to take my first steps in neurobiology, studying the Tau protein and
the molecular and cellular mechanisms of Alzheimer's, in her laboratory from 1998 [17]
to 2004 [18]. The lab's personal memories and anecdotes reflect her extraordinary confi-
dentiality, a rare and uncommon quality. Nadia was a most extraordinary person and a
brilliant teacher and scientist. She influenced my thinking and my career profoundly, and
she will continue to live in our hearts and minds forever.
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