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1  Introduction
Ovarian cancer (OC) is the most prevalent malignant gynecological neoplasm, with 
high-grade serous ovarian cancer (HGSOC) accounting for approximately 75% of all 
cases [1]. The 5-year survival rate of OC remains alarmingly low at around 30% [2], pri-
marily due to late-stage diagnoses (stage III or IV). In 2020, the United States reported 
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Abstract
Introduction  Ovarian cancer (OC) is a highly aggressive malignancy characterized by 
a complex immune microenvironment. B cells, essential components of immunological 
regulation, have been implicated in the progression of ovarian cancer. However, the 
precise mechanisms by which B cells and immune molecules influence ovarian cancer 
risk remain poorly understood.

Methods  This study employed single-cell RNA sequencing (scRNA-seq) to analyze 
peripheral blood mononuclear cells (PBMCs) from ovarian cancer patients and healthy 
donors. Differential gene expression analysis identified CD14 as a critical gene in B cells. 
Mendelian randomization (MR) analysis, using exposure data from eQTL and pQTL 
databases, was performed to evaluate the association between CD14 and ovarian 
cancer risk. Mediation analysis was conducted to assess the role of CD80 on myeloid 
dendritic cells in mediating the relationship between CD14 and ovarian cancer.

Results  The analysis demonstrated that CD14 expression was significantly 
downregulated in B cells from ovarian cancer patients compared to healthy donors. 
MR analysis revealed a significant association between elevated CD14 expression and 
reduced ovarian cancer risk. Mediation analysis indicated that CD80 mediated 26.2% of 
this effect.

Conclusion  These findings highlight CD14 as a key regulator of ovarian cancer risk, with 
CD80 serving as a mediator of the immune response in this context. This study provides 
insights into potential immune modulation strategies for ovarian cancer therapy.
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21,750 newly diagnosed OC cases, of which 13,940 resulted in death [3]. Factors contrib-
uting to the poor prognosis of OC include delayed diagnosis, chemotherapy resistance, 
high recurrence rates, and both local and distant metastases. These challenges under-
score the need for extensive research into more effective treatments.

In recent years, the tumor microenvironment (TME) of OC has garnered significant 
attention. The TME consists of cellular components such as immune cells, tumor cells, 
and stromal cells, as well as noncellular elements, including cytokines, growth factors, 
and metabolites [4]. Immune cells play a pivotal role in OC progression. Advances in 
immunology have demonstrated that B cells have a dual function within the immune 
milieu of ovarian cancer [5]. On one hand, B cells contribute to immune surveillance by 
producing specific antibodies against tumor cells and by serving as antigen-presenting 
cells that activate T cells to elicit tumor-specific immune responses [6]. On the other 
hand, B cells can promote tumor immune evasion and facilitate tumor growth and 
metastasis through the secretion of immunosuppressive cytokines, such as IL-10, or 
through interactions with T cells [7]. Despite these critical roles, research on B cells in 
ovarian cancer remains limited, necessitating further investigation.

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for examining cel-
lular heterogeneity, enabling the identification of genomic alterations and distinct tran-
scriptomic states at single-cell resolution [8]. This technology allows for the precise 
classification of tumor-associated immune cell populations and the characterization of 
the heterogeneity within the tumor microenvironment. scRNA-seq has proven invalu-
able in oncology, facilitating the discovery of novel tumor biomarkers and advancing 
personalized immunotherapy approaches for improved cancer treatment outcomes [9].

Mendelian randomization (MR) is a theoretical approach that utilizes genetic variation 
as an instrumental variable (IV) to assess potential causal relationships between expo-
sures and outcomes [10]. By leveraging the random allocation of genetic variants during 
meiosis, MR reduces the influence of confounding factors and reverse causation, thus 
mimicking the effects of randomized controlled trials [11]. MR analysis employs expres-
sion quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL), which are 
single-nucleotide polymorphisms (SNPs) associated with gene expression, as instrumen-
tal variables to investigate genes that may serve as therapeutic targets. This approach has 
been widely applied to the study of various diseases [12, 13].

In this study, we used single-cell RNA sequencing to analyze differential gene expres-
sion in B cells within the context of ovarian cancer. By integrating eQTL and pQTL data 
with Mendelian randomization, we identified key genes and assessed the role of immune 
cells in ovarian cancer risk through mediation analysis. This comprehensive approach 
provides new insights into the molecular mechanisms linking immune cells to ovarian 
cancer and offers potential clinical implications (Fig. 1).

2  Methods
2.1  Single-cell RNA sequencing and differential expression genes analysis

Single-cell RNA sequencing (scRNA-seq) data from the peripheral blood mononuclear 
cells (PBMCs) of 6 patients with high-grade serous ovarian cancer (HGSOC) and 6 
healthy donors were obtained from the GEO database (GSE264489) [14]. It is important 
to note that this study exclusively utilized PBMC samples from the GSE264489 dataset; 
tumor-infiltrating cells or tumor microenvironment samples were not analyzed. HGSOC 
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patients were divided into two cohorts: 6 patients received platinum-based neoadjuvant 
chemotherapy (NACT; carboplatin + paclitaxel) prior to surgery. All patients subse-
quently received adjuant platinum/taxane therapy post-surgery. PBMCs were isolated 
from whole blood using Lymphosep density gradient centrifugation (600  g, 30 min) 
[2], washed with DPBS, counted via CytoFLEX flow cytometry, and cryopreserved in 
X-VIVO™ medium with 10% DMSO at -80°C for ≤ 6 months. Libraries were constructed 
on the Chromium X platform (10x Genomics Next GEM 3’ v3.1) and sequenced on Illu-
mina NextSeq 2000. Seurat objects were generated for each sample, and low-quality 

Fig. 1  Study flow chart
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cells were excluded based on the criteria of nFeature_RNA > 50 and percent.mt < 5%. 
Potential doublets were removed using DoubletFinder (v2.0.3) with an expected dou-
blet rate of 10%(Supplementary Figure S4). The data were subsequently standardized 
using the LogNormalize method, and the 1,500 most variable genes were selected for 
further analysis. To account for technical batch effects between samples, we applied 
Seurat’s canonical data integration pipeline. First, integration anchors were identified 
across individual datasets using the FindIntegrationAnchors function, with parameters 
set to project principal components 1–30 (dims = 1:30) and stabilize anchor selection 
via k.filter = 200 to accommodate inter-sample variability. Next, the IntegrateData func-
tion was used to merge datasets based on these anchors, generating a batch-corrected 
expression matrix. Integration efficacy was validated by comparing the distribution 
of mitochondrial gene content (percent.mt), total RNA counts (nCount_RNA), and 
detected features (nFeature_RNA) across batches using the VlnPlot function, confirming 
minimal residual technical variation after integration(Supplementary Figure S1). Prin-
cipal component analysis (PCA) was conducted, retaining the first 30 principal compo-
nents. Non-linear dimensionality reduction was performed using t-SNE to visualize cell 
populations. Cell types were annotated using the SingleR algorithm with the HumanPri-
maryCellAtlasData reference. The marker genes of each cell type were annotated using 
bubble map(Supplementary Figure S2). Differential gene expression analysis was con-
ducted between the ovarian cancer and healthy donor groups. Specifically, for the B cell 
population, differentially expressed genes were identified, with significance defined as 
FDR < 0.05 and log2FC > 1(Supplementary Figure S3).

2.2  Differential gene function enrichment analysis

Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were performed to determine the biological func-
tions of the chosen significantly differentially expressed genes (monocyte markers). GO 
enrichment analysis was conducted using the clusterProfiler package, classifying genes 
into three primary ontologies: Biological Process (BP), Molecular Function (MF), and 
Cellular Component (CC). Only terms with a p-value < 0.05 were considered significant. 
Similarly, KEGG pathway analysis was performed to identify biological pathways asso-
ciated with these genes, applying the same significance threshold (p-value < 0.05). The 
results of both GO and KEGG analyses were visualized using bar plots and dot plots, 
highlighting the most enriched terms or pathways.

2.3  Mendelian randomization analysis of differential genes using eQTL and pQTL data

We performed Mendelian randomization (MR) analysis using expression quantita-
tive trait loci (eQTL) and protein quantitative trait loci (pQTL) data to examine causal 
relationships between gene expression and disease outcomes. For eQTL analysis, differ-
entially expressed genes from the scRNA-seq data were combined with the eQTLGen 
database [15]. Single nucleotide polymorphisms (SNPs) were filtered based on p-val-
ues < 5.0 × 10⁻⁸ and clumped using 1,000 Genomes Project (European population) data 
with an r² < 0.1 threshold and a 10,000 kb clumping window [16]. The eQTL analysis 
was performed using the eQTLGen database, which includes expression data for 15,695 
genes across a large cohort. The FinnGen database, comprising 1,025 cases and 167,189 
controls for ovarian cancer, was used for MR analysis. We employed the Inverse Variance 
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Weighted (IVW) method as the primary analysis, with additional methods including 
MR-Egger and weighted median to assess the robustness of our findings. To validate the 
identified genes, we performed pQTL analysis using Icelandic pQTL data [17], applying 
the same filtering criteria (p-value < 5.0 × 10⁻⁸, r² < 0.1, and 10,000 kb window). This anal-
ysis identified 1,614 genes with significant pQTL associations, which were then merged 
with the positive eQTL results. MR analysis was repeated using the FinnGen ovarian 
cancer outcome data.

MR analysis was performed using the TwoSampleMR R package, with the Inverse 
Variance Weighted (IVW) method [18] as the primary approach. Additional MR meth-
ods, including MR-Egger, weighted median [19], and mode-based techniques [20], were 
used to verify robustness. Causal effect estimates were derived using the IVW method, 
with significance defined as p-values < 0.05 [21]. Sensitivity analyses for heterogeneity 
and pleiotropy [22] were conducted, and results were presented as effect sizes (β), stan-
dard errors, p-values, odds ratios (OR), and 95% confidence intervals (CI). Visualizations 
included forest plots, scatter plots, and sensitivity analysis plots. The MR-PRESSO test 
[23] was applied to detect and correct for pleiotropic outliers. The F statistic was calcu-
lated to assess the strength of the instrumental variable, defined as: F = [(N - K − 1)/K] 
/ [R² / (1 - R²)], where K is the number of genetic variations and N is the sample size. 
Weak instrumental variables were deemed unlikely to influence MR outcomes if the F 
statistic exceeded 10 [24].

2.4  Mediation effect analysis

A two-step mediation analysis was conducted to examine the potential mediating role 
of immune cells in the association between CD14 expression and OC development. 
This analysis aimed to determine whether immune cells mediate the effects of CD14 on 
OC progression. Data on immune cells were obtained from the GWAS catalog (datas-
ets GCST90001391 to GCST90002121), comprising 731 data points related to various 
immune cells [25]. These data were filtered using the same criteria applied in the eQTL 
and pQTL analyses (p-value < 5.0 × 10⁻⁸, r² < 0.1, and a 10,000  kb clumping window), 
resulting in the selection of 612 immune cell IDs for further analysis. A two-step medi-
ated MR analysis was conducted to evaluate the potential mediation effect of immune 
cells in the relationship between CD14 and OC, as well as the extent of this mediation 
[26] (Fig.  2). The total effect of CD14 on OC was partitioned into (i) direct effects of 
CD14 on OC and (ii) indirect effects mediated by CD14 via immune cells. The frac-
tion mediated by immune cells was calculated by dividing the indirect effect by the total 
effect. This analysis enabled a comprehensive assessment of both direct and mediated 
influences of CD14 on OC.

3  Results
3.1  Single-cell RNA sequencing-based identification of differential gene expression in B cells

Differential gene expression analyses comparing OC (HGSOC) and healthy donor 
groups identified 62 differentially expressed genes (DEGs) in B cells with a FDR < 0.05 
and log2 fold change (log2FC) > 1. Clustering analysis revealed nine distinct cell popula-
tions: monocytes, T cells, NK cells, B cells, HSC-G-CSF, pre-B cells (CD34−), platelets, 
MEPs (megakaryocyte-erythroid progenitors), and an undefined category (NA) (Fig. 3). 
Of these, CD14 was identified as a DEG in B cells, showing significant downregulation 
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Fig. 3  t-SNE analysis revealing distinct clustering between cells from ovarian cancer patients and healthy donors. 
Nine major cell populations were identified, including Monocytes, T cells, NK cells, B cells, HSC-G-CSF, Pre-B cells 
(CD34−), Platelets, MEPs (megakaryocyte-erythroid progenitors), and an undefined category (NA)

 

Fig. 2  A graph depicting the methodologies employed in this study. The overall impacts of CD14 and OC were 
analyzed as follows: (1) indirect effects, utilizing a two-step approach (where a represents the influence of CD14 on 
immune cells, b denotes the effect of immune cells on OC, and c signifies the total effect of CD14 as the exposure 
and OC as the outcome; the indirect effect is calculated as (c’ = c - a × b))
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in HGSOC patients compared to healthy donors (Fig. 4). In contrast to B cells, CD14 
expression in monocytes did not show significant differential expression between ovar-
ian cancer patients and healthy controls in our dataset (adjusted p > 0.05).

3.2  GO and KEGG pathway analyses

GO analyses revealed significant enrichment for the following Molecular Function (MF) 
terms: phosphatidic acid binding, protein serine/threonine kinase inhibitor activity, pro-
tein kinase inhibitor activity, and kinase inhibitor activity, with the criterial of adjusted 
P-values < 0.05. KEGG pathway analyses demonstrated significant enrichment in the 
glycosylphosphatidylinositol(GPI)-anchor biosynthesis, mTOR signaling, and autoph-
agy-animal pathways, with the criterial of adjusted P-values < 0.05 (Fig. 5).

3.3  Mendelian randomization analysis

The findings of the MR analysis are summarized in Table 1. Using the Inverse Variance 
Weighted (IVW) method, we identified a significant association between increased 
CD14 (eQTL) expression and reduced ovarian cancer risk (P = 0.042, OR = 0.854, 95% 
CI = 0.734–0.995). The MR-Egger method also revealed a significant inverse asso-
ciation between elevated CD14 levels and ovarian cancer risk (P = 0.045, OR = 0.737, 
95% CI = 0.555–0.977). Additionally, the IVW method indicated a significant inverse 

Fig. 4  A bar chart showing that CD14 expression in the B cells of ovarian cancer patients was significantly de-
creased (p < 0.05)
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correlation between higher CD14 (pQTL) levels and ovarian cancer incidence (P = 0.035, 
OR = 0.793, 95% CI = 0.639–0.984).

Cochran’s Q test was used to assess heterogeneity, while the MR-Egger intercept was 
applied to evaluate horizontal pleiotropy. As shown in Table  2, no heterogeneity was 
detected, with all p-values > 0.05. Funnel plots were generated for each MR analysis 
to illustrate study heterogeneity (Figs.  6 and 7; Table  2). The MR-Egger intercept test 
revealed no evidence of horizontal pleiotropy (P > 0.05), and the MR-PRESSO global test 
did not identify any outliers (Figs. 6 and 7; Table 2). Multiple sensitivity analyses con-
firmed the robustness of these MR findings (Figs. 6 and 7). A forest plot displaying the 
causal effects of each SNP on ovarian cancer risk and the instrumental variables used in 
the analysis is presented in Figs. 6 and 7.

3.3.1  The relationship between CD14 and immune cells

The association between CD14 expression and immune cells was examined using GWAS 
data, which revealed a strong correlation between CD14 and two immune cell categories 

Fig. 5  A bar chart of GO and KEGG analysis results. P<0.05
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(P < 0.05). CD80 on myeloid dendritic cells (DCs) exhibited the strongest association with 
CD14, and five highly correlated independent SNPs were selected for causal analysis. As 
shown in Table  1, the IVW method identified a significant association between elevated 
CD14 levels and increased CD80 expression on myeloid DCs (P = 0.021, OR = 1.294, 95% 
CI = 1.040–1.609). Similarly, the Weighted Median method showed a significant asso-
ciation between higher CD14 levels and increased CD80 levels on myeloid DCs (P = 0.024, 
OR = 1.340, 95% CI = 1.039–1.729). Visualizations of the MR analysis are provided in Fig. 8. 
Table 2 demonstrates the absence of pleiotropy and heterogeneity.

3.3.2  Relationships between immune cells and ovarian cancer

GWAS data from immune cells indicated that CD80 expression on myeloid DCs was 
associated with OC risk. Twenty-five SNPs with significant correlations were selected 
for causal analysis. Table 1 shows that the IVW method identified a significant associa-
tion between increased CD80 levels on myeloid DCs and reduced OC risk (P = 0.005, 
OR = 0.852, 95% CI = 0.762–0.952). The Weighted Median method also revealed that 
higher CD80 levels on myeloid DCs were significantly linked to a decreased risk of ovar-
ian cancer (P = 0.013, OR = 0.811, 95% CI = 0.687–0.957). Visualizations of the MR analy-
sis are shown in Fig. 9. Table 2 confirms the absence of pleiotropy and heterogeneity.

Table 1  The results of MR analysis
Exposure Outcome MR methods SNPs P-Value OR(95%CI) F
CD14(eQTL) Ovarian Cancer MR Egger 25 0.045 0.737 (0.555–0.977) 171.660

Weighted median 25 0.050 0.817 (0.668-1.000)
Inverse variance weighted 25 0.042 0.854 (0.734–0.995)
Simple mode 25 0.151 0.790 (0.580–1.078)
Weighted mode 25 0.064 0.806 (0.649–1.002)

CD14(pQTL) Ovarian Cancer MR Egger 32 0.088 0.661 (0.418–1.047) 91.729
Weighted median 32 0.139 0.793 (0.583–1.078)
Inverse variance weighted 32 0.035 0.793 (0.639–0.984)
Simple mode 32 0.748 0.911 (0.520–1.599)
Weighted mode 32 0.243 0.827 (0.604–1.131)

CD80 Ovarian Cancer MR Egger 25 0.062 0.811 (0.659-1.000) 169.140
Weighted median 25 0.013 0.811 (0.687–0.957)
Inverse variance weighted 25 0.005 0.852 (0.762–0.952)
Simple mode 25 0.207 0.861 (0.686–1.080)
Weighted mode 25 0.058 0.848 (0.721–0.997)

CD14 CD80 MR Egger 5 0.572 1.198 (0.684–2.098) 72.078
Weighted median 5 0.024 1.340 (1.039–1.729)
Inverse variance weighted 5 0.021 1.294 (1.040–1.609)
Simple mode 5 0.139 1.390 (0.980–1.971)
Weighted mode 5 0.157 1.386 (0.959–2.004)

Table 2  The results of heterogeneity testing and Pleiotropy testing
Exposure Outcome Heterogeneity Pleiotropy

MR Egger IVW MR Egger

Q P Q P Intercept P
CD14(eQTL) Ovarian Cancer 10.501 0.988 11.983 0.980 0.034 0.236
CD14(pQTL) Ovarian Cancer 33.500 0.301 34.362 0.310 0.025 0.387
CD80 Ovarian Cancer 16.210 0.846 16.501 0.869 0.010 0.595
CD14 CD80 0.638 0.888 0.723 0.948 0.022 0.790
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3.3.3  The mediating role of immune cells in the CD14-ovarian cancer relationship

We observed that increased CD14 expression was associated with a lower incidence 
of OC. Additionally, elevated CD14 expression was linked to higher CD80 levels on 
myeloid DCs, which in turn correlated with a reduced risk of ovarian cancer. Mediation 
analysis estimated that CD80 on myeloid DCs mediated 26.2% of the effect of elevated 
CD14 levels on reduced OC risk (Fig. 10).

4  Discussion
This study is the first to demonstrate that elevated CD14 expression in B lymphocytes is 
associated with a reduced risk of OC. Notably, CD14 expression did not significantly dif-
fer in monocytes between ovarian cancer patients and healthy controls, suggesting that 
the transcriptional alteration we observed may be specific to the B cell compartment in 
this context. Additionally, CD80 on myeloid dendritic cells was found to significantly 
mediate the relationship between CD14 and OC risk, with an estimated mediation effect 
of 26.2%. GO and KEGG pathway analyses further identified key biological processes 
and signaling pathways related to immune regulation, offering novel insights into the 
immune microenvironment of ovarian cancer. Although CD14 was not the top-ranking 
DEG, it was among the few differentially expressed genes in B cells that simultaneously 
met statistical significance, biological relevance, and the availability of strong eQTL and 

Fig. 6  MR Analysis of CD14 (eQTL) and OC. A Leave-one-out forest map; B funnel diagram; C Scatter plot: Lines 
in black, red, green, and blue represent IVW, MR-Egger, weighted median, and weighted mode methods; D Forest 
map for the sensitivity analysis
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pQTL instruments required for Mendelian randomization analysis. This integrative cri-
terion guided its prioritization for downstream causal inference.

The role of B cells in the tumor microenvironment (TME) is two-fold. On the one 
hand, B cells may promote tumor initiation and progression by producing immu-
nosuppressive cytokines (e.g., IL-10, TGF-β) and interacting with T cells to create an 
immunosuppressive microenvironment [27, 28]. On the other hand, as antigen-present-
ing cells (APCs), B cells can interact with T cells to exert anti-tumor immune effects 
[29]. In the OC immune microenvironment, the role of B cells may be influenced by 
CD14, an important immune receptor that recognizes pathogen-associated molecular 
patterns (PAMPs) and modulates immune responses [30, 31]. In this study, we found 
that increased CD14 expression in B cells was associated with a reduced risk of OC. By 
interacting with other immune cells in the TME, CD14 may help balance the immune 
response, preserving effective immune surveillance while preventing tumor proliferation 
driven by an overactive immune response [6]. Furthermore, the enrichment of phospha-
tidic acid binding and kinase inhibitor activity in GO analysis supports the critical role 
of CD14 in immune cell activation and signal transduction. However, we acknowledge 
that the enrichment analysis was performed on a relatively limited set of QTL-supported 
DEGs, resulting in a gene count of 1 per term in some cases. As such, the functional 
interpretations should be considered exploratory and warrant further validation. These 

Fig. 7  MR Analysis of CD14(pQTL) and OC. A Leave-one-out forest map; B funnel diagram; C Scatter plot: Lines in 
black, red, green, and blue represent IVW, MR-Egger, weighted median, and weighted mode methods; D Forest 
map for the sensitivity analysis
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findings suggest that targeting CD14 could represent a promising strategy for OC immu-
notherapy, particularly as a means of modulating the immune microenvironment and 
enhancing immune responses.

CD80 plays a critical role in the immune response of myeloid dendritic cells. As a co-
stimulatory molecule, CD80 enhances T cell activation and initiates immune responses 
by binding to CD28 on T cells [32]. This interaction not only prevents T cell overactiva-
tion and activation-induced cell death but also enhances cytokine sAecretion (e.g., IL-2), 
promotes the proliferation of CD4 + T cells, and augments the cytotoxicity of CD4 + and 
CD8 + T cells [33]. Through these mechanisms, CD80 enhances the immune response, 
aiding in the clearance of tumor cells. Additionally, evidence suggests that CD80 com-
petes with PD-L1, a mechanism that may reduce immune escape by tumors. For exam-
ple, transfecting the CD80 gene into human tumor cells has been shown to suppress 
PD-L1-mediated immunosuppression and restore T cell activation, further underscor-
ing the role of CD80 in overcoming immune escape [34, 35]. The current study suggests 
that elevated CD14 expression may mediate the immune microenvironment in OC by 
increasing CD80 levels. Specifically, increased CD14 may reduce OC risk by enhancing 
CD80 expression and activating the immune response, potentially limiting tumor cell 
proliferation and spread. However, these hypotheses require further investigation, as 
they currently lack sufficient experimental and literature-based validation.

Fig. 8  MR Analysis of CD14 and CD80. A Leave-one-out forest map; B funnel diagram; C Scatter plot: Lines in black, 
red, green, and blue represent IVW, MR-Egger, weighted median, and weighted mode methods; D Forest map for 
the sensitivity analysis
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One of the key strengths of this study is the use of MR analysis combined with eQTL 
and pQTL data, providing more robust causal inference compared to traditional obser-
vational studies. This approach minimizes bias and offers a solid foundation for under-
standing the immune mechanisms underlying ovarian cancer. The IVW method yielded 
significant and stable results, with no evidence of heterogeneity or pleiotropy, further 
supporting the reliability of the findings. Notably, mediation analysis identified CD80 
as a mediator between CD14 expression and ovarian cancer risk, highlighting a poten-
tial new target for immunotherapy. However, this study has several limitations. First, 

Fig. 10  Schematic overview of the mediating effect of CD80

 

Fig. 9  Results of MR Analysis of CD80 and OC. A: Leave-one-out forest map; B funnel diagram; C Scatter plot: Lines 
in black, red, green, and blue represent IVW, MR-Egger, weighted median, and weighted mode methods; D Forest 
map for the sensitivity analysis
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while the MR Analysis provided genetic evidence to support the priority of biomarkers 
for ovarian cancer, the MR Analysis only supported biomarker associations, not func-
tional causation, and the results depended on the quality and range of available eQTL 
and pQTL data, which may be limited by sample size and population-specific factors 
that may affect the generality of the results. Second, while single-cell RNA sequencing 
resolved CD14 expression heterogeneity across B cell subsets, the functional relevance of 
elevated CD14 in modulating B cell crosstalk with dendritic cells or tumor cells remains 
mechanistically undefined. While this study highlights the peripheral immune response, 
we recognize that the modulation of CD14 and CD80 may also influence tumor-infil-
trating immune cells. Future studies will focus on the impact of CD14/CD80 modula-
tion within the tumor microenvironment, including how these immune cells respond 
to changes in immune regulation and their potential role in tumor progression. Third, 
While this study provides significant insights into the peripheral immune response, we 
acknowledge that it does not capture tumor-infiltrating lymphocytes or other immune 
cells within the tumor microenvironment. Future studies incorporating tumor tissue 
samples will be essential to fully understand the complex interactions between the tumor 
and immune cells. Moreover, although our transcriptomic data suggest the presence of 
a CD14⁺ B cell subset, we were unable to validate this population at the protein level 
using multicolor flow cytometry or immunohistochemistry due to current limitations 
in sample accessibility and laboratory resources. Finally, the genetic instruments used 
in MR analysis may be affected by the complexity of the gene-phenotype relationship. 
Future studies involving larger and more diverse populations are needed to enhance the 
robustness and external validity of these results.

5  Conclusion
Our study reveals an observational association between elevated CD14 expression in B cells 
and a reduced risk of ovarian cancer, with CD80 activity in myeloid dendritic cells statisti-
cally accounting for 26.2% of this association based on Mendelian randomization analysis. 
Nonetheless, the broader immune regulatory mechanisms involving CD14 in OC remain 
unclear. Further research is necessary to identify additional mediators and validate the func-
tional roles of these molecules within the tumor immune microenvironment.

5.1  Future perspectives

Building upon the prioritization of CD14 through our two-phase translational frame-
work, future studies will focus on refining its cell-type specificity and functional 
relevance in ovarian cancer. First, we will use single-cell multi-omics to map the tran-
scriptional and epigenetic regulatory network governing CD14 expression in tumor-
infiltrating B cells, while systematically identifying B cell–specific DEGs with minimal 
expression in other immune lineages. Second, CD14’s biological impact will be evaluated 
using B cell-specific CD14 conditional knockout models to test effects on tumor growth 
and immune infiltration. Third, clinical-translational efforts will aim to validate the pres-
ence of CD14⁺ B cells and their association with CD80⁺ dendritic cells through multi-
color flow cytometry, immunohistochemistry, and spatial transcriptomics in human 
samples. Together, these steps aim to confirm transcriptomic observations, delineate 
functional pathways, and establish CD14 as a biologically and clinically meaningful 
immunoregulatory target in ovarian cancer.
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