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Simple Summary: Hepatocellular carcinoma is the most common liver cancer, leading to approxi-
mately 700,000 deaths worldwide and 30,000 deaths in the United States every year. Transarterial
therapies play a crucial role in the management of these patients, with significant development in
techniques over the last couple of decades. The aim of this review is to discuss the different types of
transarterial therapies with regards to the pre-procedure, procedural, and post-procedural patient
management, along with giving a review of evidence from the literature.

Abstract: Image-guided locoregional therapies play a crucial role in the management of patients
with hepatocellular carcinoma (HCC). Transarterial therapies consist of a group of catheter-based
treatments where embolic agents are delivered directly into the tumor via their supplying arter-
ies. Some of the transarterial therapies available include bland embolization (TAE), transarterial
chemoembolization (TACE), drug-eluting beads–transarterial chemoembolization (DEB–TACE), se-
lective internal radioembolization therapy (SIRT), and hepatic artery infusion (HAI). This article
provides a review of pre-procedural, intra-procedural, and post-procedural aspects of each therapy,
along with a review of the literature. Newer embolotherapy options and future directions are also
briefly discussed.

Keywords: hepatocellular carcinoma; transarterial chemoembolization; hepatic artery infusion;
selective internal radioembolization therapy; bland embolization; drug-eluting beads–transarterial
chemoembolization

1. Introduction

Image-guided locoregional therapies play a crucial role in the management of patients
with hepatic tumors. Transarterial therapies consist of a group of catheter-based treatments
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where embolic agents or chemotherapeutic agents are directed into the target tumor via
their supplying arteries [1,2]. In the current treatment algorithm of HCC, there is a role
supporting the use of bland embolization (TAE), transarterial chemoembolization (TACE),
drug-eluting beads–transarterial chemoembolization (DEB–TACE), selective internal ra-
dioembolization therapy (SIRT), and hepatic artery infusion (HAI) [3]. The physiological
principle behind image-guided intraarterial therapies is based on the vascular supply to the
tumors. Although the majority of hepatic blood supply is provided by the portal venous
system, the hepatic arteries are the predominant blood supply to HCCs. Therefore, selective
and local delivery of tumorocidal agents directly into the tumor spares the adjacent hepatic
parenchyma and minimizes systemic complications and toxicities [1,2]. Extensive high-
quality evidence is available to support the use of image-guided locoregional therapies for
the management of hepatic tumors, and this has led to the addition of locoregional proce-
dures to National Comprehensive Cancer Network (NCCN) and Barcelona Clinic Liver
Cancer (BCLC) treatment guidelines [4,5]. This article provides a review of pre-procedural,
intra-procedural, and post-procedural aspects of each therapy, along with a review of
the literature.

2. Methodology for Review

We searched the MEDLINE/PubMed database, using the following terms to identify
all original research articles published related to TAE, TACE, DEB–TACE, SIRT, and HAI:

((Therapeutic Chemoembolization OR Chemoembolizations, Therapeutic OR Thera-
peutic Chemoembolizations) OR (radioembolization OR selective internal radiation ther-
apy OR radiation segmentectomy) OR (hepatic arter * infusion OR chemoinfusion) OR
(Embolotherapy OR Embolotherapies OR Therapeutic Embolization OR Embolizations,
Therapeutic OR Therapeutic Embolizations)) AND (Carcinomas, Hepatocellular OR Hepa-
tocellular Carcinomas OR Liver Cell Carcinoma, Adult OR Liver Cancer, Adult OR Adult
Liver Cancer OR Adult Liver Cancers OR Cancer, Adult Liver OR Cancers, Adult Liver
OR Liver Cancers, Adult OR Liver Cell Carcinoma OR Carcinoma, Liver Cell OR Carci-
nomas, Liver Cell OR Cell Carcinoma, Liver OR Cell Carcinomas, Liver OR Liver Cell
Carcinomas OR Hepatocellular Carcinoma OR Hepatoma OR Hepatomas) Filters: Clinical
Study, Clinical Trial, Clinical Trial Protocol, Clinical Trial, Phase I, Clinical Trial, Phase II,
Clinical Trial, Phase III, Clinical Trial, Phase IV, Comparative Study, Controlled Clinical
Trial, Meta-Analysis, Multicenter Study, Observational Study, Randomized Controlled Trial,
Systematic Review, Technical Report.

The results from this search were reviewed by two authors (T.G. and A.S.) to select the
key references to write the review article.

3. Treatment Options for Hepatocellular Carcinoma

Given the numerous surgical, medical, and minimally invasive options available for
the treatment of HCC, many patients with hepatocellular carcinoma (HCC) benefit when
a multidisciplinary approach to treatment is undertaken. This ensures a standardized
workup and access to the most up-to-date treatment options based on individual patient
parameters, including social factors; underlying liver function; tumoral factors, such as
tumor size; invasion of blood vessels and extrahepatic structures; transplant eligibility;
institutional experience; and access to various therapies.

3.1. Surgical and Systemic Therapies

Surgical resection and liver transplantation are classically considered to be the only
potentially curative treatment options for HCC. Partial hepatectomy is only offered to
patients with solitary HCC without any evidence of macrovascular invasion or cirrhosis,
and without significant stigmata of portal hypertension, while transplantation is reserved
for patients with early HCC within the United Network for Organ Sharing (UNOS) criteria,
an adapted version of the Milan criteria [6]. In patients who meet the stringent criteria for
future transplantation, “bridging” therapy can prevent disease progression and reduce
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the dropout rate from the transplant waiting list [7]. Locoregional therapies such as
radiofrequency ablation, microwave ablation, TAE, TACE, DEB–TACE, and SIRT have all
been shown to be useful as bridge therapies [8–19]. “Downstaging” therapies are used in
cases of advanced HCC in patients without distant metastasis to reduce the intrahepatic
tumor burden [7,20,21]. Locoregional therapies are commonly used for this purpose,
allowing many previously ineligible patients to become eligible for liver transplantation
under the Milan or UNOS criteria [22]. These therapies have been shown to improve the 1-
and 5-year survival after transplant compared to liver transplantation alone [23].

For patients with advanced HCC, systemic therapy can be considered as the first-line
treatment [24,25]. Currently, the United States Food and Drug Administration (FDA) has ap-
proved six agents for use as systemic therapies. These include atezolizumab + bevacizumab,
sorafenib, lenvatinib, regorafenib, cabozantinib, ramucirumab, and nivolumab [26–30].

3.2. Locoregional Therapies

According to the BCLC algorithm, the choice of locoregional therapy in patients with
early stage HCC is based on the size of the tumor, underlying liver disease, and liver
function. Locoregional therapies can generally be subdivided into (1) percutaneous and
(2) intraarterial modalities. Generally, ablative techniques are used in tumors less than
≤3 cm located remotely from the hilar bile ducts [31–36]. Ablation involves the direct
application of thermal or nonthermal/chemical energy into tissues in order to induce
cellular injury and apoptosis. The most commonly utilized ablation technologies within the
liver include radiofrequency ablation, microwave ablation, cryoablation, and percutaneous
ethanol injection.

Transarterial therapies rely on the arterial blood supply of targeted tumors and in-
clude TAE, TACE, DEB–TACE, SIRT, and HAI (Figure 1). These techniques are generally
considered when treating larger tumors, multifocal disease, or for tumors centrally located
or adjacent to major vasculature/bile ducts. The efficacy of TAE stems from a reduction
of blood flow to the supplying artery, thus leading to ischemia in the region of the tumor
that can then lead to tissue necrosis. With TACE and DEB–TACE, a high concentration
of chemotherapy is additionally delivered to tumor cells [37], whereas the mechanism
of action for SIRT is the emission of high-dose beta-radiations into the capillary bed of
the tumor [3,38]. In HAI, chemotherapy is administered non-selectively to the liver and
embedded tumors via the proper hepatic artery.

Radiation therapies are also considered locoregional therapies in patients with in-
operable or unresectable HCC. The two commonly used types of radiation therapy are
external beam radiation therapy (EBRT) and stereotactic body radiation therapy (SBRT).
In EBRT, a high dose of radiation is delivered to the target tissue (liver tumor), while a
lower dose is delivered to the normal liver parenchyma surrounding the tumor. SBRT
is a more advanced version of EBRT which helps to deliver a larger amount of ablative
dose to the target tissue (liver tumor) without further increasing the dose delivered to the
normal liver parenchyma [39,40]. Proton beam therapy (PBT) is another radiation therapy
option in which a finite range of a radiation dose is delivered to the target tissue (liver
tumor); however, it causes lower delivery of radiation to the normal liver tissue at the
margins, providing a dosimetric advantage compared to SBRT [41]. Evidence from multiple
studies in the literature has shown that SBRT is useful in the treatment of patients with
unresectable, locally advanced, or recurrent HCC [42–45]. EBRT and SBRT are currently
not a part of BCLC algorithm for treatment of the HCC. An in-depth discussion of radiation
therapies is beyond the focus of this review article.
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Figure 1. Transarterial therapies. (A) Bland embolization (BE). (B) Conventional transarterial
chemoembolization (cTACE). (C) Drug-eluting beads–transarterial chemoembolization (DEB–TACE).
(D) Radioembolization.

4. Indications and Patient Selection for Treatment with Transarterial Therapies

Transarterial therapies can be used to reduce the burden of tumor within the transplant
criteria (downstaging), to control the growth of tumor in patients who are currently on
the transplant waiting list (bridging), and to increase the survival of patients who are not
eligible to undergo a transplant (palliative). A multidisciplinary tumor board consisting
of oncologists, surgeons, diagnostic and interventional radiologists, and hepatologists
optimally can decide in aggregate if transarterial therapy is indicated for each individual
patient [46]. Figure 2 shows the BCLC-approach indications for transarterial therapies in
HCC [5].
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Figure 2. Indications for the use of transarterial therapies in patients with hepatocellular carcinoma
(HCC).

5. BCLC Staging and Predictors of Response

The BCLC scoring system classifies patients into five stages (BCLC 0, BCLC A, BCLC
B, BCLC C, and BCLC D; Table 1) on the basis of size and extent of the primary HCC lesion,
performance status of the patient, and presence of vascular invasion and extrahepatic
disease [5]. In some studies, the BCLC scoring system has been shown to outperform
other prognostic scoring systems in patients undergoing surgical treatment [47,48]. Patients
with very early and early BCLC grades have a low tumor burden (≤3 tumors, <3 cm),
preserved liver function (Child–Pugh A), and are fully active (ECOG 0). These patients
have been shown to have a life expectancy of more than 5 years. Patients are classified
into intermediate stage (BCLC B) if they have a multinodular tumor with preserved liver
function (Child–Pugh A to B7) and normal functional status (ECOG 0). Advanced stage
(BCLC C) includes patients with macrovascular invasion (i.e., tumor thrombus) or extra-
hepatic disease, along with preserved liver function and worsening performance status
(ECOG 1 and 2). The life expectancy of patients in this group has been shown to be ap-
proximately 10 months. Terminal-stage disease (BCLC D) includes patients with any tumor
burden but with the presence of poor liver function (Child–Pugh C) or a poor performance
status (ECOG >2). BCLC-D patients have a life expectancy of only 3 months [5]. The
presence of liver decompensation (ascites, jaundice, and encephalopathy) is considered
as non-preserved liver function regardless of the Child–Pugh and model for end-stage
liver disease (MELD) score. The BCLC staging system has been adopted widely due to its
simplicity and prognostic reproducibility. However, the BCLC system has been shown to
be conservative in terms of intermediate- and advanced-stage management.



Cancers 2022, 14, 3351 6 of 32

Table 1. Barcelona clinic liver cancer classification for the prognosis and treatment of hepatocellular
carcinoma [5].

Stages Characteristics

Very early stage (0)
Single lesion ≤2 cm

Preserved liver function
Performance status: 0 (fully active)

Early stage (A)
Single lesion or ≤3 nodules each ≤3 cm in size

Preserved liver function
Performance status: 0

Intermediate stage (B)
Multinodular

Preserved liver function
Performance status: 0

Advanced stage (C)

Portal invasion and/or extrahepatic spread
Preserved liver function

Performance status: 1 (cannot do heavy physical work) or 2 (up and
about more than half the day, can look after self but cannot work)

Terminal stage (D)

Any tumor burden
End-stage liver function

Performance status: 3 (in bed or a chair for more than half the day
and need help to look after self) or 4 (in bed or chair all the time

needing complete care)

5.1. Eastern Cooperative Oncology Group (ECOG)

The ECOG Performance Status Scale is used to assess a patient’s level of function by
looking at his/her ability to perform physical activities, complete daily activities, and take
care of him/herself. The ECOG Performance Status Scale is an essential component of
BCLC classification. Table 2 shows the ECOG Performance Status Scale [49].

Table 2. Eastern Cooperative Oncology Group Performance Status Scale.

Grade ECOG Performance Status

0 Fully active
1 Cannot do heavy physical work
2 Up and about more than half the day, can look after self but cannot work
3 In bed or a chair for more than half the day and need help to look after self
4 In bed or chair all the time needing complete care
5 Dead
6 Fully active

5.2. Child–Pugh Classification

Based on clinical and laboratory information, Child–Pugh scoring predicts the progno-
sis of patients with cirrhosis by estimating their liver function. Table 3 demonstrates the
Child–Pugh classification of severity of cirrhosis. Patients with a score of 5 to 6 are classified
in class A and are said to have well-compensated cirrhosis, those with a score of 7–9 are
classified in class B and are said to have significant functional compromise of the liver,
and those with a score of > 9 are classified in class C and are said to have decompensated
cirrhosis [50]. According to several studies, TACE is recommended for Child–Pugh class A
and highly selective class B cirrhosis [51].
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Table 3. Child–Pugh classification.

Parameter Points Assigned

1 2 3
Ascites Absent Slight Moderate

Serum bilirubin <2 mg dL−1

(<34.2 micromol L−1)
2 to 3 mg dL−1

(34.2 to 51.3 micromol L−1)
>3 mg dL−1

(>51.3 micromol L−1)
Serum albumin >3.5 mg dL−1 (35 g L−1) 2.8 to 3.5 g dL−1 (28 to 35 g L−1) <2.8 g dL−1 (<28 g L−1)

Prothrombin time or INR <4 or <1.7 4 to 6 or 1.7 to 2.3 >6 or >2.3
Encephalopathy None Grade 1 to 2 Grade 3 to 4

5.3. Albumin–Bilirubin (ALBI) Score

A significant limitation of the Child–Pugh classification is its subjective assessment
due to the inclusion of ascites and encephalopathy in the score that can easily be modified
by medication(s). Therefore, a new score called ALBI was developed that includes only
objective parameters, serum albumin and bilirubin, to assess the liver function. The formula
for calculating the ALBI score is as follows:

ALBI score = (log10 bilirubin 0.66) (albumin 0.085)

where bilirubin is in mmol L−1, and albumin is in g L−1.
Table 4 shows ALBI grading according to the ALBI score. Child–Pugh class A can be

subdivided into ALBI Grades 1 and 2 [52]. According to several retrospective studies, ALBI
is superior to the Child–Pugh classification in regard to prognosis identification, accuracy,
and stratification [53]. The ALBI score has shown an excellent prognostic and predictive
ability for patients undergoing palliative transarterial therapies [54]. It has also been used
to categorize patients belonging to BCLC-B class undergoing TACE [55].

Table 4. Albumin–bilirubin (ALBI) score.

ALBI Grade Score

Grade 1 ≤2.6
Grade 2 >2.6 to 1.39
Grade 3 >1.39

5.4. Platelet–ALBI (pALBI) Score

In order to include the presence of paraneoplastic syndrome in patients with HCC,
the pALBI score was developed. The pALBI score includes platelet counts as an indicator
of a paraneoplastic syndrome of HCC. The formula for the pALBI score is given below:

PALBI score = 2.02 × log10 bilirubin − 0.37 × (log10 bilirubin)2 − 0.04 ×
albumin − 3.48 × log10 platelets + 1.01 × (log10 platelets)2

Table 5 shows the pALBI grading according to the pALBI score [56]. According to a
study by Liu et al., a higher C-index was seen for the PALBI grade than the ALBI grade, thus
indicating its usefulness as a robust statistical model that provides improved discriminatory
power [57].

Table 5. Platelet–ALBI (pALBI) score.

pALBI Grade Score

Grade 1 ≤−2.53
Grade 2 >−2.53 and ≤−2.09
Grade 3 >−2.09
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5.5. The Neutrophil-to-Lymphocyte Ratio (NLR)

In patients with inflammation, neutrophils have been shown to reduce the activity of
different types of lymphocytes. The ratio of neutrophils to lymphocytes can be used as a
marker of inflammation and immune response [58]. A couple of studies have highlighted
that a higher lymphocyte count correlates with treatment response and prognosis [59,60].
As per the study conducted by Wang et al., NLR values increased three days post-TACE
and then fell back to baseline after one month; a higher NLR (>2.4) was associated with
overall survival of 15.6 months vs. a lower NLR (≤2.4) having an overall survival of
27.1 months [61].

5.6. MELD Score

The MELD score was first developed to predict the survival of patients with liver cirrho-
sis who underwent placement of a transjugular intrahepatic portosystemic shunt for their
disease management. Currently, the MELD system is used to rank liver-transplantation can-
didates’ priority. The MELD score is calculated by measuring three objective variables: total
bilirubin, creatinine, and INR [62]. In a study by Sawhney et al., a MELD score of higher
than ten is associated with higher mortality after TACE (Hazard ratio: 4.9, p = 0.001) [63].

5.7. Assessment for Retreatment with Transarterial Chemoembolization (ART) Score

The ART score is used to predict the survival of patients with HCC after their first
TACE treatment by looking at the increase in Child–Pugh score (1.5 point for 1 point
increase, 3 points for ≥2 points increase, and 0 points for no increase), presence or absence
of radiological response (1 point for no response, and 0 points for presence of response),
and elevation of aspartate transaminase (4 points for >25% increase, and 0 points for
≤25% increase) [64]. A high ART score after the first TACE was found to be associated with
the risk of major adverse events upon the second TACE (p = 0.011) [64]. When the patients
where stratified on the basis of their ART score in the initial validation study, patients
with a score of 0–1.5 points were found to have a median OS of 23.7 months, and those
with ≥2.5 points were found to have a median OS of 6.6 months [64]. These findings were
confirmed in an unrelated study conducted by Abbasi et al. [65].

5.8. ASARA Scoring System

More recently, the ASARA scoring system, a predictive model for stratifying candi-
dates based on liver function for suitability for initial/repeated TACE procedure, has come
into the picture. AFP ≥ 400 ng mL−1, tumor size (maximum diameter >7 cm), increase
in ALBI score, no tumor response, and increase in AST ≥25% are each assigned a score
of 1 (total score range of 0–5) [66]. The median OS for patients with a score of ≤2 was
significantly higher than those with a score of >2 (p = 0.006). This model suggests that a
score of >2 predicts TACE failure; thus, switching to systemic therapy should be considered
in such scenarios [66]. For patients with Child–Pugh class B and impaired hepatic function,
the modified AS (ARA) model could be applied to screen individuals for initial TACE
treatment (cutoff value >1 predicts worse prognosis, p = 0.004) [66].

5.9. Hepatoma Arterial-Embolization Prognostic (HAP) Score

The HAP scoring system stratifies patients into low (HAP class A), intermediate (HAP
class B), high (HAP class C), and very high risk (HAP class D) groups for predicting survival
after TACE [67]. An albumin level of <36 g dL−1, AFP levels of >400 ng mL−1, bilirubin
levels of >17 µmol L−1, and a maximum tumor diameter of >7 cm are each given 1 point
in this scoring system. The OS for class A (score 0), class B (score 1), class C (score 2), and
class D (≥2) were 25.5, 18.1, 8.9, and 5.9 months, respectively, in the validation model of
this scoring system [67]. According to a few studies, HAP classification might be a better
predictor of survival than Child–Pugh, CLIP, BCLC, and MELD scoring systems [67,68].
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5.10. Selection for Transarterial Chemoembolization Treatment (STATE) Score

The STATE score has been developed to identify unbefitting patients for the initial
TACE session. The STATE score = serum albumin (9g L−1) − 12 (if up-to-7-out) − 12
(if CRP >1 m dL−1). Patients with a total score of <18 points had a poorer prognosis
as opposed to patients with a score of ≥18 (median OS: 5.3 months vs. 19.5 months,
p < 0.001) [69]. Additionally, patients with a score of <18 points had a significantly greater
rate of serious adverse events following their initial TACE session and higher short-term
mortality (number needed to harm = 4) [69]. These findings have been confirmed in a few
other studies [68,70].

5.11. Aspartate-Aminotransferase-to-Platelet Index (APRI) Score

The APRI scoring system was developed by Wai et al. for predicting significant
fibrosis and cirrhosis in patients with chronic hepatitis C [71]. Lately, the APRI score
has been used to predict survival in patients with HCC. A meta-analysis suggested a
significant association between high APRI levels and poor prognosis in patients with
HCC (HR 1.59, p < 0.001) [72]. Furthermore, another study indicated that the APRI score
has indistinguishable accuracy but higher negative predictive value and sensitivity for
predicting post-TACE acute liver function deterioration when compared to Child–Pugh
scoring [73].

5.12. Tumor Size, Tumor Number, Baseline AFP, Child–Pugh Class, and Objective Radiological
Response (SNACOR) Score

The SNACOR classification is another predictive model for the prognostication of
patients with HCC who underwent TACE. Tumor size (<5 cm = 1 point, ≥5 cm = 2 points),
tumor number (<4 = 1 point, ≥4 = 2 points), baseline AFP levels (<400 ng mL−1 = 1 point,
≥400 ng mL−1 = 2 points), Child–Pugh class (A = 1 point, B = 2 points), and response
evaluation (complete response + partial response = 1 point, stable disease + progressive
disease = 2 points) are the components of this scoring system. The patients are classified
into three groups based on their total score: low-risk (0–2), intermediate (3–6), and high-risk
(7–10) groups [74]. This model suggested that the patients in the intermediate (HR 2.13) or
high-risk (HR 6.17) groups had a significant risk of death compared to the low-risk group
(p < 0.001) and might not be candidates for retreatment with TACE [74]. A validation study
described this model as adequate to distinguish favorable vs. impaired prognosis groups
with moderate performance [75].

5.13. Okuda Score

The Okuda prediction model, one of the oldest staging systems, is a scoring scheme
based on tumor size, ascites, serum bilirubin, and serum albumin levels; each scored 0/1.
Based on the total score, patients are classified into three stages: Stage I (0 points), Stage II
(1–2 points), and Stage III (3–4 points) [76]. In the original cohort of 850 patients diagnosed
with HCC in 1975–1983, the median OS between the three stages was 11.5 months (Stage I)
vs. 3 months (Stage II) vs. 0.9 months (Stage III) [76]. However, Levy et al. found no
significant difference in the median OS between Stage II and Stage III patients (3.2 months
vs. 3.1 months, p = −0.43) in their cohort of patients [77].

5.14. Cancer of the Liver Italian Program (CLIP) Score

The CLIP scoring system considers the residual liver function and tumor characteristics
for the prognostic assessment of HCC patients [78]. In a study by Li et al., patients with
a CLIP score of 0–2 were found to have a longer OS than those with CLIP scores of 3–5
(13 months vs. 4 months, p = 0.001), making them better candidates for TACE [79]. A recent
study suggests that the CLIP system is superior for predicting survival in patients with
unresectable HCC treated with TACE compared to the Okuda classification system and is
easier to implement [68].
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6. Patient Preparation
6.1. Pretreatment Imaging

A contrast enhanced multiphasic MDCT or MRI can be used for the diagnosis of
HCC in lesions >1 cm and should be performed preferably within three months of the
procedure [80]. Imaging should be obtained to assess factors such as vascular anatomy,
lesion size, number of lesions, macrovascular invasion, and extrahepatic spread, which
help determine eligibility for locoregional and/or systemic therapies [81]. MDCT is con-
sidered superior for delineating the vascular anatomy of the hepatic vasculature, as well
as identifying parasitic tumor feeders; however, MRI demonstrates superior evaluation of
lesion enhancement, morphology, and classification [82].

6.2. Pre-Procedural Labs and Tumor Markers

The following tests are recommended for diagnosing the extent of liver function and
obtaining baseline liver function for potential postprocedural hepatotoxicity [46]:

• Aminotransferase,
• Cholinesterase,
• Alkaline phosphatase,
• Gamma-glutamyl transferase,
• Bilirubin,
• Albumin,
• Prothrombin time,
• Creatinine,
• Electrolytes.

In addition to the above tests, testing for tumor markers is also essential. Alpha-
fetoprotein is the most commonly used tumor marker for HCC, as it is able to predict
disease prognosis and aids in monitoring tumor recurrence [83,84]. More recently, vitamin
K absence, antagonist-II (PIVKA-II), has shown to increase HCC detection rates and can be
obtained in adjunct to AFP and imaging [85].

6.3. Pre-Procedural Preparation

Fasting for six to eight hours is required for preparation for conscious sedation or
general anesthesia.

Proton pump inhibitors may be given to reduce the chances of post-procedure gastri-
tis/duodenitis and mitigate the significance of non-target embolization. Dexamethasone
(20 mg intravenously) may also be given to reduce the risk of post-embolization syndrome.
Intravenous fluids should be considered in those without cardiac contraindications. Anx-
iolytics have also been found to be beneficial pre-procedure [46]. If predisposing factors
for liver abscess listed below are found, then an antimicrobial regimen such as 400 mg
of moxifloxacin by mouth daily, beginning three days pre-procedure to seventeen days
post-embolization, should be prescribed; however, longer courses are also utilized [86].

• Biliary tree canulation/dilation/sphincterotomy;
• Presence of biliary prosthesis (e.g., plastic and metallic stents);
• Presence of a bilioenteric anastomosis;
• Presence of TIPS [87];
• Biliary or gallbladder stone.

Patients without the above risk factors are typically given a single dose of cefazolin im-
mediately prior to the procedure. The pre-procedural target international normalized ratio
(INR) and platelet values are desired to be INR ≤2–3 and a platelet count of >20,000 µL−1,
as, according to the Society of Interventional Radiology Consensus Guidelines, these
procedures are classified to be low risk for bleeding [88].
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7. Techniques: Angiography and Embolization Technique
7.1. Initial Angiography

Either the common femoral artery (CFA) or radial artery (RA) access can be used for
performing transarterial embolization [89]. A 4–6 Fr vascular sheath is used with either
approach. If the RA access is selected, a cocktail of heparin and one or more vasodilators
(nitroglycerin, verapamil, or nicardipine) is generally administered intraarterially via the
sheath once access has been achieved [90].

Mesenteric angiography is performed to visualize and define the relevant vascular
anatomy and identify tumoral arterial supply, as well as collaterals and arterial supply at
risk of non-target embolization [91]. A superior mesenteric angiogram is obtained first to
exclude aberrant vascular anatomy and confirm portal vein patency on delayed imaging.
Then a celiac arteriogram is performed to identify target (hepatic artery branches) and
non-target arteries and hypervascular tumors [92]. In situations where, extrahepatic arterial
recruitment is suspected, extrahepatic vessels (phrenic, gastric, and internal mammary) are
also evaluated [93]. Frequently, intraprocedural cone-beam CT technology is utilized to
identify and/or confirm arterial supply of targeted tumors [94].

Once the procedure is completed, all the catheters and sheaths are removed, and hemosta-
sis is achieved by either manual compression or with the help of a closure device [95].

7.2. Embolization Techniques
7.2.1. Bland Embolization (TAE)

In TAE, after following the steps described in the previous section, lobar embolization
or subselective embolization can be performed depending on the arterial distribution,
location of the tumor, and tumor burden. TAE is usually performed by using embolic
agents ranging from 40 to 120 µm in size that may be spherical or non-spherical, resorbable
or non-resorbable, calibrated or non-calibrated [96,97]. Particles are mixed with iodinated
contrast, normal saline solution, and an antibiotic in some cases. Embolization is performed
to the endpoint of stasis of flow in the target vessel(s).

7.2.2. Transarterial Chemoembolization (TACE)

In TACE, following the above steps, a microcatheter is used to subselectively catheter-
ize target branches. The goal of subselective catheterization is to maximize the delivery
of chemoembolic material to tumor, while minimizing, as much as possible, delivery to
the normal liver. Once the catheter position is optimized, conventional or DEB–TACE
can be performed under real-time fluoroscopic observation. For conventional TACE, the
prescribed chemotherapy is combined with ethiodized oil and contrast and then contin-
uously administered until the peritumoral venous plexus is visualized. However, this
approach might be difficult to achieve in big tumors. For DEB–TACE, the endpoint of
administration is sub-stasis of flow within the supplying vessel. Caution must be used to
prevent over-embolization, resulting in reflux into non-target liver and non-target organs
(i.e., bowel, pancreas, and spleen). In cTACE, particles or gelfoam are often delivered after
chemoembolic material to prevent “washout” of chemotherapy. If multiple tumors are
present, the best approach is to target each individual tumor as selectively as possible.
Classically, only one lobe (right or left) is treated in a single setting; however, this approach
is variable with the ability to perform subselective targeted delivery of chemoembolic
material. If lipiodol or radiodense beads are utilized, non-contrast cone-beam CT or non-
contrast CT can be obtained post-delivery to visualize the extent of lipiodol deposition.
Figure 3A–D shows CT and MRI of a patient who underwent cTACE. Figure 4A–F shows
the CT and angiograms of a patient who underwent DEB–TACE.
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Figure 4. A patient with multifocal HCC who underwent DEB–TACE for its management. CT
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showing tumor blush (C), which completely disappeared after DEB–TACE (D). Follow-up CT show-
ing good tumor response in the right (E) and left (F) lobe of the liver.

7.2.3. Selective Internal Radiation Therapy (SIRT)

With SIRT/Y-90-radioembolization, the added step of technetium-99 m macroaggre-
gated albumin (Tc-99 m MAA) shunt study, or “mapping”, prior to the SIRT is necessary.
Following diagnostic angiography and subselective catheterization of supplying tumoral
feeders, approximately 4 mCi of Tc-99 m MAA is delivered into the lobe or segment contain-
ing the target tumor. The target artery may be identified with the aid of cone-beam CT. After
the injection of Tc-99 m MAA, the patient is taken for planar nuclear imaging or SPECT/CT
in order to assess for any shunting (specifically to the lung) and assess technical success
by visualizing Tc-99 m MAA deposition within targeted tumors. The patient then returns
for Y-90 delivery 1–4 weeks following the shunt study (although “same-day” mapping
and delivery are also performed at select centers). The prescribed dose of Y-90 depends on
multiple factors such as tumor size and number, liver function, and the microparticle of
choice. Y-90-radioembolization is performed from the same catheter position utilized for
the Tc-99m MAA shunt study. SPECT/CT is then again sometimes obtained post-procedure
to assess Y-90 distribution and dose delivery to the targeted tumor. Figure 5A–D shows the
CT, SPECT, and angiogram of a patient who underwent segment-two segmentectomy.

7.2.4. Hepatic Artery Infusion (HAI)

In hepatic artery infusion (HAI), chemotherapy is delivered to the tumor by infusing
it into the hepatic artery by placing either a surgically implanted pump/port or by placing
a percutaneous catheter, which can be connected to an external pump [98–100]. For percu-
taneously placed catheters, the Seldinger technique is used to access the artery and place
infusion catheters. Left subclavian and right femoral artery accesses are frequently used.
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The most commonly used site for access is the common femoral artery, as it is easier to
access due to its superficial and less torturous course. In the “fixed-catheter-tip” technique,
the distal tip of the catheter is fixed to the gastroduodenal artery, and the chemotherapy is
infused to the tumor with the help of a side hole which is positioned into the proper hepatic
artery [101]. Another technique which can be used is the “long tapered catheter placement”
technique [102]. In this technique, the catheter is positioned distally into the segmental
hepatic artery, and the side hole of the catheter is placed at the origin of the proper hepatic
artery [103].
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Figure 5. Radiation segmentectomy in a patient with HCC with a past surgical history of right
hepatectomy. (A) CT showing a large lesion in the left lobe of the liver. (B) Left hepatic artery
angiogram showing vessels supplying the tumor. (C) SPECT-CT imaging after left segment-2 sub-
segmentectomy, showing good dose delivery. (D) Follow-up CT showing good response in the
treated area.

8. Mechanism of Action of Transarterial Therapies
8.1. Bland Embolization (TAE)

While the portal vein and hepatic artery offer duality in terms of blood supply, HCC
generally relies on hepatic arteries to meet oxygen requirements. TAE involves delivering
embolic particles into the arterial supply of targeted tumors, thereby creating hypoxia and
subsequent infarction seen on follow-up contrast enhanced imaging (CT or MRI) [104].
TAE is similar to other catheter-directed embolic interventions, such as DEB–TACE or
cTACE, but may be used in patients in whom chemotherapy is contraindicated or if
chemotherapeutic agents are unavailable.
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8.2. Transarterial Chemoembolization (TACE)

Delivering embolic particles within a tumor’s vascular bed results in localized tissue
hypoxia; however, the concurrent addition of chemotherapy may have additive antitumor
effects [104]. An animal study combining cTACE with radiotherapy has shown promising
results; this two-pronged approach could potentially help target cancer cells not reached
by Y-90 beads due to arterial inflow limitation [105]. TACE is commonly used in cases of
unresectable HCC and is first-line therapy for patients with intermediate-stage HCC [106].
Conventional TACE is referred to as Lipiodol®-based TACE. The two-part process begins
with transcatheter delivery of chemotherapy, followed by particle embolization. The most
common chemotherapeutic agents include cisplatin (100 mg), doxorubicin (50 mg), and
mitomycin C (10 mg). These agents are mixed with lipiodol (Ethiodol) in a 1:1 to >5:1
(lipiodol:chemotherapy) volume ratio [107]. A higher mixing ratio (larger volume of iodized
oil) ensures the creation of a water-in-oil-type emulsion. A water-in-oil-type emulsion
is advantageous in the selective delivery of an anticancer drug to the tumor. Moreover,
cTACE may be repeated serially when there is clear evidence of a viable tumor, with some
studies recommending a minimum of three sessions before abandoning cTACE in patients
with nonresponding intermediate-stage HCC [108].

8.3. Drug-Eluting Beads–Transarterial Chemoembolization (DEB–TACE)

With the advent of chemotherapy-loaded embolic spheres, an additional modality of
chemotherapy delivery became available. Drug-eluting beads dually embolize selective
tumor-feeding vessels and deliver chemotherapy in a concentrated fashion [106]. In this
sense, DEB–TACE is different than conventional TACE, as the previously described two-
part process (cTACE) is exchanged for a single-step modality (DEB–TACE). In randomized
trials comparing cTACE and DEB–TACE, the major difference were less post-procedural
pain and shorter hospital admission in DEB–TACE, this finding can be explained by the
deeper penetration of chemoembolic material into the liver capsule and peritumoral portal
venous system with cTACE [109].

8.4. Selective Internal Radiation Therapy (SIRT)

Radiation therapy has been a staple of oncologic therapy, and its usage has typically
been reserved for external beam radiation. However, the collateral damage to surrounding
parenchyma limits its use in patients with already tenuous liver function. The localized
delivery of radiation-emitting microspheres is a means by which to decrease this collateral
damage. The most commonly used radioisotopes include yttrium-90 (Y-90) and Holmium-
166 (166-HO). SIRT is effective in cases of unresectable tumors or chemotherapy-resistant
disease. SIRT, specifically Y-90, has proven to be efficacious in downstaging HCC for
purposes of transplant eligibility [110]. Furthermore, 166-HO is a more recently isolated
radioisotope and has additional benefits beyond Y-90. Most interesting, perhaps, is that
166-HO microspheres emit high-energy beta particles, in addition to gamma radiation,
therefore offering single-photon emission computed tomography compatibility. More-
over, 166-HO microspheres are also paramagnetic and therefore hyper-resonant on MRI
(magnetic resonance imaging). SIRT is delivered via two approaches: lobar/sub-lobar
and segmentectomy. The lobar/sub-lobar approach is reserved for instances of multifocal
disease, whereas a segmentectomy is chosen in cases of solitary tumors measuring 5 cm or
less and that are accessible angiographically.

Currently, two manufactured agents are utilized for SIRT: glass beads and resin beads.
Glass beads (TheraSphere, Boston Scientific, Marlborough, MA) are 20–30 microns in size
and deliver a large activity to the tumor bed (~2500 Bq). However, resin beads (SIR-Spheres,
Sirtex, Woburn, MA, USA) are larger in size (20–60 microns) and deliver a lower level of
activity to the tumor bed (50 Bq) but produce a greater degree of embolization [111]. The
recommended delivery dose for glass beads is a tumoral dose of 400 Gy for successful radi-
ation segmentectomy and 150 Gy for resin bead; however, dosimetry data are continuing to
evolve rapidly and are decided based on personalized dosimetry in most cases [112,113].
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8.5. Hepatic Artery Infusion (HAI)

HAI is a widely employed alternative to systemic chemotherapy, as it directly delivers
chemotherapeutic agents to the tumor feeding vessels and reduces the systemic toxic side
effects of these drugs through the first-pass effect of the liver [114]. In a recently conducted
phase-three study for large unresectable HCC without macrovascular invasion, comparing
HAI with FOLFOX (fluorouracil, leucovorin, and oxaliplatin) vs. TACE, HAI with FOLFOX
(median overall survival 13.3 months) showed a significantly improved overall survival
rate as compared to TACE (median overall survival of 10.8 months). The infusion was
performed once every three weeks for up to six courses [100]. A study comparing treatment
with sorafenib alone vs. sorafenib combined with FOLFOX HAI (soraHAIC) reported a
tolerable safety profile and improved efficacy with soraHAIC (median overall survival
13.37 months) vs. sorafenib alone (median overall survival of 7.13 months) [115]. The
SILIUS trial consisting of 206 patients compared sorafenib alone vs. sorafenib plus low-
dose cisplatin and FU HAI. The study found no significant survival benefit from combining
sorafenib with low-dose cisplatin and FU (median overall survival with sorafenib alone was
11.8 months vs. overall combination survival of 11.5 months) [116]. The use of sorafenib
with HAI compared to sorafenib along with HCCs with major portal vein tumor thrombus
was recently studied in a randomized controlled trial which showed a better median overall
survival, higher objective response rate, and longer median progression-free survival in
the sorafenib with HAI group [117]. However, the survival benefit of combining sorafenib
with HAI has largely been shown to be variable, thus necessitating more studies.

9. Contraindications to Transarterial Embolization
9.1. Bland Embolization (TAE) and Transarterial Chemoembolization (TACE)

There are no absolute contraindications to TAE or chemoembolization procedures;
however, the presence of various factors can make patient candidacy unfavorable to un-
dergo these procedures. Relative contraindications include contraindications to arteriog-
raphy; absence of portal venous blood flow; extensive tumor with replacement of both
the lobes of liver; decompensated cirrhosis, which is indicated by Child–Pugh class C, or
Child–Pugh class B score >8, along with jaundice; clinically overt hepatic encephalopathy,
refractory ascites, and/or hepatorenal syndrome; tumor size more than 10 cm; active car-
diovascular or lung disease; untreated gastroesophageal varices at the risk of bleeding; bile
duct occlusion or incompetent papilla; poor performance status; active systemic infection;
contraindications to chemotherapy; or poor tolerance to prior procedures [81,92,118,119].

9.2. Selective Internal Radiation Therapy (SIRT)

Contraindications to SIRT include the history of prior liver irradiation, significant
liver dysfunction/decompensation, metastasis to organs other than the liver, pregnancy,
irregularities in hepatic venous anatomy that preclude radioembolization, capecitabine
treatment three months before the procedure, pathological shunt fraction causing a lung
dose of ≥30 Gy in a single application or presence of flow to the gastrointestinal tract from
the arterial supply of the tumor that cannot be corrected by transcatheter techniques, and
abnormal laboratory values. Although not absolute guidelines, a white blood cell count
less than 2500 cc3, neutrophil count less than 1500 cc3, platelet count less than 60,000 cc3,
alanine transaminase or aspartate transaminase more than five times the normal value,
bilirubin more than 2 mg dL−1, albumin less than 3 mg dL−1, and creatinine more than
2.5 mg dL−1 have been proposed as limits to therapy [120].

10. Post-Procedural Follow-Up

The post-procedural follow-up after the embolization procedure is similar for many
patients regardless of the type of transarterial therapy they are receiving. The follow-up in-
cludes a clinic visit to reassess the performance status of the patient and ensure symptomatic
management; the laboratory tests include a comprehensive metabolic panel, complete blood
count, international normalized ratio, normal tumor markers, and multiphasic contrast
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enhance MRI or CT of the abdomen with intravenous iodine-based contrast for follow-up.
Follow-up after liver-directed therapy is recommended at 1, 3, 6, and 12 months in the first
year after the procedure and every 6 months thereafter. Of note, post-treatment imaging of
HCC following radioembolization is recommended at 6–8 weeks following delivery, as the
localized post-radioembolization parenchymal enhancement imitates the treated disease,
making response difficult or impossible to assess before these changes evolve. Additionally,
the follow-up schedule should be tailored for each patient according to their treatment
goals, transplant status, local imaging availability, etc. [121].

11. Complications
11.1. Bland Embolization (TAE) and Transarterial Chemoembolization (TACE)

The most common complication associated with embolization is postembolization syn-
drome, which can be seen in up to 90 percent of patients and can present with fatigue, right
upper quadrant pain, low-grade fever, nausea, vomiting, and ileus [122–125]. Symptoms
due to the post-embolization syndrome are generally self-limiting, and recovery is often
seen within 7 to 10 days [126]. Other less common but serious complications associated with
embolization are most often related to treatment-induced ischemic damage, leading to liver
failure [127–130], hepatic abscess [131], acute cholecystitis, biliary duct injury [130,132],
gastroduodenal ulceration [126,130], renal dysfunction [130], pulmonary lipoid emboliza-
tion [133,134], cerebral lipoid embolization [135], interstitial pneumonia [136], tumor lysis
syndrome [130,137], and risk of reactivation of hepatitis B infection [138,139].

11.2. Selective Internal Radiation Therapy (SIRT)

Similar to cTACE, post-embolization syndrome is the most common complication
associated with SIRT; however, it is less severe in patients undergoing SIRT, and the
incidence is lower [140–143]. Other complications associated with SIRT include hepatic
dysfunction, which can manifest as liver failure; radiation-induced liver disease (RILD),
which can be seen in 5 to 23 percent of patients [141,144]; hepatic fibrosis [145]; portal
hypertension [145,146]; radiation pneumonitis in less than 1 percent of patients [141];
gastric or duodenal injury in less than 5 percent of patients; and lymphopenia [147]. Of
note, delayed hepatotoxicity can be seen in 13% of patients following SIRT, especially in
patients with a tumor burden of >50% and cirrhosis [148].

12. Outcomes
12.1. Imaging Response Criteria

The main goal of treatment is to improve the survival of patients with cancers, and,
therefore, it is important to detect the change in tumor burden in patients undergoing
treatment, as it has been found to be associated with increased survival. The tumor burden
is evaluated with the help of standard response criteria, which require critical interrogation
and cross-verification. A number of criteria have been developed to assess the treatment
response in patients undergoing treatment [149–151]. These criteria involve one-, two-, and
three-dimensional methods that can be used to measure the response after treatment [152].
Each of these methods is further subdivided into two or more categories based on the
ratio of total size to the size of the enhancing component. During the Response Evaluation
Criteria in Solid Tumors (RECIST) measurements, the sum of the longest one-dimensional
diameter is evaluated tumor response; however, now the commonly used criteria are the
modified RECIST (mRECIST) criteria, which measure the changes in tumor enhancement
that can serve as a biomarker for the tumor viability [153,154]. The World Health Orga-
nization (WHO) has introduced an evaluation system for solid liver tumors in which the
diameters of the tumor lesions are measured and then multiplied to evaluate the change
in lesion size. In contrast to the WHO evaluation system, the European Association for
the Study of the Liver (EASL) recommends measuring changes in contrast uptake of the
tumor tissue to measure tumor response [150,155]. However, the criteria based on one-
or two-dimensional methods are flawed due to the lack of reproducibility and inaccuracy
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when assessing necrotic or heterogeneous tumor lesions [156]. Due to these limitations,
three-dimensional quantitative image analysis techniques have been developed, which
are said to provide a reproducible assessment that is biologically accurate and provides a
more clinical predictable tumor evaluation [157]. Volumetric analysis (vRECIST) includes
the measurement of whole tumor volume, and therefore the change here reflects the true
extent and distribution of the tumor tissue [94,158]. The quantitative EASL (qEASL) as-
sesses changes in enhancing tumor volume and therefore goes beyond the boundaries
calculated in vRECIST [94,157,159,160]. The PET Response Criteria in Solid Tumors (PER-
CIST) is another set of response assessment criterion developed to assess tumor response
by using PET scans [161]. A liver-tissue classification using 3D multi-parameter MRI-
based deep neural networks has been developed to better delineate the liver tissue for
better TACE targeting has shown promising results [162]. An artificial intelligence concept
using the qEASL criteria was developed to predict TACE response (overall accuracy of
78%) [163]. A study conducted by Miszczuk et al. reports that lipiodol can be a potential
imaging biomarker after cTACE for tumor response. Patients with a higher overall lipi-
odol coverage showed higher response rates (p < 0.05) upon 30-day follow-up imaging
studies [164–167]. Although the mainstay of tumoral response evaluation is currently the
assessment of imaging response (such as with mRECIST) and chemical biomarker response
(AFP), precision-medicine-based studies have recently gained momentum, thus allowing
clinicians to individualize treatment plans based on genomics [168]. For example, a recent
genome-based study looking at patients who underwent TACE for HCC showed that an
increased PMK2 expression post-TACE was associated with attenuated survival [169].

12.2. Overall Survival, Progression-Free Survival, and Hepatic Progression-Free Survival

Overall survival (OS) is the most commonly used primary endpoint in oncology and
clinical trials reporting results utilizing first- and second-line systemic therapies to treat
advanced HCC [170]. However, other surrogate endpoints have been identified, such as
objective response rate (ORR) and progression-free survival (PFS), which have helped
better defined clinical outcomes and have led to accelerated regulatory approval of drugs
and therapies [171,172]. OS is defined as the time after the treatment of a disease for which
the patient lives. PFS is the length of time during and after the treatment of a disease when
the patient is alive and the disease has not worsened [170]. In a clinical trial, measuring PFS
is one way of determining how well a new treatment works and how durable its treatment
effect is [170]. Likewise, hepatic progression-free survival (HPFS) is calculated from the first
regional treatment until the first date of documented progression in the liver and serves as
a surrogate of treatment [173].

TAE has been investigated in multiple studies, and 1-year reported overall survival of
patients with nonresectable HCC ranges from 42 to 86%, whereas 2-year OS ranges from
25 to 51% [174–179]. In a meta-analysis conducted by Marelli et al., TAE was compared
to TACE, and no survival benefit was seen in patients who underwent TACE compared
to those who underwent TAE [130]. The use of smaller calibrated microspheres has been
shown to lead to better outcomes by causing improved tumor-control rates. The use of
300–500 µm beads had an OS of 15.1 months compared to 11.1 months in patients who
underwent TAE with 500–700 µm beads [180]. In terms of recurrent HCC, the use of TAE
has shown to have a median OS of 46 months, with 1-, 2-, and 5-year survival rates of 86%,
74%, and 47%, respectively [181].

TACE has been shown to improve the OS in patients with unresectable HCC compared
to best supportive care in patients with well-preserved liver function [178,182]. The most
extensive series of TACE has been reported from Japan, which studied the outcomes of
8510 patients undergoing TACE [183]. In this series, the median OS was 34 months [183].
In the first head-to-head trial comparing TACE with DEB–TACE, no difference in median
OS was found between the two groups [184]. Subsequently, multiple randomized controlled
trials have been performed to compare TACE and DEB–TACE; however, no significant
difference in OS has been found [184–186]. Studies have also reported no significant
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difference in OS or PFS based on the chemotherapeutic regimen used for TACE [187–189].
Per the TACTICS trial, sorafenib combined with TACE significantly increases the PFS as
compared to TACE alone in unresectable HCC (25.2 vs. 13.5 months, p = 0.006) [190]. The
presence of portal vein thrombosis is not a contraindication to TACE. A study evaluating the
safety of TACE in patients with portal vein thrombosis showed no evidence of TACE-related
hepatic infarction or acute liver failure and a 0% 30-day mortality rate [191].

In the largest retrospective series of 345 HAI procedures, patients undergoing the
procedure had significantly worse outcomes if they had more advanced disease [192]. The
median OS was found to be 28.6 months in another study where 253 HAI procedures were
investigated [193]. However, HAI has shown to have a lower OS rates when compared to
TACE [194].

Patients undergoing SIRT with unresectable HCC have a median OS of up to
20.5 months [195–199]. In patients with unresectable HCC without portal vein throm-
bosis, SIRT and TACE have been shown to have a similar median OS rate (20.5 months
vs. 17.5 months, respectively) [199]. In patients with portal vein thrombosis, the use of
SIRT has shown to have a median OS ranging from 5.6 to 17 months depending on the
extent of portal vein involvement, functional status of the patient, and underlying liver
dysfunction [195,196,198,200]. The use of SIRT compared to sorafenib in patients with
advanced HCC has not been shown to have improved outcomes [201,202]. Studies re-
porting outcomes after SIRT segmentectomy have reported significant improvements in
time-to-progression, complete response rate, local tumor control, and PFS compared to
TACE [112,203–205]. More recently, a multiregional study comparing SIRT with TACE
found no significant difference between the two in downgrading the disease prior to liver
transplantation [206]. The outcomes of radiation segmentectomy have been shown to be
similar to ablation and surgical resection in patients with tumors of 3 cm or smaller [203].

In a meta-analysis including 55 randomized controlled trials comparing the effec-
tiveness of different transarterial therapies in patients with HCC, all the embolization
techniques provided a significant increase in survival when compared to the best support-
ive care. However, there was no significant increased benefit of TACE, DEB–TACE, SIRT,
or TACE combined with systemic therapy when compared to BE alone. The combination
of TACE with radiotherapy or local ablation showed the best survival. SIRT was found to
cause the fewest side effects, whereas patients receiving TACE combined with systemic
therapy had the highest number of reported complications [207].

13. New Developments and Future Directions
13.1. Newer Drug-Eluting Beads

Drug-eluting beads (DEBs) are beads loaded with different chemotherapeutic agents.
A number of different DEBs have been successfully developed and have been used in the
management of hypervascular HCCs [208,209]. These beads are composed of biocompat-
ible polymers, which can bind chemotherapeutic agents after the formation of covalent
bonds [210]. As pharmacokinetics of these DEBs are better studied and further refined,
the ability to deliver chemotherapeutics more efficiently and more effectively will also
undoubtedly improve, potentially improving outcomes while also decreasing side effects
and complications. The therapeutic potential of DEBs in precision oncology is perhaps one
of the most exciting areas of current and future development in interventional oncology.

13.2. Radiopaque Beads

In recent years, imageable radiopaque beads have been developed, which are made
radiopaque by incorporating a radio-absorber, such as iodine, zinc, tantalum, bismuth,
or barium, into the beads’ manufacturing process [211–215]. Radiopaque beads provide
real-time feedback during the embolization procedure and provide invaluable information
during follow-up imaging [216,217]. A new investigational radiopaque SIRT embolic
has been developed with a radiopaque bland glass microsphere which has shown strong
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fluoroscopic and CBCT radiopacity in preclinical testing. The use of these microspheres
will allow for intra-procedural real-time confirmation of tumor targeting [218].

13.3. Immunoembolization

Immunoembolization is an exciting new area which involves the delivery of systemic
immunotherapy agents such as granulocyte-macrophage colony-stimulating factor (GM-
CSF) into the arteries supplying the HCC [219]. Immunoembolization is hypothesized to
work by producing necrosis of the HCC tumor cells, thus leading to the stimulation of the
antigen-presenting cells (APCs) on the tumor surface. These APCs can then increase the
update of tumor antigens, which are released from the necrotic tumor cells, and lead to
activation of the T cells present in the tumor microenvironment [220–223]. The development
of this inflammatory response can lead to destruction of the tumor cells which did not
undergo necrosis during the initial embolization. Additionally, local immune system
stimulation can generate a systemic immune response against the tumor cells, which can
lead to suppression of extrahepatic metastasis and prevent further tumor growth and
dissemination [224,225].

13.4. Nanoparticles

A lot of focus in the recent years has been put into the development of nanoparticles
that can be used for the diagnosis and treatment of patients with HCC [226]. The intro-
duction of novel theranostic nanoparticles into the interventional radiology field can help
diagnose, localize, and stage disease. Theranostic nanoparticles may also provide invalu-
able information regarding treatment response [227,228]. Such nanoparticles are designed
to carry therapeutic agents to the tumor via molecular and/or external stimuli [229–231].

13.5. Combination with Systemic Therapies

The use of systemic therapies in combination with transarterial embolization tech-
niques is an area of significant clinical and research focus [232]. Some of the many tar-
geted systemic therapies that have been studied include, but are not limited to, MAPK
Inhibitors, including sunitinib, sorafenib, imatinib, cabozantinib, lenvatinib, and selume-
tinib [233,234]. Others include immunotherapeutic agents such as ipilimumab, nivolumab,
and pembrolizumab [235–237]. A majority of the studies have shown positive results, with
improved outcomes and acceptable safety profiles [238].

13.6. Combination with Percutaneous Therapies

Combining embolization techniques with ablation for hepatocellular may enhance
the therapeutic benefit of each and result in improved patient survival [239]. A majority of
studies have demonstrated the safety and efficacy of a two-step or single-session transarte-
rial and percutaneous ablation treatment for unresectable hepatic metastases, specifically
for lesions >3 cm in diameter [240].

13.7. Pre-Operative TACE

TACE can be used as neoadjuvant therapy for the treatment of large HCCs prior to
surgical resection [241]. Pre-operative TACE can also facilitate curative resection in patients
with large HCCs who are otherwise not suitable candidates for liver resection [242,243].
However, the outcomes for the use of pre-operative TACE are mixed, with some studies
showing improved survival outcomes and others not [244–246].

14. Conclusions

Transarterial therapies remain an important and increasingly utilized therapeutic
option in the management of patients with HCC. They are unique, as they provide highly
effective tumor control while preserving normal liver parenchyma and reducing toxicity.
Over the last couple of decades, the evidence to support the use of transarterial therapies
for managing HCC has grown to where they are now within commonly utilized treatment
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guidelines. A multidisciplinary approach for selecting appropriate patients and tumors is
critical to optimizing clinical outcomes and technical success of the various transarterial
therapies that are currently available. Advances in therapeutics, pharmacokinetics, drug
delivery, and imaging will all serve to further advance transarterial therapies for HCC in
the future.
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