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Dynamic changes in RNA–protein interactions and RNA
secondary structure in mammalian erythropoiesis
Mengge Shan1,2 , Xinjun Ji3, Kevin Janssen5 , Ian M Silverman3 , Jesse Humenik3, Ben A Garcia5,
Stephen A Liebhaber3,4, Brian D Gregory1,2

Two features of eukaryotic RNA molecules that regulate their
post-transcriptional fates are RNA secondary structure and RNA-
binding protein (RBP) interaction sites. However, a comprehen-
sive global overview of the dynamic nature of these sequence
features during erythropoiesis has never been obtained. Here, we
use our ribonuclease-mediated structure and RBP-binding site
mapping approach to reveal the global landscape of RNA sec-
ondary structure and RBP–RNA interaction sites and the dynamics
of these features during this important developmental process.
We identify dynamic patterns of RNA secondary structure and RBP
binding throughout the process and determine a set of corre-
sponding protein-bound sequence motifs along with their dy-
namic structural and RBP-binding contexts. Finally, using these
dynamically bound sequences, we identify a number of RBPs that
have known and putative key functions in post-transcriptional
regulation during mammalian erythropoiesis. In total, this global
analysis reveals new post-transcriptional regulators of mam-
malian blood cell development.
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Introduction

In eukaryotic systems, RNA-binding proteins (RBPs) interact with
RNAs from synthesis to decay, thereby adding complexity to the
transcriptome. A recent whole mRNA RBPome study identified
several hundred RBPs in HeLa cells that have the capacity to play
critical roles in determining RNA functions (1). These functions
encompass an array of post-transcriptional processes including
splicing, polyadenylation, nuclear export, localization, transport,
translation, and degradation (2).

RBPs have been shown to interact with their binding targets in a
sequence and RNA secondary structure specific manner (3). Several
high-throughput methods have emerged in the last decade to
address the interplay between RNA-binding proteins, their targets,

and RNA secondary structure. These techniques generally either
use chemical probing agents or structure-specific RNases (single-
stranded RNases (ssRNases) and double-stranded RNases [dsRNa-
ses]) to provide site-specific evidence for a region being in single- or
double-stranded configurations (4, 5).

To date, the known repertoire of RBP–RNA interaction sites has
been built on a protein-by-protein basis, with studies identifying
the targets of a single protein of interest, often through the use of
techniques such as crosslinking and immunoprecipitation se-
quencing (CLIP-seq) (6). In CLIP-seq, samples are irradiated with UV
to induce the cross-linking of proteins to their RNA targets. Sub-
sequent immunoprecipitation with an antibody pulls down the
protein and bound RNA fragments, and these fragments are then
sequenced and mapped back to the transcriptome. For instance,
this technique was used to identify PABPC1-binding sites throughout
the transcriptome, and this study was further able to demonstrate
that 59 UTR PABPC1 interaction sites mediated translational control of
bound target transcripts (7). In contrast to this targeted approach, we
have recently reported the approach of protein interaction profile
sequencing (PIP-seq) (8) that allows for a global and unbiased
analysis of RBP–RNA interaction sites in a sample of interest. In PIP-
seq, RNA-protein interactions are stabilized by formaldehyde cross-
linking followed by interrogation using a combination of proteinase,
ssRNase, and dsRNase treatments. This approach creates a set of
orthogonal libraries that are capable of concurrently elucidating RNA
secondary structure and protein bound sequences throughout the
transcriptome of interest (8).

Studies on mammalian erythropoiesis have revealed that this
process involves a series of complex and stage-specific changes in
gene expression. Mature erythrocytes are derived from hemato-
poietic stem and progenitor cells, which undergo a series of in-
creasingly restrictive lineage commitment events. Importantly, this
process includes a significant dependence on post-transcriptional
regulatory processes, especially during its terminal steps (9). Ter-
minal erythropoiesis involves a decrease in cell size, an increase in
the production of hemoglobin, membrane reorganization, chro-
matin condensation, and finally enucleation (10, 11). Whereas each
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stage of differentiation also exhibits stage-specific transcriptomes,
the contributions of RNA secondary structure and RBP-binding site
dynamics to this process have not been previously explored on a
global scale.

Here, by performing PIP-seq on mouse erythroid leukemia (MEL)
cells, we identify RBP-binding sites, provide a transcriptome-wide
look at RNA secondary structure, and profile these RNA features and
their interactions throughout the terminal stages of red blood cell
development. Our results produce an unbiased view of RBP-binding
events and RNA secondary structure changes that occur during the
terminal stages in mammalian red blood cell development. In ad-
dition, the datasets provide a resource for future investigations of the
functional importance of bound RNA regions and RNA secondary
structures to this critical process of cellular differentiation.

Results

MEL cells as a model for red blood cell differentiation

Murine erythroleukemia (MEL) cell lines are arrested at the pro-
erythroblast stage of development, show very low level of sponta-
neous differentiation, can be maintained indefinitely in tissue
culture, and can be induced to differentiate along the erythroid
lineage through treatment with a variety of chemical compounds
such as DMSO. Studies show that by day 3 of growth on DMSO, there is
a 20-fold increase in heme uptake, and a 12-fold increase in he-
moglobin synthesis compared to unstimulated cells and by day 4 the
cells have mostly matured to normoblasts that stain positive for
benzidine reflecting high levels of hemoglobin content (12). Thus,
since the 1970s, this cell line has served as an attractive model for the
study of the terminal events in erythroid differentiation in vitro (13).

MEL cells undergoing terminal erythroid differentiation become
smaller in size and showmarked nuclear compaction (14, 15). At this
late stage of differentiation, transcription is dramatically curtailed
and the cellular events are almost entirely post-transcriptionally
regulated (16), making this system an attractive model for studying
mammalian post-transcriptional regulation in the context of an
important developmental process. For our analysis, we generated
two biological replicates of cultured MEL cells at each of three time
points post DMSO treatment: 0, 2, and 4 d. mRNA-seq on these
samples confirmed the biological relevance of the selected time
points by revealing large-scale increases of globin gene transcripts
as would be expected in a setting of terminal erythroid differen-
tiation (Fig S1A). Specifically, NM_001278161 (Hbb-b1), NM_016956
(Hbb-b2), NM_008218 (Hba-a1), NM_001083955 (Hba-a2), NM_001201391
(Hbb-bs), and NM_010405 (Hba-x) are among the genes whose
abundance continuously increases throughout the three time
points of differentiation used in this study (false discovery rate
[FDR] < 0.05, DESeq2 analysis). Previous work has also characterized
a set of genes whose expression is repressed as MEL cells pro-
gressively commit to the erythroid lineage. We find that our data
recapitulates several of these repressed marker genes (13). Spe-
cifically, by day 4 of DMSO induction, we observed that Cdk4, GAPDH,
Myb, and Myc are all significantly (FDR < 0.05, DESeq2 analysis)
down-regulated (Fig S1B).

As expected, a Gene Ontology (GO) enrichment analysis of the
differentially abundant transcripts showed an enrichment for
erythrocyte developmental genes in transcripts that are continu-
ously increasing (P-value < 8.04 × 10−5, hypergeometric test). On
the other hand, continuously decreasing transcripts showed an
enrichment for those associated with nucleosome assembly
(P-value < 8.97 × 10−12, hypergeometric test) and other terms asso-
ciated with DNA binding and gene regulation (Fig S1C). Furthermore,
when we retrieved the 133 transcripts annotated to be relevant to
erythrocyte differentiation from the Mouse Genome Institute (17, 18)
and queried how many of them were statistically differentially
abundant in our mRNA-seq dataset, we found that of the 123 genes
with retrievable RefSeq accession identifiers, 28 were differentially
abundant in cells 2 d after DMSO treatment (day 2) as compared to
before treatment (day 0), 9 were differentially abundant after 4 d of
treatment with DMSO (day 4) compared to 2, and a total of 33
transcripts were differentially abundant when comparing data from
day 4 cells to those from before DMSO treatment. In total, these
mRNA-seq data suggest that these MEL cells are indeed undergoing
erythroid differentiation and serve as an appropriate gateway to
studying post-transcriptional regulation using our PIP-seq pipeline.

PIP-seq analysis of MEL cell development

PIP-seq libraries were prepared from two biological replicates of MEL
cells collected at 0-, 2-, and 4-d post cell differentiation induction
with DMSO (same samples as used for mRNA-seq) (19). PIP-seq
analysis allows global identification of RNA-protein interaction
sites as well asmapping of RNA secondary structure (8, 20, 21). Briefly,
total cellular extract was divided into footprinting and structure only
samples (four total libraries per replicate). To globally identify RBP-
bound RNA sequences, footprinting samples were treated with an
RNase specific to either ssRNA or dsRNA (ssRNase or dsRNase, re-
spectively), followed by protein denaturation and sequencing library
preparation. Conversely, the “structure only” samples had proteins
denatured in SDS and degraded with Proteinase K prior to RNase
digestion. The denaturation of proteins before RNase treatment
makes sequences that were RBP-bound in the footprinting sample
accessible to RNases in these “structure only” reactions. Thus, se-
quences that are enriched in footprinting relative to “structure only”
samples are identified as protein-protected sites (PPSs) (8, 20, 21). The
“structure only” libraries allowed us to determine the native (protein-
bound) RNA base-pairing probabilities for the total transcriptomes of
the three MEL cell developmental time points (Fig S2).

The 24 resulting libraries (three time-points, two replicates per
time-point, four libraries per replicate) produced between 36 and
58 million raw reads per library. We first assessed the reproduc-
ibility of our technology by using a 1,000-nt sliding window ap-
proach to correlate the read abundance between the biological
replicates of the footprinting or structure-only samples at each
time point. Overall, we observed high Pearson correlation values
between 0.985 and 0.989 (Fig S3A), indicating the high reproduc-
ibility and quality of these PIP-seq libraries.

To identify PPSs in the three different MEL developmental stages,
we used a Poisson distribution model to identify regions enriched
in the footprinting samples as compared to the structure-only
libraries for the three different time points at a FDR of 5% as
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previously described (8, 20, 21). Because ribosomes are also capable
of interacting with RNA and PIP-seq is unable to distinguish be-
tween ribosome-protected sites and RBP-protected sites, we fil-
tered out PPSs that were between 20 and 40 nts in length as the
majority of ribosome occupancy sites are ~30 nt long (22). We first
analyzed the size distribution of our entire collection of PPSs (Fig
1A) and determined that the most PPSs were >40 nt. In fact, only
about 17% of PPSs fell within the 20–40 nt region, and these PPSs
were then excluded from further analysis to minimize the effect of
potential ribosomal interaction.

To further assess the ability of our PIP-seq data to reproducibly
characterize the global landscape of RBP-binding and RNA sec-
ondary structure in the MEL cell samples, we calculated PPS density
and RNA secondary structure scores at each nucleotide (termed
RBP-binding and RNA secondary structure, respectively) for all
detectable protein-coding transcripts across the three develop-
mental time points as previously described (8, 20, 21, 23, 24). Using
the structure-only samples, RNA secondary structure is repre-
sented by a structure score, which is a generalized log ratio (glog) of
dsRNA-seq and ssRNA-seq reads at a particular nucleotide, with
positive and negative scores indicating nucleotides that are more
likely to be paired (dsRNA) or unpaired (ssRNA), respectively. The
raw structure scores were then normalized to the average structure
score of the entire spliced transcript, resulting in structure scores in
which the positive or negative values indicate the likelihood of a
nucleotide being double-stranded (more structured) or single-
stranded (less structured), respectively. To ensure reproducibility
of the calculated structure scores, structure scores for each biological
replicate of the three developmental time points were calculated
separately. This analysis revealed a significant level of similarity in
overall structure scores for total transcripts (Spearman’s ρ > 0.93;
P-value < 2.2 × 10−16; asymptotic t approximation) (Fig S3B and C)
between biological replicates of all three time points, further con-
firming the high reproducibility of the PIP-seq experiments’ ability to
assess the global landscape or RNA secondary structure.

To ensure reproducibility of the RBP-binding levels, average PPS
density for each biological replicate of the three developmental
time points was calculated separately. This revealed a significant
level of similarity in the patterns of RBP binding (PPS density)
surrounding the start and stop codons of mRNAs (Spearman’s ρ >
0.82; P-value < 2.2 × 10−16; asymptotic t approximation) (Fig S4A–C)
between biological replicates of all three time points, providing even
more evidence of the high reproducibility of the PIP-seq experiments.
Given this significant level of correlation between replicate datasets
for both RBP-binding and RNA secondary structure analysis, all
further analyses were performed using structure scores and RBP-
binding values calculated from merged biological replicates.

The RNA–protein interaction landscape of developing red blood
cells

Even after the previously described filtering step, we identified
245,466 total PPSs (total PPSs) across the three developmental time
points (Fig 1B). On average, 41% of the PPSs were detected across
both biological replicates at each of the three time points (high
confidence PPSs), with the lowest reproducibility found in the 39
UTRs (Fig S5A). This reproducibility compares favorably with CLIP-

seq experiments, which generally produce <35% overlap between
biological replicates, especially when considering the complexity of
the RBP bound transcriptome in mammals (25). As further confir-
mation of bona fide RBP interaction site detection by PIP-seq, we
overlapped our PPSs and a set of randomly generated mock PPSs
with binding site calls for PABPC1 or PABPC4 from a high-quality
CLIP-seq dataset (7). For both no treatment (day 0) and DMSO
treatment for 2 d (day 2), PIP-seq detected PPSs were significantly
(P-value < 2.2 × 10−16; χ2 test) more enriched for CLIP-detected
PABPC1 and PABPC4-binding sites than a set of randomly se-
lected background control set of sites (see the Materials and
Methods section). Specifically, 9.53% of day 0 PABPC1 CLIP sites
overlapped with the day 0 PPSs by at least one nucleotide com-
pared to 0.24% of the background control set. Similarly, 7.41% of day
2 PABPC1 CLIP sites overlapped a high confidence PPS site, while
only 0.29% of the same sites overlapped the background sites (Fig
S5B). The same pattern of higher overlap between CLIP sites and
actual PPSs as compared to background control sites was observed
for PABPC4 CLIP-seq data for both day 0 and day 2 treatments. This
recapitulation of known PABPC1 and PABPC4-binding sites in our de
novo PPS detection confirms that PIP-seq is capable of detecting
verifiable RBP–RNA interaction sites. Also, these data were re-
markably consistent with PABPC1’s known interaction with the
poly(A) tail (26, 27); PPSs that overlapped PABPC1 CLIP-sites showed
a positive enrichment in the 39 UTR identified PPSs (Fig S5C).

As outlined above, PIP-seq identified a total of 245,466 PPSs
across the three developmental time points. These PPSs could be
further classified into “control PPSs,” representing the PPSs that
were found in undifferentiated cells (n = 49,663), or “developmental
PPSs,” which are the PPSs found only in differentiated cells (n =
121,705). The rest of the PPSs were distributed among the possible
combinations of time points, with 36,510 PPSs being shared be-
tween all three measured timepoints (Fig 1B). The PPSs were then
grouped based on their genomic classification (i.e., intron, CDS, 39
UTR, or 59 UTR) within mRNAs. This revealed that the majority of
PPSs are found within the intron (47–55%), followed by the coding
sequence (CDS) (21–27%), and the 59 and -39 UTRs (8–12% total) (Fig
1C). Overall, these patterns showed no significant differences
across the three time points examined in our data.

Potential RBP–RNA interacting sites are evolutionarily conserved

Because RBP–RNA interaction sites can be sequence dependent, we
hypothesized that functionally important interaction sites would be
less prone to random genetic mutation. First, we characterized the
nucleotide frequency of the PPSs and found that the nucleotides
contained in PPSs seem to be equally distributed among the four
bases with the exception of Cs, which are the least common nu-
cleotide present in collection of identified PPSs (Fig 1D). We hy-
pothesized that these PPSs, being potential sites of interaction
between RBPs and RNAs, would be more conserved than sites that
are not interacting with RBPs. Using a comparison of the 60-way
PhastCon scores calculated using mammalian species (including
guinea pig, kangaroo rat, and rabbit), we also found that PPSs have
significantly (all P-values < 0.001, Kolmogorov-Smirnov test) higher
PhastCon scores than their equally sized flanking regions that occur
directly up- and downstream of the PPS (see the Materials and
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Figure 1. Characterization of protein-protected sites (PPSs) during MEL differentiation.
(A) Density plot showing the distribution of the entire collection of PPSs before filtering out those within 20–40 nt size range (region bounded by blue dotted line;
percentage indicating the percentage of total PPSs that were filtered out). (B) Overlap of PPSs identified at day 0 (green), day 2 (blue), and day 4 (red). (C) The genomic
classes represented by PPSs before, 2, or 4 d after induction of MEL cell differentiation. (D) Boxplots of distribution of each nucleotide in PPSs found at 0, 2, or 4 d post
induction with DMSO. (E) Comparison of average PhastCon scores between PPSs (green bars) and equal-sized flanking regions (orange bars) for various genomic
regions at each time point. ***denotes P-value < 1 × 10−10, Kolmogorov–Smirnov test. Error bars ± SEM.
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Methods section) (Fig 1E), indicating that PPSs are even more evo-
lutionarily conserved than their neighboring regions. Consistent with
our model, we observed that PPSs within exons had the highest
PhastCon score, indicating that these PPSs are the most conserved
throughout evolution. These results lead us to propose that PPSs, as
potential interaction sites between RBPs and their target RNA, are
less prone to the effects of genetic drift in mice, likely as a result of
maintaining a sequence-specific interaction with a RBP(s) (20).

RBP–RNA interactions are dynamic during terminal
erythropoiesis

The current understanding of RBP–RNA interactions is that of a
dynamic relationship where RBPs bind to specific locations along
an RNAmolecule depending on the RBP’s role in the RNA’s lifecycle.
Thus, specific RBP–RNA interactions can occur in a cell and de-
velopmental specific context to affect a specific aspect of the target
RNA molecule. In support of this, we witnessed the dynamics of
these relationships in our PIP-seq data, as there were PPSs that are
only detected after MEL cells have been induced to differentiate
(Fig 1B), and we were able to subset the MEL transcriptome into
transcripts that only had day 0 PPSs and those with PPSs only after
differentiation induction (Fig 2A). An analysis of the mammalian
phenotypes (MPs) associated with these two subsets of transcripts
showed that both sets are associated with abnormal hematopoiesis
phenotypes, such as abnormal blood physiology (Bonferroni: 0.015;
day 0 PPSs), abnormal hematopoietic system physiology (Bonferroni:
0.025; day 0 PPSs), and hematopoietic system phenotype (Bonferroni:
0.028; day 2 and day 4 PPSs). As expected, these two subsets of
transcripts also had differing GO enrichment patterns, with tran-
scripts that contain just day 2 and day 4 PPSs being enriched for those
encoding proteins required for erythrocyte development, whereas
those with day 0 PPSs were enriched for mRNAs encoding proteins
involved in DNA and RNA processing (Fig 2C).

When wemeasured the percentage of a transcript that was covered
by a PPS at a given timepoint, we observed that some transcripts
become increasingly bound throughout development, just as there
were transcripts who become less covered as cells develop (Fig 2D).
After identifying the transcripts with the largest increases or decreases
in PPS coverage, we noted that they were enriched for transcripts
related to abnormal hematopoietic phenotypes (Fig 2E). This led us to
examine the relationship between thepercentageof a transcript that is
covered by PPSs and its RNA abundance. While we detected a visible
positive trend between PPS coverage and RNA abundance as mea-
sured by median transcripts per million (TPM), we also noted that the
range between TPMs in each of the deciles measured was very similar
(Fig 2F). This suggests that although there is a minor correlation be-
tween PPS coverage and RNA abundance, there are definitely addi-
tional factors that regulate RNA-RBP interactions on mRNAs that are
independent of RNA abundance.

RNA-binding proteins are differentially regulated during terminal
erythropoiesis

It has long been established that RNA-binding proteins play an
essential role in regulating translation during erythropoiesis (28).

Thus, we were interested in studying the regulation of their tran-
script abundance levels during mammalian erythropoiesis. The
RBPDB catalog encompasses 515 murine RBPs (29). Using DAVID (30,
31) we were able to retrieve the appropriate RefSeq annotation for
472 of these RBPs and we examined whether the levels of their
encoding mRNAs changed in abundance throughout erythropoiesis
as modeled by our MEL cells. Out of the 472 RBPs, 127 of them were
identified as being differentially abundant in at least one com-
parison with FDR < 0.05. Functionally, these differentially expressed
RBPs were involved in splicing (Bonferroni: 6.67 × 10−35, hyper-
geometric test), mRNA transport (Bonferroni: 0.009, hypergeometric
test), and positive regulation of translation (Bonferroni: 0.013,
hypergeometric test). Furthermore, of the 58 RNA-binding proteins
that have established roles in the erythropoietic pathway according
to their GO annotations, 13 are differentially abundant in our MEL
model, with the majority of them showing decreased abundance
during the course of this developmental process (Fig S6A). The
change in their abundance suggests that these RBPs are either
responding to, or acting in, the erythropoietic process.

We have previously demonstrated that PPSs identified in the PIP-
seq analysis are sites of RBP–RNA interactions (8, 19, 20, 21). Thus,
we leveraged databases such as ATtRACT (32) and RBPDB (29), which
contain experimentally determined binding sequences of several
murine RBPs, to interrogate whether our PPSs contained the known
interaction sequences of any characterized RBPs. To minimize the
influence of ribosomal binding, we focused on high confidence
PPSs found in the 39 UTR. Using ATtRACT, we first scanned these
PPSs for the binding sequences of potential RBP partners and saw
that suggested RBPs were, for the most part, known to play roles in
regulating hematopoiesis (Fig S6B). For example, proteins that
seem to bind to enriched sequences found in PPSs at 2- and 4-d
post induction include PUM2, which is known to regulate hema-
topoiesis (33), and ADAR1/ADAR2. The protein ADAR1 is essential for
erythropoiesis in mice by providing adenosine-to-inosine RNA
editing (34), whereas ADAR2 is suspected to be amarker for myeloid
blast cell differentiation (35). In addition, the search also identified
potential binding sites for the RNA-binding proteins DAZL and TLR3.
Whereas DAZL has no currently known roles in erythropoiesis, TRL3
mutant mice do exhibit abnormal hematopoietic phenotypes that
include abnormal B and NK cell physiology (36), suggesting TLR3
and potentially DAZL as candidates for future validation. The ability
to use our collection of PPSs to identify prevalent motifs for known
RBPs creates an attractive method for identifying RBPs that may
have, as of yet, unidentified roles in erythropoiesis and provides a
valuable resource for developing future research directions.

When we queried our mRNA-seq data for the abundance pattern
of transcripts encoding RBPs, we noted that mRNAs encoding nine
of those RBPs showed patterns of differential abundance in at least
one pairwise comparison, suggesting that they are themselves
under regulation in mammalian erythropoiesis development. In-
terestingly, Tlr3 and Nfkb1, which were the two RBPs with the most
potential sites in the sequences that were scanned by ATtRACT,
were not among the transcripts with differential mRNA abundance.
This lack of correlation may reflect a need for the cell to maintain a
steady state of these mRNAs throughout the erythropoiesis process
(Fig S6C). However, we did note that Nova2 showed a significant
increase in abundance in day 4 cells compared with uninduced
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Figure 2. Dynamics of RBP–RNA interactions in mammalian erythropoiesis.
(A) Euler diagram showing overlap of transcripts with high confidence protein-protected sites (PPSs) found at day 0 (white), day 2 (gray), or day 4 (light blue). (B) −log10
(false discovery rate) values of blood and hematopoiesis related mammalian phenotype terms associated with either transcripts that only have day 0 PPSs and genes
that only have day 2 and day 4 PPSs. (C) Fold enrichment of top 10 top significant Gene Ontology (GO) terms and erythropoiesis related GO terms in transcripts with just day
0 PPSs or transcripts with day 2 or day 4 PPSs. Erythropoiesis relevant GO terms are highlighted in red. (D) Heat map of transcripts colored by the percentage covered by
a PPS at 0, 2, or 4 d after induction. (E) Heatmap of significantmammalian phenotypes related to erythropoiesis associated with the top 10% of transcripts that increase or
decrease in PPS coverage in pairwise comparisons betweenMEL cells after 0, 2, or 4 d of differentiation. (F) Boxplot of transcripts permillion values for transcripts at 0 (red),
2 (green), or 4 (blue) d after differentiation, grouped by the percentage of the transcript covered split into deciles.
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cells and our high confidence PPSs showed that a large portion of
them contained a potential binding site for the NOVA2 protein. This
observation supports NOVA2 as an attractive candidate for the
regulation of mammalian erythropoiesis. Taken together, our re-
sults demonstrate that the transcripts encoding several of the
known RBPs are differentially regulated in erythropoiesis and that
we can use our PPSs to look for potential regions of RBP–RNA
interactions for these known RBPs. Furthermore, we were able to
identify several RBPs whose abundances change throughout
erythropoiesis and could also potentially bind to high confidence
PPSs based on their validated binding sequence.

RNA secondary structure and RBP-binding landscapes are
dynamic in erythropoiesis

To compare the patterns of RNA secondary structure and RBP
binding, we focused on the region 400 nt up- and downstream of
the start and stop codon of detectable mRNAs expressed in the
three developmental time points, as these regions have important
regulatory functions in mRNA fate and function. We calculated the
RNA secondary structure of 22,605 transcripts for all three time
points and uncovered progressive increases in the level of RNA
secondary structure in both of these regions during the later stages
of mammalian red blood cell development (all P-values < 0.001;
Wilcoxon test) (Fig 3A). In the 39 UTR, our RNA secondary structure
analysis revealed an overall increase in RNA secondary structure
during mammalian erythropoiesis, suggesting that 39 UTRs are
collectively becoming more double-stranded during this devel-
opmental process. The pattern is less clear when it comes to the
59 UTR. In the 59 UTR, we observed the interesting pattern of a
decrease in RNA secondary structure going from day 0 to day 2 cells
and then an increase in RNA secondary structure in the same region
at day 4 such that, on average, the region becomes more double-
stranded in day 4 cells than in day 0 cells. Of note is that the mean
RNA secondary structure immediately surrounding the annotated
start and stop codons increased throughout development. This
general increase in RNA secondary structure is likely to result in
RNAs acquiring a more energetically favorable state (more paired)
during these later stages of development. In total, these findings
reveal large-scale changes in RNA secondary structure during a
mammalian cell developmental process, which could be one of the
ways that these transcripts are post-transcriptionally regulated in
erythropoiesis. Because RNA secondary structure is an important
part of post-transcriptional regulation, the transcripts that show
marked difference in RNA secondary structure throughout devel-
opment could be those that are functionally important to mam-
malian erythropoiesis.

We thenmeasured the PPS density of the same 22,605 transcripts
across the three time points and found that PPS density of tran-
scripts is higher in the CDS as than the UTRs, with a slight peak of
protein binding directly over the start and stop codons (Fig 3B). In
contrast, RNA secondary structure presented a dramatic decrease
at both UTR-CDS junctions over the translation start and stop
codons and then rose again throughout the CDS and UTR regions
(Fig 3A). In the 59 UTR, day 2 and day 0 PPS density seem to be at
similar levels whereas day 4 PPS density is markedly decreased
until the start codon. In the 400-nt window after the start codon, we

see that PPS density levels between day 0 and day 4 are over-
lapping, whereas day 2 levels drop noticeably. The greatest sep-
aration between the three time points is observed in the 400-nt
window after the stop codon, where we observed that day 2 PPS
density levels drop significantly when compared with day 0 levels,
whereas day 4 PPS density values were significantly (all P-values <
0.001; Wilcoxon test) higher than those at day 0 (Fig 3). Our data
revealed an increase in RNA secondary structure in the 59 UTR of
day 4 cells in comparison to uninduced cells and, in the same
region, we observed a decrease in PPS density, suggesting that the
increase in RNA secondary structure and decrease in RBP–RNA
interaction are related. Overall, the structured 59 UTRs observed at
day 4 could serve to impede the binding of RBPs that could regulate
the translation or other functionalities of those particular tran-
scripts (37). RBPs have been shown to bind to the 39 UTR to control
mRNA stability and also translation in erythropoiesis (28), and the
increase in PPS density in the region at day 4 could be a result of the
cell stabilizing the transcripts that are still present in the later
stages of development as transcription is decreased. In total, our
results demonstrate wide-spread rearrangements of RBP binding
near the translation start and stop codons during the process of
erythroid terminal differentiation.

As a large portion of the overall transcriptome in late-stage
erythroid differentiation is taken up by globin (e.g., Hbb) transcripts,
we wondered how much, if any, Hbb contributed to the overall
patterns of RNA secondary structure and PPS density changes
observed in our PIP-seq analysis. To answer that question, we re-
analyzed our data after removing Hbb transcripts and found that
neither the RNA secondary structure (Fig S7A) nor the PPS density
patterns (Fig S7B) demonstrated appreciable changes, and thus we
retained Hbb in all subsequent analyses. We also further investi-
gated the relationship between PPSs and RNA secondary structure
by calculating the change in RNA secondary structure for PPSs that
are found in the 39 UTR or the 59 UTR. For PPSs that were detected in
the UTRs at any time point, the average RNA secondary structure
showed a very minor increase when we compared induced cells to
uninduced cells (Fig S8A), although the values ranged from -3 to 2.6.
We observed a similar spread of change in RNA secondary structure
scores when we specifically examined PPSs that were only found in
induced cells (Fig S8B). These findings suggest that the presence or
absence of a PPS is not uniformly correlated with an increase or
decrease in RNA secondary structure in the untranslated regions.

Although the addition of an RBP–RNA interaction site in the UTRs
did not lead to a consistent increase or decrease in RNA secondary
structure, we do observe an anti-correlation between RBP–RNA in-
teraction sites and RNA secondary structure on a global scale when
we examine the window around the start and stop codons in entire
transcriptome instead of focusing on specific transcripts. Consistent
with previous studies carried out in Arabidopsis (20, 21), our combined
analyses of RBP binding and RNA secondary structure revealed that
these two features tend to be generally anti-correlated features
across all detectable mRNAs (Spearman’s ρ ≤ −0.25; P-values < 3.97 ×
10−4; asymptotic t approximation) in all three developmental time
points (Fig S9A–C). In addition to this transcriptome-wide pattern for
all three time points, we found on average that the strongest anti-
correlations occurred in the last 100 nt of the 59 UTR and into the first
100 nt of the CDS (Spearman’s ρ ≤ −0.46; P-values < 1.03 × 10−11;
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asymptotic t approximation) as compared with the 200 nt surrounding
the stop codon, which demonstrated less, but still significant, anti-
correlation in the two developmental time points (Fig S9A–C). In
general, these findings reveal that RNA secondary structure and
RBP binding tend to be anti-correlated features in mammalian red
blood cell progenitors.

We then separated the transcripts into percentiles based on the
changes in their RNA secondary structure and analyzed the
enriched GO terms and MPs associated with those that show
the most increase in RNA secondary structure, those that show
the most decrease in RNA secondary structure, and those that
show little change (45–55th percentiles of change) in RNA secondary
structure as controls. When we looked at the change in differen-
tiated cells from their undifferentiated state, we found that most of
the enriched GO terms are involved in general biological pathways,
including primary metabolic and nucleic acid metabolic process

(Fig 4A). In terms of mammalian physiology, transcripts that in-
crease or decrease in RNA secondary structure are both associated
with general organismal survival. We observed that transcripts
which fall within the top 10% of transcripts that increase or de-
crease in structure after 4 d of DMSO-induction display enrichment
for phenotypes such as abnormal erythropoiesis (FDR: 0.01), ab-
normal definitive hematopoiesis (FDR: 0.002), and abnormal blood
cell morphology/development (FDR: 3.18 × 10−5) (Fig 4B). Overall, our
findings revealed an enrichment for transcripts encoding proteins
associated with hematopoietic processes and phenotypes in those
that exhibit larger increases in RNA secondary structure around the
start codon, particularly when comparing cells in the later stages of
red blood cell development with undifferentiated control samples.

Next, we used the change in the average RNA secondary structure
score in the 200-nt window around the start codon to partition the
transcripts into six distinct clusters. Each of the six clusters showed

Figure 3. Distinct RNA-protein and RNA secondary
structure profiles in differentiating MEL cells.
Scaled RNA secondary structure score (top) or average
protein-protected site density profiles (bottom) at each
nucleotide ± 400 nt from the annotated start or stop
codons in detectable mRNAs expressed in MEL cells
before (green lines) as well as 2 (blue lines) or 4 (dark
red lines) d after MEL cell differentiation. Table below
each chart lists the calculated P-value for the ± 100 nt
surrounding the start and stop codon per the Wilcoxon
rank sum test. Solid lines indicate the average value
at the position and shading around the lines represent ±
SEM.
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different dynamics in the pattern of changes in RNA secondary
structure around the start codon. However, the changes in RNA
secondary structure did not appear to correlate with changes in
mRNA abundance or in PPS coverage. In fact, when comparing the
mRNA abundance patterns for all six clusters, we noticed that they
all exhibited a similar pattern despite how their RNA secondary
structure changed throughout development (Fig 5A). In addition,

most of the transcripts showed no change in how much of the
transcript is covered by RBP binding events, irrespective of the
change in RNA secondary structure. This lack of correlation among
RNA secondary structure conformation, RBP–RNA interaction, and
mRNA abundance suggests that these parameters do not have a
cause-and-effect relationship and appear to be largely indepen-
dent of each other when interrogated on a global scale.

Figure 4. Transcripts with the most change in RNA secondary structure are associated with hematopoietic phenotypes.
(A) −log10(false discovery rate) of Gene Ontology enrichment associated with three sets of transcripts: control set of transcripts (45–55th percentile of change in RNA
secondary structure score; red dots), transcripts with the highest 10% decrease in RNA secondary structure score (green dots), and transcripts with the highest 10% of
increase in RNA secondary structure score (blue dots). Change is calculated between day 2 and day 0 cells (top) and day 4 and day 0 cells (bottom). (B) Mammalian
phenotypes associated with three sets of transcripts: control set of transcripts (45–55th percentile of change in RNA secondary structure score; red dots), transcripts
with the highest 10% decrease in RNA secondary structure score (green dots), and transcripts with the highest 10% increase in RNA secondary structure score (blue dots).
Change is calculated between day 2 and day 0 cells (top) and day 4 and day 0 cells (bottom). Hematopoietic related terms are highlighted in red.
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When we examined what biological processes the proteins
encoded by the transcripts in each of the clusters were involved in,
cluster 1 showed no significant enrichment for terms despite being
the cluster with the highest number of transcripts. Cluster 2, the
cluster in which transcripts increased in RNA secondary structure in
terminal differentiation, was enriched in various metabolic pro-
cesses as metabolic process (FDR: 5.46 × 10−33) and cellular mac-
romolecule metabolic process (FDR: 2.82 × 10−26). The next cluster
with the most significant terms was cluster 3, which contained
transcripts that increase and then decrease in RNA secondary
structure in the developmental window that we probed. Cluster 3
showed an enrichment in the same terms as cluster 2, however to a
lesser degree. Cluster 4, which has transcripts going from unpaired
to a more paired state, and cluster 5, its converse, have no sig-
nificant terms to note, potentially because of the small number of
transcripts that fall within either cluster (69 for cluster 4 and 208 for
cluster 5). Transcripts in cluster 6 started off being paired, changed
to a more unpaired state upon differentiation, and then somewhat
increased their overall RNA secondary structure score in the latest
time point. These transcripts showed a very minor enrichment for
the same terms that are also found in clusters 2 and 3 (Fig 5B).
Overall, changes in secondary structure surrounding the mRNA
start codon do not appear to be a good indicator of encoded
protein function in the process of terminal erythropoiesis.

However, once we interrogated the clusters for any associated
MPs, we found that cluster 2 was enriched for transcripts that, when
mutated, resulted in mice with abnormal blood phenotypes such as
the more general hematopoietic system phenotype (cluster 2 FDR:
0.001) or the more specific abnormal erythropoiesis (FDR: 0.037) and
abnormal blood cell morphology/development (FDR: 1.88 × 10−5) (Fig
5C). This observation suggests that although the transcripts under-
going structural rearrangement, particularly those that increase in
RNA secondary structure throughout development, are not enriched
in those that function specifically in erythropoiesis, they are the ones
that would likely lead to abnormal phenotypes if mutated. In total,
our findings reveal that RNA secondary structure and RBP-binding
events are dynamic throughout the development of mammalian red
blood cells. In addition, we observe an anti-correlation of mRNA
secondary structure and RBP-binding events around the translation
start and stop codons. This anti-correlation parallels what we have
observed in other eukaryotic transcriptomes (20, 21).

Identifying RBPs as potential post-transcriptional regulators of
erythropoiesis

As we’ve confirmed the presence of known RBP-binding sequences
in our PPSs, we next sought to leverage our collection of PPSs to
discover additional overrepresented sequences, which could be
new binding sequences for RBPs that are key regulators of terminal
erythropoiesis in our model. To do so, we first isolated protein
interaction sites that overlapped the 50–100-nt window immedi-
ately downstream of annotated stop codons. We decided on this
region because the large majority (~90%) of annotated 39 UTRs are
at least 50 nts long and that window encompassed a region of
change in RNA secondary structure where structure increases in
induced cells when compared with uninduced cells (Fig 3). We then
used the de novo motif finding algorithm HOMER (38) to identify

several significantly enrichedmotifs in these sequences. The online
database RBPDB (29) provided a resource for matching de novo
identified motifs against the RNA recognition sequences of known
RBPs. Among the motifs enriched in our collection of PPSs (Figs
S10–Figs S12), we identified the RNA recognition sequences for the
RBPs ELAVL1, PABPC1, FUS, and KHDRBS3 (Fig 6A), suggesting that
these proteins may be involved in the post-transcriptional regu-
lation of red blood cell development. In fact, knockdown of ELAVL1
induces a variety of hematopoietic abnormalities, including ab-
normal definitive hematopoiesis and decreased erythroid pro-
genitor cell number (25, 28, 39, 40, 41). PABPC1 can bind to the 39
poly(A) tail of mRNAs as well as interact with the cap-binding
complex subunit eIF4G to facilitate mRNA translation and
PABPC4, a related protein, has been shown to play a critical role in
erythroid differentiation (7, 16, 42). FUS has been identified to
contribute to the maintenance of hematopoietic stem cells and
FUS-deficient mice also exhibit abnormal hematopoietic pheno-
types such as decreased B cell numbers, although no eryth-
ropoietic specific phenotypes have been reported (43, 44). These
findings suggest that the enriched sequence motifs in our PPS
datasets are bound by a collection of RBPs, a number of which are
known to function in mammalian erythropoiesis. Thus, the other
RBPs with enriched binding sequences in our PPS datasets in the
terminal stages of MEL development may be good candidates for
further testing of functionality in this important developmental
process.

Identifying novel RBP-bound RNA motifs

As only a small subset of our PPSs contained binding sequences of
known RBPs, we leveraged the entire collection of PPSs to identify
additional RBP interaction sequences that have not been previ-
ously identified. For this analysis, we selected the 400–500-nt
window downstream of the stop codon because this region showed
dramatic changes in RNA secondary structure and RBP-binding
density and was away from the CDS and possible influences of
ribosomal complexes. In that window, the average RNA secondary
structure increased (i.e., becomes more double-stranded) in dif-
ferentiated cells and the PPS density decreases at day 2 and then
increases to a level higher than day 0 by day 4 (Fig 3). These changes
in RNA secondary structure and PPS density suggest the presence
of RBP–RNA interactions in the region that are independent of
ribosome binding, which makes this area a region of interest for
identifying enriched motifs. Our HOMER motif enrichment analysis
of high confidence (found in both biological replicates) PPSs de-
tected 10 statistically enriched motifs for day 2 PPSs (n = 122) (Fig
S13) and 12 statistically enriched motifs in day 4 PPSs (n = 253) (Fig
S14). From these sets, we selected two motifs (one from each time
point) for further study (Fig 6B and C). Each selected motif ranked in
the top three based on the percentage of bound mRNAs that
contained the RBP interaction sequence and the P-value associ-
ated with the motif. We also took into account the information
content of each nucleotide in the motif and tried to maximize the
number of positions with high information content in each motif.
Both selected motifs showed an increase in RNA secondary
structure around the beginning and throughout the motif site at
day 2, followed by a decrease in structure in day 4, although the
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Figure 5. Hierarchical clustering of transcripts based on their patterns of RNA secondary structure score during MEL cell differentiation.
(A) The RNA secondary structure score (top), protein-protected site coverage (middle), and normalized mRNA abundance (bottom) distribution of transcripts in each of
the six clusters identified by hierarchical clustering at day 0 (gray box), day 2 (yellow box), and day 4 (blue box). (B) −log10(false discovery rate) of Gene Ontology
enrichment of the transcripts identified in each cluster. Erythropoiesis related terms are highlighted in red. (C) −log10(false discovery rate) of any mammalian phenotypes
associated with transcripts in each of the clusters. Erythropoiesis related terms are highlighted in red.
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Figure 6. RNA-binding proteins as post-transcriptional regulators of erythropoiesis.
(A) Selected motifs identified from time point specific protein-protected sites (PPSs) found 50–100 nt downstream of the stop codon in 39 UTRs. Motifs containing the
RNA recognition motifs of known RNA-binding proteins are annotated with the protein name. (B, C, D, E) Selected motif (left) enriched in (B) PPSs found in the 39 UTR of
day 2 post induction PPSs, (C) PPSs found in 39 UTR of day 4 post induction PPSs, (D) PPSs in MEL cells overlapping known RBM38-binding sites (46), and (E) PPSs found in
both biological replicates located in the 39 UTR of erythropoiesis annotated genes as well as RNA secondary structure profile (middle) at each nucleotide ± 100 nt from
the predicted start of the motif in MEL PPSs before (green line), 2 d (blue line), and 4 d (red line) after induction of MEL differentiation. Fold enrichment value
erythropoiesis related Gene Ontology terms as compared to a controlled background on the left.
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trend wasmore obvious in the Motif 2 (day 4 39UTRmotif) thanMotif
1 (day 2 39 UTR motif) (Fig 6B and C). An additional motif was se-
lected do to its close proximity to known binding sites of RBM38,
which is an RBP that has a well-documented role in regulating
alternative splicing during terminal erythropoiesis (45) and has
recently been shown to regulate translation during terminal
erythropoiesis (46). To identify this enriched sequence motif, we
used a set of 3,359 39 UTR high confidence PPSs that all contained
the known RBM38-binding motif and identified the 92 PPSs that
directly overlapped previously identified RBM38-binding sites (38)
by at least one nucleotide. These 92 PPSs were then analyzed using
HOMER for enriched motifs, yielding a total of 11 significant motifs
(Fig S15). From this group of 11 sequences, we selected the most
significantly enriched motif that was also found in the most RBP
bound target sequences as determined by our PIP-seq analysis (Fig
6D). Interestingly, this selected motif (motif 3) was identified as
being bound by TAL1, which is known to be involved in erythrocyte
differentiation (47); TRIM10, a protein needed for globin gene
transcription (48); and other proteins of importance to erythro-
poiesis. A further analysis of the PIP-seq data revealed that the
motif occurs in a region where RNA secondary structure increased
during mammalian red blood cell development, suggesting it as a
potential binding sequence for an uncharacterized RBP that prefers
to bind RNA in a paired conformation (double-stranded RBP
[dsRBP]) (Fig 6D). Although the overall analysis of RNA secondary
structure profiles and RBP-binding densities suggests a general
anti-correlation between these two features, there are RBPs that
preferentially bind to double-stranded RNAs and perform a variety
of post-transcriptional regulatory actions (49). Notably, our mRNA-
seq data detected the significant increase in the levels of 11 mRNAs
encoding dsRBPs when comparing day 4 RNA abundance to un-
differentiated (day 0) MEL cells (Table S1). Given the existence of
dsRBPs in themammalian genome and the up-regulation of several
of them throughout erythropoiesis, we included this motif on the
basis of trying to identify RBPs with the potential for interacting with
areas of increased structure.

An additional approach to identify RBP-binding motifs that are
functionally important for the post-transcriptional regulation of
erythropoiesis is to start with PPSs found specifically in transcripts
identified relevant to red blood cell development. Using the
Ensembl database and the R biomaRt tool (version 2.40.3), we
identified 248 mRNAs encoding proteins that make up the cate-
gories labeled erythropoiesis or hematopoiesis in the current
mouse GO annotation. To test the accuracy of the annotation, we
analyzed the GO annotation of these identified transcripts using
DAVID (31) and verified that they are indeed related to erythro-
poiesis by subjecting the list to GO analysis (Fig S16A). We then
performed motif enrichment analysis on 34 high confidence day 4
PPSs found in the 39 UTRs of these transcripts. Of the 11 enriched
motifs (Fig S16B), we were particularly interested in the poly ad-
enine (polyA) motif identified through this process (motif 4) (Fig 6E),
as it ranked in the top three in terms of abundance in the target
sequences and was also statistically significant. RNA secondary
structure analysis around the motif start site revealed an increase
in structure in differentiated cells when compared with day 0, which
matched the overall trend observed in the conglomeration of all
transcripts (Fig 6E).

After identifying these four motifs of interest (all motifs listed in
Table S2), we then used reverse scanning on our entire collection of
PPSs because we could not reliably restrict downstream RNA af-
finity tests to look at a specific genic region, to identify the number
of total PPSs that contained each motif. This analysis revealed that
motif 1 was found in a subset of 53,649 PPSs, motif 2 in 77,740 PPSs,
motif 3 in 22,252 PPSs, and motif 4 in 2,296 PPSs. Although most of
the PPSs were found within the intron region of transcripts, once
the frequency was normalized to the overall distribution in the
genome, PPSs were found to be positively enriched for these
protein-boundmotifs within the CDSs and both UTR regions of their
respective transcripts (Fig S17A–D), similar to the overall obser-
vations made on the entire collection of PPSs. As with the broader
set of PPSs, we see an under-enrichment of PPSs in the intronic
region, which could be attributed to the splicing machinery re-
moving most of the annotated introns during post-transcriptional
transcript processing. As further evidence of their relevance in red
blood cell development, when we examine transcripts containing
the top 10% of matches as ranked by their respective log-odds
score, we saw an enrichment for hematopoiesis relevant GO terms
in comparison to the control set of transcripts that was matched for
strand and chromosome bias (Fig 6B–E). In total, our findings
revealed that identifying new protein-bound motifs using PIP-seq
allows us to uncover protein-bound sequences in sets of tran-
scripts that encode proteins important for the process of
mammalian blood cell development. Thus, future studies can be
designed to assess the roles of these putative protein-binding
sites as novel posttranscriptional regulatory sites of erythroid
differentiation.

Identifying potential posttranscriptional regulators of
erythropoiesis

We selected a small subset of motifs (Motifs 1–4) for downstream
identification of their corresponding RBPs. These motifs were se-
lected on the basis of being novel, being located in RNA regions with
dynamic RNA secondary structure(s), and being enriched in he-
matopoiesis relevant transcripts. RNA affinity chromatography was
followed by mass spectrometry analysis. In this technique, we
covalently attached a synthetic RNA motif to agarose beads. We
then incubated these RNA baits, as well as a bead-only control, with
whole MEL cell protein lysates from the three developmental time
points. The beads were then stringently washed and tightly bound
proteins were pulled down and then identified via mass spec-
trometry (MS). Using this approach, we detected the presence of
~647 proteins (Table S3) that potentially interacted with at least one
of the four different motifs.

To identify proteins that showed a stronger binding to a certain
probe, we performed a fold change analysis on data normalized to
the sample mean. To do this, we calculated the fold change in the
normalized values for the protein of interest from that particular
motif compared to the other three motifs and selected only pro-
teins that were >10-fold enriched in at least one motif as compared
with other probes. This analysis identified a smaller subset of
proteins (n = 315) as being >10-fold enriched in at least one motif as
compared with other probes (Table S4 and Fig S18A). Specifically,
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motif 1 had 156 proteins bound by proteins in lysates from the post-
differentiation time points, motif 2 had 132 proteins bound by
proteins in the 2- and 4-d post-differentiation lysates that were not
identified in lysates from day 0, motif 3 had 18 proteins bound by
proteins in lysates from day 4 but not day 0, and motif 4 had 71
proteins bound with protein lysates from day 2 or day 4. When we
further required the proteins to be bound ≥ 10-fold at all tested
time points (including day 0), the number significantly dropped so
that neither motif 1 nor motif 2 had proteins matching that criterion,
whereas motif 3 had 4 such proteins andmotif 4 had seven proteins
that were enriched at both day 2 and day 4.

As confirmation of the biological relevance of our approach, we
observed a nice enrichment of RNA-binding proteins in the 315
proteins that were identified as interacting with at least onemotif (Fig
7A). Interestingly, the RNA abundance of the transcripts encoding the
proteins identified in the mass spectrometry showed an overall
decrease in abundance, which was significant in the terminal stages
of erythropoiesis (P-values < 0.05) (Fig S18B). A protein domain en-
richment analysis revealed that themost prevalent protein domain is
the RNA recognition motif domain (Fig S18C). GO analysis of these
proteins showed that 54 are annotated as being RBPs (Bonferroni
P-value: 5.26 × 10−22, hypergeometric test compared with default
background) and 95 have the more general description of being
nucleotide-binding (Bonferroni P-value: 4.47 × 10−46, hypergeometric
test compared with default background). Although many terms rel-
evant to RNA binding were significantly enriched with Bonferroni
values < 0.05, themost significant termswere RNAbinding andpoly(A)
RNA binding (Fig 7B). GO analysis of the RNA-binding proteins showed
that a large number of them were associated with regulation of
splicing (Bonferroni: 8.86 × 10−13, hypergeometric test) or translation
(Bonferroni: 3.54 × 10−4, hypergeometric test). Specifically, proteins
pulled down bymotifs 3 and 4 were highly enriched for those that are
part of the mouse spliceosome, whereas those enriched in motifs 1
and 2 are involved to a smaller degree with RNA transport (Fig 7B).
This enrichment for proteins involved in alternative splicing in
our mass spectrometry data highlights the potential of alternative
splicing as a key post-transcriptional regulation mechanism in
mammalian erythropoiesis.

To further narrow the list of interacting proteins to those that are
relevant to red blood cell development, we focused on RBPs that
were enriched only after differentiation (i.e., 2 or 4 d after DMSO
induction) but not in day 0. Motif 1 failed to pull down any proteins
matching this criterion while DKC1 was pulled down using motif 2 in
both day 2 and day 4 samples. Motif 3, which is a potential binding
motif for an RBM38 interacting protein, had five proteins (EIF4G1,
PTBP1, DDX17, EIF4A3, and FXR3) that matched the requirement and
motif 4, the poly A motif discovered in erythropoiesis relevant
transcripts, had another five such proteins (HNRNPF, HNRNPH1,
HNRNPH2, LARP1, and PURA) (Fig 7C). A Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis showed an
enrichment for proteins associated with RNA transport and the
splicing machinery in the set of proteins that were associated with
the motifs. The most significant enrichment for the spliceosome
observed in motif 4 (Fig 7D).

More interestingly, when we surveyed the Mouse Genome Da-
tabase (17, 18, 50) for phenotypic information on mice models with
the 11 proteins that were enriched at the later developmental time

points as compared with day 0, we found that abnormal levels of
DKC1, HNRNPH1, and PURA result in abnormalities in the hemato-
poietic system. Specifically, PURA is associated with reticulocytopenia
(51) and Pura deletion is detected in patients with acute myelogenous
leukemia, linking this protein to a role in mammalian hematopoiesis
(52). Linkages were observed with two additional RNBPs; HNRNPH1
knockdown mice see a decreased mean corpuscular volume and
decreased average hemoglobin concentration (53) and DKC1 defi-
cient mice experience abnormal erythrocyte morphology along with
decreased hemoglobin levels (54).

Although LARP1, which was identified as being enriched in
pulldowns using the poly(A) motif 4, showed no identified abnormal
hematopoietic phenotype in mouse models, it is a RBP recently
noted to be lost in the 5q− syndrome, a type of macrocytic anemia
caused by monoallelic deletion of a region that encompasses the
Larp1 gene in humans (55). Furthermore, depleting LARP1 levels in
CD34+ bone marrow precursor cells led to a reduction in 59 TOP
mRNA levels, p53 induction, and most interestingly, an anemic
phenotype (56).

HNRNPH1, HNRNPF, HNRNPA3, and HNRNPH2 are all members of
the heterogenous nuclear ribonucleoprotein family. As a family,
hnRNPs are RBPs that interact with heterogenous nuclear RNA and
function in various steps of RNA processing. HNRNPH1, HNRNPF, and
HNRNPH2 are very similar to each other with amino acid sequence
similarity ranging from 76% to 95%, which makes it challenging to
identify which of the proteins is specifically enriched. The Human
Protein Atlas detects high levels of antibody staining for all three
proteins in hematopoietic cells and RNA abundance levels,
measured at 102.6 TPM (HNRNPF), 175.2 TPM (HNRNPH1), and 70.1
TPM (HNRNPH2), respectively, were also correspondingly high. Mice
heterozygous for Hnrnph1 have phenotypic features such as de-
creased mean corpuscular hemoglobin concentration and in-
creasedmean corpuscular volume according to the Mouse Genome
Database (50). Using Z-scores as a measurement of membership by
association to co-expressed genes associated with the phenotype,
the ARCHS4 database predicted HNRNPF to be associated with
abnormal hematopoietic system (Z-score: 2.982) in mice and retic-
ulocytopenia (Z-score: 3.9), abnormality of cells of the erythroid
lineage (Z-score: 3.497), and abnormal number of erythroid precur-
sors (Z-score: 3.359) (57, 58). These findings suggest that we have
identified bona fide RNA-bound sequence motifs relevant to
mammalian red blood cell development. By identifying the proteins
interacting with these important regulatory sequences, we have
identified known and potentially new posttranscriptional regulators
of mammalian hematopoiesis.

DKC1 interacts with Appl2 and Dido1 in terminal erythropoiesis

We identified DKC1 as a protein of interest based upon its en-
richment in the RNA affinity pulldown experiment using motif 2 (Fig
7C) that is found in the 39 UTR of MEL cells 4 d after DMSO induction.
Furthermore, mice deficient in DKC1 develop hematopoietic
symptoms including bone marrow failure, anemia, decreased he-
moglobin content, etc. (54, 59). More recently, it was identified as a
target of GATA1 and is noted to be an important player in the in-
crease of telomerase activity in human erythropoiesis (60). In
humans, DKC1 is associated with X-linked dyskeratosis congenita
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and patients exhibit abnormal blood phenotypes such as anemia,
leukopenia, acute myeloid leukemia, and thrombocytopenia (61).

Based on these phenotypes and our RNA-binding observations,
we selected this protein for further study. Specifically, we sought to
validate some of the transcripts predicted to interact with this RBP
based on sequence similarity to the motif with which we found it

interacts (motif 2). We selected two transcripts (Dido1 and Appl2)
that contained at least one matching motif and were annotated to
exhibit abnormal erythrocyte phenotypes when mutated in mouse
models (62). We performed RNA immunoprecipitation (RIP) using
DKC1 as the protein of interest and ACTIN as the control protein to
collect the pool of mRNAs that interact with each of the proteins. We

Figure 7. Identification of RNA-binding proteins (RBPs) that interact with motifs enriched in areas of large-scale secondary structure and RBP binding during
mammalian erythropoiesis.
(A) Heat map of RBPs identified as being enriched with ≥ 10-fold (red cell) in each comparison when compared with other probes in at the same time point. Proteins with
functions relevant to erythropoiesis are written in red. (B) −log10(Bonferroni) values of RNA binding related Gene Ontology terms enriched in proteins detected using
motifs 1–4 as bait in RNA affinity pulldowns followed by mass spectrometry (left). Bar plot showing the fold enrichment of pulled down RBPs’ annotated biological
processes (left). (C) Heat map of RBPs enriched in day 2 or day 4 pulldowns. Text inside cell is the fold enrichment against other probes (i.e., probe iBAQ value/average
[other probes’ iBAQ value]). Colored boxes on the left indicate what motif the protein is most strongly associated with. (D) KEGG pathway analysis of proteins identified as
being enriched for binding to Motifs 1, 2, 3, and 4 (as noted).
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then used these bound RNA fractions in quantitative reverse
transcriptase PCR (qPCR) experiments to validate our hypothesis
that these target transcripts would demonstrate an increased
enrichment in the DKC1 pulldown when compared with the ACTIN
pulldown as the case would be if DKC1 is indeed interacting with
these two transcripts. We first performed Western Blots on the RIP
lysates to confirm that that we pulled down the DKC1 and ACTIN
proteins (Fig S19A). We then used qPCR, with probes designed
against Dido1, Appl2, Aff1, and Adar to test the binding of DKC1 and
ACTIN to each of these four transcripts. Whereas Dido1 and Appl2
were predicted targets of DKC1, DKC1 was not predicted to interact
with either Aff1 or Adar, so they served as negative control tran-
scripts in this experiment, whereas ACTIN serves as the negative
protein control. In short, our hypothesis predicted that we would
see an enrichment in the amount of interaction between DKC1 and
Dido1 and Appl2 but not Aff1 or Adar. Based on our hypothesis, the
interaction between DKC1 and its predicted targets should also be
greater than the interaction observed between ACTIN and the same
target RNAs. We also performed a pulldown with IgG and used that
pulldown as a baseline to detect the level of interaction between
our protein(s) of interest and our target transcript(s) of interest. In
concordance with our predictions, the qPCR data revealed signif-
icant enrichment in the interaction between α-DKC1 and its target
transcripts when compared with the α-ACTIN negative control
pulldown (Fig S19B) (P-values < 0.05; Wilcoxon rank sum test). We
did not observe the same level of enrichment in the interaction
between DKC1 and the negative control transcripts Aff1 and Adar,
validating our predictions.

When we examined our mRNA-seq data, we found that Appl2
shows a continual and significant increase in RNA abundance
throughout MEL development, whereas Dido1 mRNA steady-state
levels remain relatively constant throughout this developmental
time period (Fig S19C). Thus, the binding of DKC1 to these tran-
scripts could be involved in maintaining their levels throughout
this developmental process by protecting them from degradation.
In total, our RIP-qPCR findings validated our approach of first
identifying enriched motifs, then using RNA affinity to identify
associated proteins, followed by using RIP-qPCR to validate
predicted mRNAs that interact with the proteins. Specifically, we
identify with this approach the potential binding sequence of
DKC1, a protein that could be a regulator of erythropoiesis, and
identify Appl2 and Dido1 as two of its potential targets, laying the
foundation for future studies on the function of this RBP in
mammalian erythropoiesis.

Discussion

In this study, we have applied the high-throughput sequencing
technology PIP-seq to a model of erythropoiesis and characterized
the transcriptome-wide landscape and dynamics of RNA secondary
structures and RBP occupancy. Our data suggest that PPSs, which
are potential sites of RBP occupancy, are more conserved
throughout evolution, possibly because of their biological func-
tion. This conservation also aligns well with the idea that RNA
sequence is one of the factors that determines RBP binding (3). The

importance of RBPs in erythropoiesis is further borne out by the
observations that transcripts with PPSs detected post-differentiation
are functionally enriched for those that are involved in erythrocyte
development (Fig 2C) and the transcripts that show dynamics in RBP
occupancy, as measured by changes in the percentage of a transcript
covered by PPSs, are enriched for those connected with abnormal
hematopoietic phenotypes (Fig 2E).

We further note that throughout development, we observe an
increase in the average RNA secondary structure (Fig 3A) in the 400-
bp window surrounding the start and stop codon, suggesting that
subsets of RNAs are transitioning from being single-stranded to
being more double-stranded in nature. Hypothetically, this could
then influence the interaction between RBPs and a particular
subset of RNAs as binding sites are rendered inaccessible, which
could be a mechanism by which the cell regulates the fate of those
RNA molecules. In support of that hypothesis, we further observe
that RNAs with the most dramatic changes in RNA secondary
structure are, indeed, enriched for those that function in eryth-
ropoiesis (Fig 4). In the same 400-bp window around the start and
stop codon, we observe the general trend that RBP occupancy and
RNA secondary structure seem to be anti-correlated, perhaps
suggesting that the RBPs active in erythropoiesis tend to largely
prefer single-stranded RNAs (Fig S9). However, when we examine
specific clusters of RNAs, the anti-correlation between RNA sec-
ondary structure and RBP occupancy vanishes (Fig 5), which could
potentially suggest that the anti-correlation is on the global scale,
but individual subsets of transcripts are exceptions to this general
trend.

One application of PIP-seq data is using motif enrichment
analysis followed by RNA affinity pulldown and mass spectrometry
to identify potential post-transcriptional regulators of erythro-
poiesis. Using this process, we were able to identify several proteins
that could potentially be regulators of erythropoiesis. Specifically,
the KEGG pathway enrichment analysis revealed an enrichment for
proteins involved in splicing and RNA transport, which tracts well
with the idea that RNA splicing plays a large role in terminal
erythropoiesis (63), and suggests that alternative splicing would be
an important regulatory process to understand for erythropoiesis.
However, we were interested in identifying specific proteins that
may act as regulators of this process. By using RIP-qPCR, we val-
idated that DKC1 could be a potential regulator of Appl2 and Dido1,
both of which are found at significant levels throughout red blood
cell development (Fig S19C).

Taken together, these data establish a comprehensive database
of in vivo RNA secondary structure and RBP–RNA interactions for
the important process of mammalian erythropoiesis. In total, our
findings reveal the power of using a global genomic screen of RNA
secondary structure and RNA-protein interaction site dynamics
using PIP-seq to identify potential new post-transcriptional regu-
lators of an important developmental process. In addition, these
data provide a resource for future studies that can focus on
identifying corresponding functions and novel pathways of post-
transcriptional control during terminal erythroid differentiation. In
the future, these newly described proteins and corresponding
collections of target RNAs will be further studied to better un-
derstand the mechanisms by which they regulate this important
mammalian developmental process.

RNA dynamics during erythropoiesis Shan et al. https://doi.org/10.26508/lsa.202000659 vol 4 | no 9 | e202000659 16 of 21

https://doi.org/10.26508/lsa.202000659


Materials and Methods

Cell culture and differentiation

MEL cells were grown under standard conditions inminimal essential
medium (MEM) and supplemented with 10% (vol/vol) FBS and 1×
antibiotic antimycotic (Invitrogen). MEL cells in suspension culture at
the log phase of growth at a density of 2 × 105/ml were supplemented
with 2% DMSO (Sigma-Aldrich) to induce differentiation, and cells
were collected at various time points for further analysis.

PIP-seq library construction and read mapping

PIP-sequencing libraries were constructed as outlined in Silverman
and Gregory (2015) (19). Briefly, MEL cells were induced to differ-
entiate and then collected 0-, 2-, and 4-d post-DMSO induction.
Whole cell samples were treated to 1% formaldehyde solution
under vacuum to cross-link RBP–RNA interactions. The reaction was
then quenched by vacuum infiltrating 125 mM glycine into the
sample, followed by washing with ddH2O. Then each sample was
split into four libraries: two for structure only libraries and two for
footprinting libraries. Footprinting libraries were treated with either
100 U/ml of a ssRNAse (RNaseONE [Promega]) in 1× RNaseONE
buffer for 1 h at room temperature, or 2.5 U/ml of a dsRNase (RNAse
V1 [Ambion]) in 1× RNase buffer for 1 h at 37°C as previously de-
scribed (8). Protein denaturation and digestion was carried out by
treating the samples with 1% SDS and 0.1 mg/ml Proteinase K
(Roche) for 15 min at room temperature, followed by 2-h incubation
at 65°C to reverse the cross-linking. The structure libraries were
also constructed in a similar fashion, except that cross-linked ly-
sates were treated with 1% SDS and 0.1 mg/ml Proteinase K (Roche)
and then subjected to ethanol precipitation first. Then the samples
underwent their respective RNAse treatments. RNA from the four
samples (two footprinting libraries and two structure libraries) were
then isolated using the QIAGEN miRNeasy RNA isolation kit per
manufacturer protocol (QIAGEN). Then the RNA underwent strand-
specific sequence library preparation as previously described and
the resulting four libraries for each sample (footprinting-dsRNase,
footprinting-ssRNAse, structure-dsRNAse, and structure-ssRNASE)
were sequenced using Illumina HiSeq2000 following the standard
protocol for 50-bp single read sequencing.

PIP-seq reads were trimmed using cutadapt to remove 39 se-
quencing adapters (cutadapt version 1.2.1 with parameters –e 0.006
–O 6 –m 14). Resulting trimmed reads were then collapsed into
unique reads and aligned to the mm10 mouse genome sequence
using TopHat (version 2.0.10 with parameters–library-type fr-
secondstrand–read-mismatches 2 –read-edit-dist 2 –max-multihits
10 –b2-very-sensitive–transcriptome-max-hits 10 –no-coverage-
search–no-novel juncs). Any PCR duplicates were collapsed to
single reads for all downstream analysis.

mRNA-seq library construction, processing, and alignment

mRNA-seq libraries were constructed in biological replicates, fol-
lowing standard library construction protocol. Briefly total RNA was
extracted using Trizol Reagent as per the manufacturer’s protocol

and then sequenced using TruSeq stranded mRNA-seq. Adapters
were trimmed using cutadapt with the following parameters (-f
fastq -a [ADAPTER] -e 0.06 -O 6 -m 14) and then aligned against the
mm10 genome using TopHat (v2.1.0) with the following parameters
(–library-type fr-secondstrand –read-mismatches 2 –read-edit-dist 2
–max-multihits 10 –b2-very-sensitive –no-coverage-search -p 15).

mRNA-seq differential gene analysis

Unadjusted read counts from the TopHat alignment were inputted
into the R package DESeq2 (64) and log2 fold changes of MEL cells
after 0, 2, or 4 d of DMSO induction were calculated. Normalized
read count values are displayed using TPM values.

GO enrichment and MP prediction

Various lists of transcripts were analyzed using DAVID (30, 31), using
the entire list of transcripts with >1 FPM in at least one sample as
the background for GO enrichment. Significant terms were those
with a Bonferroni value <0.05. MPs and disease enrichment were
predicted by submitting the same list of genes to the MouseMine
(62) tool and then downloading the resulting lists of phenotypes or
diseases using the same background as above, and then further
using R to identify those with Bonferroni values <0.05 for subse-
quent visualization.

Identification of PPSs

PPSs were identified using amodified version of the R package CSAR
(65). Read coverage values were calculated for each base in the
genome and a Poisson test was used to determine an enrichment
score for footprint as compared with structure only libraries. PPSs
were then called with a FDR of 5% as previously described (8, 20, 21).

Random background PPSs

Background mock PPSs were generated by taking the high confi-
dence PPSs and then randomly shuffling them in the transcriptome
(i.e., regions annotated as being either UTR, CDS, exon, or intron)
such that chromosome, feature size, and strandedness were pre-
served while averting any region that is called as a PPS in any
sample. This was accomplished by using the bedtools shuffle
feature with the following parameters (-incl -[annotated_gene_file]
-excl [PPS_file_for_timepoint_anyrep] -chrom -noOverlapping)
using the browser extensible data (BED) file of high-confidence
PPSs for a particular time point as the input.

Analysis of PPSs

PPS annotation was performed using the mm10 genome annota-
tions in a “greedy” fashion such that all annotations overlapping a
PPS by one nucleotide was counted equally (i.e., if a PPS overlapped
both an miRNA and a CDS, both categories increased their count by
1). Conservation of PPSs was determined by comparing PhastCons
scores and the number of SNPs within PPSs relative to equally sized
flanking regions. PhastCon scores for PPSs compared with the
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same-sized flanking regions were calculated as previously de-
scribed (8, 21).

Calculating the structure score statistic

For every base in our set of detectable transcripts, we calculated
the ratio of dsRNA-seq and ssRNA-seq coverages from the structure
only samples as previously described (60). Briefly, for every cov-
erage value of dsRNA-seq (nds) and ssRNA-seq (nss) of a given base
I, the structure score is calculated as follows:

Si = glog dsið Þ −glog ssið Þ

= log2 dsi +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ds2i

q� �
− log2 ssi +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ss2i

q� �
;

dsi = nds
max Lds; Lssð Þ

Lds
;

ssi = nss
max Lds; Lssð Þ

Lss
;

where Si is the structure score, dsi and ssi are the normalized read
coverages, and Lds and Lss are the total covered length by mapped
dsRNA-seq and ssRNA-seq reads, respectively. In this analysis, we used
the total coverage length because we believe it is a more reasonable
assumption for the transcriptome to have comparable levels of
paired/unpaired regions. We used a generalized log ratio (glog) in-
stead of the normal log-odds because of its ability to tolerate values of
0 (i.e., regions where there are neither ds- nor ssRNA reads). In ad-
dition, the glog function is still asymptotically equivalent to the
standard log ratiowhen coverage values are large. Becauseweare only
interested in the intra-molecular interactions that contribute to the
self-folding secondary structure, we used only sense-mapping reads.
Near the CDS boundaries, we calculated the structure score for up/
downstreamof the CDS start and end sites, aligned those to detectable
mRNAs, and then averaged the score to produce the profile.

Identifying changes in RNA secondary structure was carried out
by calculating the structure scores as outlined above and then
filtering for the transcripts with a structure score at all time points.
Hierarchical clustering was performed by first calculating the av-
erage RNA secondary structure score in the 200-nt window around
the start codon for each transcript and then using the built-in
hierarchical clustering function in R with default parameters to
identify the six clusters. Transcripts from each of the cluster was
then submitted to MouseMine for GO and MP analysis (62).

RBP bound sequence motif identification and profiling secondary
structure at these sites

HOMER (38) was used to identify any enrichedmotifswith parameters
–rna –size gven–p 2, respectively. Using HOMER, we also mapped
detected motifs back to the genome to identify every occurrence of
the motif in our bound mRNAs using scanMotifsGenomeWide.pl with
-bed option to format output into a BED6 format. Thenwe extracted a
window of ± 100 nt up- and downstream of the predicted motif start
position and plotted the structure score of nucleotides within that
region as previously described.

Searching for motifs in PPSs

The collection of PPSs was scanned for each of the motifs in
order to identify which PPSs contained those sequences, and
subsequently which encompassing transcripts, contained binding
sites for putative RBPs using HOMER’s scanMotifGenomeWide.pl
command with the -bed option to format output into a BED
file.

The list of sites containing each motif was thenmapped back to
their corresponding transcripts using genomic coordinates. The
transcripts were then subsequently analyzed for GO enrichment
using DAVID’s default options against the mm10 background (30,
31).

RNA affinity pulldown

MEL cells 0, 2, and 4 d post differentiation were collected and
washed 2× with 1× PBS and lysed in 500 μL–1 ml of Lysis buffer with
the addition of complete EDTA-free protease inhibitor (1 mini tablet
per 10 ml; Roche). Cells were sheared with a 26-gauge needle and
the supernatant was collected after spinning at 13,000g for 10 min
at 4°C. Samples were stored at −80°C. We then used motifs
identified within PPSs of interest (Figs S9S–Figs S12) as “bait” to pull
down any interacting proteins. The protocol used was identical to
the one previously used in Foley 2017 (21). Briefly, the motifs were
converted to RNA “baits” (IDT) and covalently linked to agarose
beads before being incubated in a binding reaction (3.2 mM MgCl2,
20 mM creatine phosphate, 1 mM ATP, 1.3% polyvinyl alcohol, 25 ng
of yeast tRNA, 70 mM KCl, 10 mM Tris, pH 7.5, and 0.1 mM EDTA) with ~
50 μg of protein lysate for 30 min at RT. Beads were then washed
four times with GFB-200 (20 mM TE, 200 mM KCl, and 6 mM MgCl2)
and once with 20 mM Tris–HCL (pH 7.4). The proteins were then
directly trypsinized on the beads.

Preparing samples for mass spectrometry analysis

RNA-bound proteins were treated with 100 mMNH4HCO3 containing
~6 ng/μl of MS-grade trypsin (Promega) and incubated at 37°C
overnight for 12–18 h. The samples were then vacuum dried before
being submitted to MS analysis.

Mass spectrometry analysis

Mass spectrometry analysis was performed similarly to previous
reports (66, 67). Samples were desalted on in-house StageTips
which were created by pushing a small punch of 3 M Empore C18
paper into a P200 pipette tip. StageTips were prepared by flushing
with acetonitrile (ACN) and then 0.1% TFA. Samples were loaded in
0.1% TFA, washed with 0.1% TFA, and eluted with 0.1% TFA in 70%
ACN. Samples were placed in a Savant SpeedVac SC100 to be dried
and then resuspended in 0.1% TFA, the peptides were separated on
a Dionex UltiMate 3000 with a C18 trap column and an in-house C18
analytical nanoflow column using 0.1% formic acid as buffer A and
0.1% formic acid in 80% ACN as buffer B. Peptides were analyzed by
a Thermo Fisher Scientific Q Exactive HF Hybrid Quadrupole-Orbitrap
Mass Spectrometer using higher-energy collisional dissociation (HCD)
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fragmentation. Data were processed in MaxQuant using iBAQ quan-
titation and a FDR of 1%.

Identifying enriched proteins

Any proteins without an iBAQ value were assigned a default value of
0 before the analysis. Possible contaminants and confounding
proteins such as keratin and ribosomal proteins were filtered out
from the analysis. The iBAQ values were then log transformed and
centered around the mean of each sample. Enriched proteins were
identified by calculating the log2 fold change of a test probe versus
the average of all other probes tested in the same sample. The list of
enriched proteins was then manually checked in the MGI database
and proteins with a known hematopoietic phenotype was noted.

RIP-qPCR

MEL cells were induced with DMSO and collected after 4 d. These
cells were then cross-linked by adding 37% formaldehyde drop-
wise to confluent cell culture dishes for a final concentration of 1%.
Then the cell cultures were incubated for 10min at room temperature
before being treated with 1 M glycine for a final concentration of 125
mM. Cell lysis and the subsequent RIP protocol was performed using
the Magna RIP Kit (17-701; Millipore) according to manufacturer in-
structions with a rabbit polyclonal antibody α−DKC1 (ab93777;
Abcam) and the rabbit polyclonal antibody against β-ACTIN (ab8227;
Abcam) as control. The resulting RNA was reverse transcribed using
the iScript Reverse Transcription Supermix for RT-qPCR (1708840; Bio-
Rad) and then pre-amplified with SsoAdvanced PreAmp Supermix
(172-5160; Bio-Rad), following the manufacturer’s instructions.
Standard qPCR was performed for Adar (F: TGAGCATAGCAAGTGGA-
GATACC; R: GCCGCCCTTTGAGAAACTCT), Aff1 (F: GAAGGAAAGACGCAACC
AAGA; R: TAGCTCATCGCCTTTTGCAGT), Appl2 (F: CACCCTCACAGATTACACC
AAC; R: GGAGAACCATAGTGTCTGCCAG), Dido1 (F: GAAGCACCCAAGGC-
TATCAAA; R: GTCCACCTCCGTGTCTCCT) and GAPDH (F: CGTCCCGTAGA-
CAAAATGGT; R: TTGATGGCAACAATCTCCAC). The primers for Appl2, Dido1,
Aff1, and Adar were identified using PrimerBank (68 and 69), whereas
GAPDH primers were the same as used in reference 70.

Western blot

Protein lysates were prepared from cross-linked 4-d post-DMSO
induction cells using RIPA buffer and run on 4–12% Bis–Tris Gels
(NP0322; Invitrogen) in MES at 100 V for 2 h. Then the gel was
transferred to polyvinylidene fluoride (PVDF) membranes at 200mA
at 4°C for 2 h. After 2 h of blocking in 5% BSA at room temperature,
the membrane was incubated in primary α−DKC1 (6 μl antibody in/
10 ml of 5% BSA; ab93777; Abcam) or α-ACTIN (9 μl antibody/10 ml of
5% BSA; ab8227; Abcam) antibody overnight in 4°C. Membranes
were then washed three times in tris-buffered saline (TBST) for 10
min each then incubated for an hour in goat anti-Rabbit secondary
(1:3,000 in 3% BSA; ab6721; Abcam). After three 10-min washes with
TBST, the membrane was then removed from the liquid and ECL
Prime Western Blotting Detection Reagent (GE Healthcare) was
applied to the membrane for 1 min. Images were then taken in 10 s
increments until saturation.

Data Availability

Raw FASTQ files for the PIP-seq libraries as well as processed BED
files containing PPSs and calculated RNA secondary structure
scores are available on GEO under the accession number GSE142242
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142242).
The FASTQ files for accompanying mRNA-seq are available on GEO
under the accession number GSE148421 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE148421).
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Supplementary Information is available at https://doi.org/10.26508/lsa.
202000659.
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