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COVID-19 is a global pandemic currently in an acute phase of rapid expansion. While

public health measures remain the most effective protection strategy at this stage, when

the peak passes, it will leave in its wake important health problems. Historically, very

few viruses have ever been eradicated. Instead, the virus may persist in communities

causing recurrent local outbreaks of the acute infection as well as several chronic

diseases that may arise from the presence of a “suppressed” virus or as a consequence

of the initial exposure. An ideal solution would be an anti-viral medication that (i)

targets multiple stages of the viral lifecycle, (ii) is insensitive to frequent changes of viral

phenotype due to mutagenesis, (iii) has broad spectrum, (iv) is safe and (v) also targets

co-morbidities of the infection. In this Perspective we discuss a therapeutic approach

that owns these attributes, namely “lipid raft therapy.” Lipid raft therapy is an approach

aimed at reducing the abundance and structural modifications of host lipid rafts or

at targeted delivery of therapeutics to the rafts. Lipid rafts are the sites of the initial

binding, activation, internalization and cell-to-cell transmission of SARS-CoV-2. They

also are key regulators of immune and inflammatory responses, dysregulation of which

is characteristic to COVID-19 infection. Lipid raft therapy was successful in targeting

many viral infections and inflammatory disorders, and can potentially be highly effective

for treatment of COVID-19.
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INTRODUCTION

COVID-19 is the biggest global pandemic of the 21st century and it may not be the last. Increased
interactions of humans with animals amplifies chances of animal viruses “jumping” to humans,
while increased density of human population and abundant international travel further contribute
to the extremely fast spread of the infectious diseases around the globe. At the peak of a pandemic,
public health measures provide the most effective protection against spread of the infection, but
when the peak passes, it leaves behind important problems. First, the virus continues circulating
in the population causing clusters of outbreaks and “second waves.” Second, initial infection often
causes an outbreak of various chronic diseases ensuing from the presence of a “suppressed” virus
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or as a long-term consequence of the initial exposure.
Global immunization provides a radical solution, but full
eradication of an infectious disease has been achieved only a
few times throughout history. Many viruses are resistant to
vaccination through rapid mutagenesis, like influenza viruses
(1), employing cell-to-cell transmission altogether bypassing
exposure to antibodies, like HTLV (2), gaining entry through
the respiratory tract delaying the access of antibodies to the
site of infection, like coronaviruses (3), or a combination
of these and yet unknown factors, such as with HIV
and influenza. Development of an effective vaccine against
coronavirus is challenging; while animal vaccines exist, no
human vaccine against any of coronaviruses has been developed
so far (4). Furthermore, due to animal origin of SARS-
CoV-2, existing and new animal reservoirs will provide
plentiful opportunities for the virus to mutate and reemerge.
Collectively, it makes it unlikely that this virus will be eradicated
through vaccination, at least in the short and medium terms.
A solution is to develop an anti-viral medication. Ideally,
such treatment should target an early stage of the viral
lifecycle, be insensitive to frequent changes of viral phenotype
due to mutations (e.g., targeting host cell rather than the
virus) and be safe. Preferably, this treatment should also
target complications of the infection. In this Perspective, we
discuss an approach that fulfills these requirements, “lipid
raft therapy,” that potentially can be applied for treatment
of COVID-19.

LIPID RAFTS AND VIRAL INFECTIONS

Lipid rafts are solid domains of plasma membrane embedded
into predominantly fluid membrane (5). Proteins that work
together (e.g., in multiunit receptors or endocytosis machinery)
are usually located in lipid rafts preventing these molecules
from drifting apart, instead keeping them in proximity to each
other. Lipid rafts host many receptors involved in immune
and inflammatory responses and play a key role in regulation
of inflammation (6), an important attribute given the role
of unique pattern of immune and inflammatory responses in
the clinical manifestations of COVID-19 (7, 8). At the same
time, numerous viruses, e.g., HIV and Influenza virus, use host
lipid rafts as a “point of entry,” owing to rafts harboring high
concentration of receptors utilized to bind and guide pathogen,
as well as affiliated endocytosis machinery ready to take an
obligate intracellular parasite inside. Lipid rafts also serve as a
platform for pathogen’s assembly (e.g., HIV) and as a “point
of exit” [Ebola virus, HIV and HBV (9)]. Furthermore, viruses
often exploit host raft-associated pathways and modify lipid
rafts through binding to rafts and/or releasing raft-modifying
factors to further promote their infection cycle. The list of
viruses where disruption of rafts was shown to inhibit virus
infectivity is long and includes HIV, HCV, Influenza A, Ebola,
Marburg and many other viruses [for review see (9, 10)];
SARS-CoV-2 may also be one of such viruses. It is however
important to recognize that despite a success of this experimental
approach, so far, no drug acting principally through disruption
of lipid rafts has been approved for clinical use as an anti-
viral treatment.

LIPID RAFTS AND PATHOGENESIS OF
SARS-CoV-2

Molecular pathogenesis of SARS-CoV-2 is schematically
presented in Figure 1. SARS-CoV-2 is very similar to its close
relative SARS-CoV and pathogenic pathways of both viruses
interact with pathways of cellular cholesterol metabolism
(11). Both viruses carry a spike (S) protein in their envelope,
which is essential for entry into the host cells (12). The S
protein docks the viral particle onto angiotensin-converting
enzyme 2 (ACE2) (12, 13), a membrane protein particularly
abundant in the plasma membrane of type II pneumocytes,
nasal goblet secretory cells and enterocytes (12, 14). ACE2
is a lipid raft protein; disruption of lipid rafts prevents its
correct exposure making it impossible for the virus to dock
(15, 16). After binding to ACE2, the S protein must undergo
enzymatic conversion (activation) by either the transmembrane
serine protease 2, TMPRSS2, or furin (12). The exact location
of these proteases on the plasma membrane is unknown,
however, TMPRSS2 co-localizes with ACE2 and is potentially
palmitoylated (17), indicating likely lipid raft localization.
Cleavage-induced conformational change in the S protein and
ACE2 allows the host cell membrane to invaginate, which is
essential for initiating endocytic viral entry. Endocytic and fusion
pathways used by SARS-CoV to enter the cell rely on a lipid
raft-specific machinery and lipid-raft localization is essential
for them to function (18). After internalization, the virus
undergoes intracellular trafficking within endosomes, which
eventually fuse with mature lysosomes. Within the lysosome,
the S protein undergoes another series of enzymatic cleavages
and modifications, followed by release of the viral RNA genome
into the host cytoplasm (18). Furthermore, an important feature
of both SARS-CoV (19) and SARS-CoV-2 (20) is an ability for
cell-to-cell transmission, which allows the virus to escape contact
with antibody. Cell-to-cell transmission through formation
of channels or syncytia requires intact lipid rafts (21). Thus,
at least four stages of SARS-CoV-2 lifecycle, initial binding,
activation, internalization and cell-to-cell transmission, require
intact host rafts to proceed (Figure 1). It follows that targeting
host lipid rafts may be an effective strategy to reduce infectivity
of SARS-CoV-2, and this was experimentally shown in vitro for
SARS-CoV (22).

RAFT THERAPEUTICS

Targeting lipid rafts for treatment of various diseases, from
neurodegeneration and neuropathic pain to cancer, infections
and atherosclerosis, is a rapidly growing therapeutic approach,
as described in detail in our recent review (23). Fundamentally,
there are two ways to utilize lipid rafts for anti-viral therapy,
either to directly disrupt these domains, or to use lipid
raft for targeted delivery of anti-viral therapeutics. As only
approaches involving lipid raft disruption have been investigated
in the context of SARS-CoV-2 pathogenesis (Figure 1), we will
primarily focus on this mechanism.

One approach is to reduce abundance of lipid rafts by
depleting them of lipids responsible for their stability, cholesterol
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FIGURE 1 | Lipid rafts and pathogenesis of SARS-CoV-2. SARS-CoV-2 docks onto ACE2, which is a lipid raft protein. After binding to ACE2 the S protein in the viral

envelope undergoes enzymatic activation by TMPRSS2 or furin, which are likely located in lipid rafts. Subsequent endocytosis of SARS-CoV-2 occurs using

raft-dependent endocytic pathway. After internalization SARS-CoV-2 undergoes intracellular trafficking within endosomes, fuses with mature lysosomes and releases

its viral RNA genome into the host cytoplasm. One of the pathways of virus transmission, cell-to-cell transmission, occurs through formation of intercellular channels

or syncytia and also requires intact lipid rafts. Thus, at least four stages of SARS-CoV-2 lifecycle, initial binding, activation, internalization and cell-to-cell transmission,

require intact host rafts to proceed and, if other viruses are a guide, disruption of lipid rafts using lipid raft therapy mitigates the infection.

or sphingomyelin. For example, cholesterol can be physically
removed from rafts by sequestrants, such as cyclodextrins. β-
Cyclodextrin is used as a food additive and is proven to
be safe for consumption (24), it inhibits entry of another
enveloped virus, HIV, into host cells (25) and has anti-
inflammatory properties (26). Another option is stimulation of
physiological pathways responsible for the efflux of cholesterol,
such as stimulation of the expression of ATP-binding cassette
transporters A1 and G1, using LXR agonists or heterologous
over-expression of these transporters. Further, elevation of the
levels of natural acceptors of cholesterol, high-density lipoprotein
(HDL) and apolipoprotein A-I (apoA-I), or infusion of HDL
and apoA-I mimetics also reduces the abundance of lipid rafts.
The third option is to reduce cholesterol and sphingolipid
supply using inhibitors of their biosynthesis, e.g., statins and
Miglustat, respectively. Given the proven safety record of statins,
drugs widely used to treat hypercholesterolaemia, they are
a good candidate for immediate testing for this application.
Finally, recently discovered modulator of lipid rafts, apoA-I
Binding Protein (AIBP), may be an especially beneficial “lipid
raft therapy” compound to treat COVID-19. AIBP stimulates
cholesterol efflux and reduces the abundance of lipid rafts
in various tissues (27–29), it effectively reduces inflammation
(29) and was recently shown to have an anti-HIV activity
(30). Importantly, AIBP targets only cells activated with LPS,
cholesterol-loaded or infected, reducing the abundance of lipid
rafts to the “healthy level,” but not below (28, 30), a selectivity
beneficial for avoiding adverse side-effects. Another advantage
of AIBP is that it remains active when administered directly
to lungs via inhalation (31), an application especially relevant
to COVID-19.

Second approach takes advantage of unique partitioning of
various receptor assemblies to the lipid rafts allowing for an

effective targeting of therapeutic agents specifically to these
domains. Lipid-coated nanoparticles (32) or liposomes carrying
a vector (e.g., antibody to ACE2 or another raft protein)
can carry anti-viral therapies, such as Irbesartan, an ACE2
antagonist, Camostat mesylate, a TMPRSS2 inhibitor, or heparin,
which breaks down proteoglycans essential for the SARS-CoV-2
binding to the cell, thus increasing the treatment efficiency and
reducing the effective drug concentration and toxicity. Finally, β-
cyclodextrin (33) and synthetic HDL (34, 35) particles can also be
used to deliver to cells compounds with limited solubility, such
as Remdesivir.

LIPID RAFTS AND CO-MORBIDITIES OF
COVID-19

One of the puzzling features of COVID-19 infection is abnormal
immune response (7) and severe inflammation resembling
autoimmune vasculitis (36, 37) or sepsis (38). The exact
pathogenesis of dysregulation of the immune and inflammatory
responses in COVID-19 is unknown and emergency response
relies on general anti-inflammatory medications or inhibitors
of inflammatory cytokines. These approaches in most cases
are effective in mitigating the acute phase, but, if sepsis
and autoimmune vasculitis are a guide, heightened chronic
inflammation will persist for a long time causing multiple
chronic co-morbidities. Lipid rafts play a key role in immunity
and inflammation (6) and targeting lipid rafts to reduce
inflammation is a promising therapeutic approach that can
reduce both acute and chronic inflammatory responses (23).
Another common co-morbidity of COVID-19 is coagulopathy
(39). Lipid rafts are involved in regulation of platelet function
and lipid raft therapy was effective in attenuating platelet function
(40). Thus, therapeutic approaches targeting lipid rafts may
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mitigate both COVID-19 infection itself and its acute and
chronic co-morbidities.

DISCUSSION

Use of “lipid raft therapy” approach has important advantages
over other strategies. First, it targets the element of pathogenesis
common to both acute and residual infection, as well as the
most likely co-morbidities of COVID-19. Second, lipid rafts are a
cellular element resistant to rapidmutagenesis, their involvement
in pathogenesis of viral infection is common to many viruses and
the proposed treatments may be applicable for both current and
future pandemics. Third, it utilizes medications that are currently
used or being tested for treatment of other diseases, where
therapeutic doses were proven to be safe and have high degree of
hemocompatibility promising a rapid repurposing for treatment
of COVID-19. Finally, it can be used both as a stand-alone
therapy and in combination with other therapeutic approaches.

Lipid raft therapy also has some limitations. Agents of
lipid raft therapy may trigger immune response, which may
dangerously combine with the abnormal immune response to
the SARS-CoV-2. Although no adverse immune reaction to any
of the lipid raft therapy agents has been described so far (even
to large multiprotein complexes such as HDL), such reaction in
the context of COVID-19 infection cannot be a priori dismissed.
Conversely, disruption of rafts reduces immune responses, which
may have a negative effect on resistance to the virus. However,
several lines of evidence suggest that suppressed immunity is
not detrimental, but could be even beneficial for the anti-
COVID-19 therapy. Immunosuppression and chemotherapy
did not have a negative effect on severity of COVID-19 (41,
42). Asymptomatic patients have lower levels of virus-specific
antibody than those with severe disease manifestation (43). In
humans, ACE2, the receptor for SARS-CoV-2, is stimulated by
interferon, a key element of anti-viral immune response (14).
Collectively, these findings suggest that SARS-CoV-2 is hijacking
immune responses, and mitigation of immune response, perhaps

counterintuitively, may be beneficial. Another limitation is that,
given that lipid rafts are a central element of numerous signaling
pathways, their disruption may have unintended negative
consequences for functionality of these pathways. However, this
complication is more of a theoretical nature: while phenotype
of excessive raft abundance has well-described manifestations,
very little is known of a phenotype of lipid raft deficiency (23),
most likely due to a high level of redundancy in regulation of
lipid raft originating pathways. Furthermore, some therapeutic
approaches, such as AIBP, allows “fine tuning” of the rafts,
reducing the overabundant lipid rafts to the “normal” level, but
not below (28, 30). Finally, some agents of lipid raft therapy may
have side-effects seemingly unrelated to their activity toward lipid
rafts. For example, high doses of hydroxypropyl-β-cyclodextrin
had unexpected impact on renal and systemic hemodynamics
(44). These potential toxicities should be carefully considered
when designing therapeutic regimens.
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