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KEY POINTS 

Question  

What are the sociodemographic and environmental drivers of the heterogeneous distribution of 

the COVID-19 related mortality in the U.S., and what are the vulnerable areas at higher risk of 

COVID-19 related mortality and low critical healthcare capacity? 

Findings  

Higher proportions of African American and Latino populations, as well as high levels of air 

pollution and airport connectivity were linked to higher risk of COVID-19 related mortality. 

Over 68% of the counties with high COVID-19 related mortality risk were also counties with 

lower critical care capacity than national average. 

Meaning  

In a time-limited response, the identification and targeting prevention efforts should focus in 

vulnerable populations located in high risk areas in which sociodemographic and environmental 

factors are exacerbating the burden of COVID-19 related deaths. 
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ABSTRACT 

Background 

The role of health-related disparities including sociodemographic, environmental, and critical 

care capacity in the COVID-19 pandemic are poorly understood. In the present study, we 

characterized vulnerable populations located in areas at higher risk of COVID-19 related 

mortality and low critical healthcare capacity in the U.S.  

Methods 

Using Bayesian multilevel analysis and small area disease risk mapping, we assessed the spatial 

variation of COVID-19 related mortality risk for the U.S. in relation with healthcare disparities 

including race, ethnicity, poverty, air quality, and critical healthcare capacity.  

Results 

Overall, highly populated, regional air hub areas, and minorities had an increased risk of 

COVID-19 related mortality. We found that with an increase of only 1 ug/m3 in long term 

PM2.5 exposure, the COVID-19 mortality rate increased by 13%. Counties with major air hubs 

had 18% increase in COVID-19 related death compared to counties with no airport connectivity. 

Sixty-eight percent of the counties with high COVID-19 related mortality risk were also counties 

with lower critical care capacity than national average. These counties were primary located at 

the North- and South-Eastern regions of the country. 

Conclusion  

The existing disparity in health and environmental risk factors that exacerbate the COVID-19 

related mortality, along with the regional healthcare capacity, determine the vulnerability of 

populations to COVID-19 related mortality. The results from this study can be used to guide the 

development of strategies for the identification and targeting preventive strategies in vulnerable 

populations with a higher proportion of minority groups living in areas with poor air quality and 

low healthcare capacity. 

Keywords: COVID-19, ethnicity, health disparities, air pollution, comorbidity, healthcare 

capacity. 
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INTRODUCTION 

Early Coronavirus Disease 2019 (COVID-19) data from Europe and Asia suggested 

unprecedented contagious and death rates of the pandemic. In late March, the United States 

(U.S.) exhibited the fastest growing curve in terms of deaths across developed countries, with 

98,768 as of May 26th. In terms of disease characterization, several countries along with U.S. 

have reported higher mortality rates (MR) for the older population with concomitant 

comorbidities including chronic lower respiratory diseases, diabetes, hypertension and ischemic 

diseases among others1. Preliminary studies have started to create baseline population 

characteristics of COVID-19 related deaths2 and public health researchers have started to project 

next steps in terms of the disease control strategies and healthcare resource allocations and 

demand3,4. However, the role of geospatial disparities, including sociodemographic and 

environmental exposures, and critical care capacity for the future of the pandemic are poorly 

understood. Identifying which population groups and areas who have a higher risk of COVID-19 

mortality based on underlying health disparities and low critical healthcare capacity is a logical 

step to develop more effective strategies for mitigating the risk where more susceptible 

populations reside. Under the light of these considerations, this study aims to: a) assess the 

sociodemographic and environmental drivers of COVID-19 related deaths, and b) spatially 

identify vulnerable areas at higher risk of COVID-19 mortality but with low healthcare capacity. 

We hypothesized that COVID-19 related mortality will significantly affect counties with 

predominant minority groups, poor air quality and low critical healthcare capacity in the U.S.   

RESEARCH DESIGN AND METHODS 

Study area and data sources 
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The U.S. COVID-19 data were obtained from the Johns Hopkins University dataset5 for 3,009 

counties from January 22, 2020, to May 26, 2020 including 49 states. Since we were interested in 

identifying general patters of COVID-related mortality for the entire U.S., we excluded data 

from New York state, which has experienced an unusual intensive COVID-19 outbreak, 

behaving as a hotspot with about 5% of worldwide cases6. Sociodemographic data were derived 

from recent American Community Survey 2014-2018 5-Year Estimates (ACS)7, and the Center 

for Disease Control (CDC) Social Vulnerability Index8. Due to the strong association of COVID-

19 with underlying health problems, county-level comorbidities, including chronic lower 

respiratory disease (CLRD), diabetes mellitus, hypertensive diseases (HTA), and ischemic heart 

disease were obtained between 2010 to 20189. Similarly, air pollution was assessed using the 

Surface annual PM2.5 satellite images from 2000 to 201810.  

Study variables 

The primary outcome of interest was COVID-19 related deaths. County-level cumulative number 

of deaths up to May 26, 2020 were included as the health outcome measure. All covariates were 

selected according to an evidence synthesis process of preliminary reported results2,11-15, and  

results were aggregated and reported at county level. A directed acyclic graph (DAG) was built 

to infer causal effects to the observational data. Next, we removed open paths, check for colliders 

and overcontrol in the implied graph (Figure S1)16. The socioeconomic and demographic 

variables included percentage estimated for total population by age-groups (Under 25, 25-34, 35-

44, 45-59, 60-74, and over 75), percentage estimated for total population of self-identified as 

White, African American, and Hispanic or Latino ethnicity by county according to the Census 

Bureau definition17, and percentage estimated for persons below poverty according to the CDC’s 

vulnerability index8.  
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For county-level underlying cause of death, we selected four chronic conditions including: 

CLRD, diabetes mellitus, HTA, and ischemic heart disease MR per 100,000 people15. To 

evaluate the link between environmental exposures and COVID-19 related mortality, we used 

2000 to 2018 annual images of ground-level fine particle matter (PM2.5) over North America10. 

These calibrated images are estimated at a 0.01° × 0.01° grid resolution combining satellite and 

monitoring stations data sources using a Geographically Weighted Regression (GWR). Since the 

unit of analysis for this ecological study is the county, we aggregated PM2.5 data at a county-level 

resolution. Then, we computed long-term exposure by temporally averaging PM2.5 between 2010 

to 2018 within each county. We also calculated regional air hub and road connectivity index for 

each county to examine the association of deaths and county-level airport hubs and main roads. 

We generated four levels of connectivity index as following: counties with an airport with more 

than 50,000 passengers per year (Has an airport), counties next to a county with an airport (Next 

to airport), counties crossed by a main road (Crossed by a highway), and counties not surrounded 

with a county with an airport and not being crossed by a main road (No airport/highway). A more 

detailed information of covariate description is included in Supplementary Materials (see 

Appendix A). This study follows the guidelines of the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE)18. 

Multivariate analyses of risk factors for COVID-19 related death 

In this study, a Bayesian multilevel analysis was used to assess the risk of COVID-19 related 

death per county adjusting for covariates. We included the cumulative number of deaths for the 

observed variable and the projection of expected deaths using ACS population as the regression 

offset. Previous studies showed strong association between age and COVID-19 death counts, so, 

as a result, we adjusted all models with age-group population distributions. We included a 
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random intercept at state-level to assess group effects. Normal and Half Cauchy weak 

informative priors19, four Monte Carlo Markov Chains (MCMC), and 4,000 iterations with No-

U-Turn Sampler (NUTS)20 were used to fit the model. All numeric covariates where centered for 

easily interpretation on national average. 

COVID-19 disease mapping 

We generated small area disease risk map after adding state-level random intercepts. Small area 

risk estimates were generated by computing the crude mortality rate (CMR) for each county. The 

CMR was obtained as the ratio of observed (𝑌𝑖) to the expected disease counts (𝐸𝑖): 𝐶𝑀𝑅𝑖 =

𝑌𝑖/𝐸𝑖, where the expected counts represented the total number of COVID-19 related deaths 

based on the population of the specific area (ACS county population). A Poisson distribution was 

used to avoid extreme values due to areas with small populations. Counties with relative risk 

(RR) equal to one have the same risk as expected based on the total population of the county. 

Counties with RR less than one indicates lower relative risk, and greater than one is an evidence 

of a higher mortality risk than average. Quantile population classification was used to identify 

the ten highest COVID-19 mortality risk areas in highly populated counties (4th quartile). A 

bivariate map combining COVID-19 related mortality risk and number of intensive care units 

(ICU) beds was generated to identify key vulnerable areas with low critical healthcare capacity. 

ICU beds per 100,000 people were included as an index of critical healthcare capacity of each 

county21. Both variables were classified with a Tertile scheme as follows: COVID-19 related RR 

(0-1 lower risk, 1-3, medium risk, 3 > high risk), ICU beds per 100,000 inhabitants (< 28.4 low 

availability, 28.4-100 medium availability, > 100 high availability). The R language including 

brms, INLA, SpatialEpi, and raster packages were used to implement all models and maps22-25. A 
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more detailed information including equations is included in Supplementary Materials (see 

Appendix B). 

RESULTS 

General results 

Table 1 shows descriptive statistics of COVID-19 deaths in the 49 states included in the study. 

The total number of deaths reported were 68,288, corresponding to 5.3% of the 1,300,169 

COVID-19 confirmed cases (excluding the state of NY). Highest cumulative death counts were 

found in Cook County, IL (3,354 deaths), Wayne County, MI (2,368 deaths), and Los Angeles 

County, CA (2,45 deaths) respectively. Of the 3,009 counties included in the study, 1,703 had at 

least one confirmed COVID-19 death, and 570 counties had no valid information for all 

covariates, leaving a sample of 2,439 counties (excluding the state of NY). The overall percent 

estimate of poverty was 15.6 (standard deviation [SD] 6.5) for the entire country. White 

population had an average proportion of 83.0% (SD 16.7), African American 9.1% (SD 14.6) 

and Latino 9.3% (SD 13.9). The national average PM2.5 exposure was 8.0 µg/m (SD 2.4). For the 

connectivity index, 220 counties had an airport with more than 50,000 passengers per year, 619 

counties had a highway or main road, and 1,194 counties are categorized as low transportation 

connectivity. The overall ICU beds capacity was 28.4 per 100,000 (SD 34.6). 

COVID-19 related MR per 100,0000 people revealed higher average MR in the 4th quartile of 

counties with PM2.5 greater than 10.1 µg/m (21.4 per 100,000) and counties with an airport (17.9 

per 100,000), For minority groups, counties with high percentage of African American (25.6 per 

100,000) and Latino population (14.8 per 100,000) showed higher COVID-19 related MR 

(Figure S2).  
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Multivariate analyses of risk factors for COVID-19 related death 

Figure 1 illustrates the RR for COVID-19 at the state-level. Ten of the 49 states had a risk higher 

than average (AZ, CO, CT, IN, LA, MA, MI, MS, NJ, and PA). Notably, three of four 

Northeastern states had the highest RR (excluding NY), CT (RR=8.16, credible interval [CI]: 

3.60 -18.73) MA (RR=9.35, CI: 4.76 - 18.54), and NJ (RR=6.69, CI: 3.71 - 12.16). IN and MI 

(Midwest), LA and MS (South), AZ and CO (West) hold a higher RR than average. Conversely, 

11 of the 49 states from Midwest (MO, and SD), North-East (RI), South (AR, TN, TX), and 

West (AK, CA, HI, UT, and WY) had a RR lower than the national average. Map in Figure 2A 

illustrates the RR by county and Table 2 shows the ten highest COVID-19 mortality areas in 

highly populated counties (4th quartile). CT, GA, MI, NJ, and NM top the list with RR at least 

five-fold higher than average. Also, these counties exhibited on average higher proportions of 

population in poverty (17.5%), African American (22.4%) and Latino (21.7%) populations 

compared to the national averages of 15.6%, 9.1%, and 9.3%, respectively. Likewise, nine of 

these ten counties had a long-term PM2.5 exposure of at least 2.6 µg/m above the national 

average (8.0 µg/m). Eight of these ten counties had an airport or were next to a county with an 

airport, and five out of ten have lower ICU beds availability than national average of 28.4 ICU 

beds per 100,000 inhabitants.  

Table 3 summarizes the RR and credible intervals from the adjusted model for the overall 

association between COVID-19 related deaths and the covariates in all counties included in the 

study. For sociodemographic risk factors, the proportion of people living in poverty in the county 

(mean [𝜇] = 1.01, credible interval [CI]: 1.01-1.02), and the proportion of Latino population if 

infected with COVID-19 (𝜇 = 1.01, 95% CI: 1.01-1.02) were factors associated with higher risk 

of COVID-19 related death, whereas countries with high proportion of White population had 
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lower risk of COVID-related death (𝜇 = 0.97, CI: 0.97-0.97). We found no statistically 

significant association between the proportion of comorbidities and the risk of COVID-19 related 

death at county level, except for a negative association with CLRD. For the long-term exposure 

to air pollution, we found that one additional unit of PM2.5 (1.0 µg/m) increased the risk of 

COVID-related death by 13% (𝜇 = 1.13, CI: 1.11-1.14). Lastly, counties with an airport and near 

to airports had a higher risk of COVID-19 related death compared to counties with low 

transportation connectivity, with an 18% (𝜇 = 1.18, CI: 1.12-1.24), and 16% (𝜇 = 1.16, CI: 1.10-

1.22) higher mortality risk respectively. A more detailed information including model 

performance and unadjusted models is included in Supplementary Materials (see Appendix B). 

COVID-19 disease mapping 

Overall, we found that 396 counties from 39 states had higher risk of COVID-19 related 

mortality (RR > 1) (Figure 2A and Table 2). Five states had at least 21 counties with high 

mortality risk including GA (43), IN (28), LA (42), MS (31), and NJ (21). Figure 2B illustrates 

the bivariate map of the COVID-19 related mortality risk and ICU beds availability for all 

counties in the conterminous U.S. We observed 105 counties with high mortality risk, and 71 of 

these counties with low ICU availability. About 46% of these counties were in GA (10), LA 

(11), and NJ (12). The map also showed counties with high COVID-19 related mortality risk - 

high ICU beds per 100,000 such as East Feliciana parishes (LA), and Upson County (GA). Also, 

areas with low risk of COVID-19 related mortality risk but high ICU availability were observed 

in KS and ND, as well as several counties with low mortality risk and acceptable ICU capacity at 

the moment of this analysis. A more detailed information including additional maps and the 

complete mortality risk list for all states can be found in Supplementary Materials (see Appendix 

B and C). 
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DISCUSSION 

This study provides state and county-level characterization of the COVID-19 related mortality 

risk including sociodemographic and socio-environmental factors across the U.S. Also, our study 

assessed the spatial link between COVID-19 related mortality risk and the current critical 

healthcare capacity across the U.S. Overall, we identified highly populated and polluted areas, 

regional air hub areas, and minorities with an increased COVID-19 related risk of death. The ten 

most populated counties with the highest mortality risk showed a five-fold higher than national 

average with higher proportions of African Americans and Latino groups residing in these 

counties. Moreover, our spatial analysis showed that 68% of the counties with high COVID-19 

related mortality risk were also counties with a lower capacity of ICU beds than national 

average. 

We found that the ten highest COVID-19 mortality areas in highly populated counties (4th 

quartile) showed at least five-fold higher mortality risk than national average. Noteworthy, these 

counties exhibited on average higher proportions population in poverty, African American and 

Latino populations compared to their national average. States and counties with historically 

higher proportion of African American and Latino population such as LA, and NJ were at greater 

COVID-19 related mortality risk than other states. These demographic disparities in terms of 

COVID-19 related mortality have been recognized in preliminary results of several major cities 

in other countries including London11,26,27. Moreover, non-pharmaceutical interventions (school 

closing, physical distancing, lockdowns and additional sanitation), which are the only 

interventions available to tackle the pandemic,28 are difficult to implement in these groups. As a 

result, the effectiveness and benefit of these non-pharmaceutical interventions can be diluted by 
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the work activities that involve person to person interaction and are more common in these low-

income groups exposing them to a higher risk of infection and thus, higher mortality risk.  

Air pollution was positively associated with higher COVID-19 related mortality risk, and the top 

ten counties with the highest mortality risk exhibited higher levels of PM2.5 exposure compared 

to the national average. Air pollution is one of the leading risk factors for respiratory related 

death globally27, and this factor could be playing a key role in exacerbating the numbers of 

COVID-19 related deaths in highly polluted areas. Air pollution has an indirect impact on most 

of the organs and systems of human body and indirectly comorbidities. Although we did not find 

any significant association between COVID-19 and comorbidities at county level, air pollution 

has been identified as contributing factor for many respiratory diseases like chronic obstructive 

pulmonary disease (COPD)26,29, asthma29-34, and lung cancer35-38, which are concomitant 

comorbidities that reported strong association of COVID-19 related deaths at individual level39. 

The health effects of air pollution depend on the components and sources of pollutants, which 

can vary among counties, seasons, and times. Initial evidence of incidence and mortality with 

comorbidities have been reported in Italy with strong regional differences between the northern 

and southern region3,13. Although we found a strong positive association between air pollution 

and the risk of COVID-19 related death, the role of long-term exposure to poor air quality in the 

actual numbers of COVID-19 related deaths in the U.S. is still not well understood, and thus 

more studies are needed including major U.S. cities taking into account long-term exposure of 

outdoor and indoor pollution. Furthermore, our results suggest that counties with airports have 

higher COVID-19 related mortality risk than those with less connectivity. The high connectivity 

and travelers in these counties generated by airports can produce a high influx of locally 
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imported infections that boost the local transmission of the virus in the county and consequently 

the number of COVID-19 related deaths.  

According to our spatial analysis, 396 counties (16.2% of the total number of counties included 

in the study) from 39 states had higher risk of COVID-19 related mortality than the national 

average. About 56% (221 out of 396) of these counties where located in only eight states: GA, 

IN, LA, MS, NJ, OH, PA, and VA. These results illustrate the marked regional differences of the 

COVID-19 pandemic in the U.S., with most of the counties with a higher mortality risk 

concentrated in the North- and South-East regions of the country. Reasons for the increased 

mortality risk in these areas could be manifold. First, CT and NJ share borders with NY, home to 

about 5% of worldwide COVID-19 cases6. Many people that usually work in NY might reside in 

CT and NJ border counties which might help the initial spread of the disease. Second, most of 

these states have higher proportions of at least one minority group (African American and 

Latino) than the national average. County-average poverty was larger than the national average 

for GA (20.7 VS 15.6) and LA (22.0 VS 15.6) states. In terms of air pollution, about 50% of 

states with high mortality risk counties had long-term PM2.5 averages above the national average 

(8.0 µg/m), ranging from 8.1 µg/m (MO) to 11.2 µg/m (DE). Noteworthy, two of the ten most 

populated counties located in CT and MI were ranked into the 25 most ozone-polluted (Fairfield 

County, CT), and the 25 most polluted by year-round (Wayne County, MI) across U.S.40. Most 

of the counties with high COVID-19 related mortality risk (71 out of 105) were also counties 

with lower critical care capacity than national average of 28.4 ICU per 100,000 inhabitants. Our 

bivariate analysis showed that states like GA, LA, NJ represent most of the counties with high 

COVID-19 related mortality risk but low healthcare capacity. Those counties had an average of 

5.4 ICU per 100,000 in GA, 14.0 per 100,000 in LA, and 16.9 per 100,000 in NJ. With the onset 
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of COVID-19 and the upcoming lift of lockdown measures across U.S., critical healthcare 

capacity might be potentially overwhelmed in several of these counties not only in ICU beds 

capacity, but also in mechanical ventilators and staffing. Therefore, counties with high COVID-

19 related mortality but low healthcare capacity identified in our study should be prioritized in 

strategies aimed to diminish the overall number of COVID-19 related deaths including patient 

relocation, strengthening of critical healthcare infrastructure and supply chains, and staff step-

up41. 

LIMITATIONS 

Our study has several limitations worth noting. First, COVID-19 data that includes comorbidity 

data are not available at the unit of analysis (county-level). This issue might hamper precise 

comparisons of the real epidemic burden in specific groups and comorbidities. Second, we 

analyzed air pollution based on PM2.5 measures. Other pollutants including sulfate (SO4), nitrate 

(NO3), ammonium (NH4), organic matter (OM), black carbon (BC), mineral dust (DUST), and 

sea-salt (SS) might be needed to produce better pollution estimations. Our result is from 2000 to 

2018 and updates with additional a data and analysis warrant in the future. A further limitation 

relates to the challenges in translating cross-sectional associations into conclusions on causation 

of COVID-19 related deaths at county-level. Hence, our results should be interpreted with 

caution. 

CONCLUSIONS 

This study is one of the first to explore the population risk determinants of COVID-19 related 

deaths at a country level, and the use of geospatial approaches to identify vulnerable areas and 

populations at higher risk of COVID-19 related mortality. These results have significant public 
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health implications to strength the critical healthcare infrastructure for an effective response to 

the pandemic. The social gradient of health and environment in which most deprived groups are 

highly vulnerable to more severe health outcomes can be also an important driver of the current 

geographical and social disparity observed in the current COVID-19 pandemic. Moreover, the 

substantial regional disparities of the healthcare capacity increase the vulnerability of these areas 

already at higher risk of COVID-19 related mortality. Therefore, we anticipate that the results 

from this study can be used to guide the development of strategies for the identification and 

targeting prevention efforts in these vulnerable high-risk counties with higher proportion of 

minority groups, poor air quality, and low healthcare capacity.  
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FIGURES 

Figure 1. U.S. Relative Risk for COVID-19 by State 
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Figure 2. U.S. Relative Risk for COVID-19 by County, mean=0.53 (range is 0.01-14.37) (A). 

U.S. COVID-19 related relative risk (RR) of Death and ICU availability per 100,000, (without 

NY). Dark purple indicates counties with high ICU availability and low mortality risk whereas 

areas in darker green-blue indicate counties with high mortality risk but low ICU availability. 

Both variables were classified with a Tertile scheme as follows: COVID-19 related RR (0-1 

lower risk, 1-3 medium risk, 3 > high risk), ICU beds per 100,000 (< 28.4 low availability, 28.4-

100 medium availability, > 100 high availability) (B) 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. .https://doi.org/10.1101/2020.07.11.20151563doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20151563
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

TABLES 

Table 1. Baseline characteristics. 

County-level covariates 

COVID-19, n     

Confirmed cases 1,300,169 

Confirmed deaths 68,288 

Sociodemographic, mean (SD)     

Age     

Under 25 31.2 (4.8) 

25-34 11.8 (2.3) 

35-44 11.6 (1.6) 

45-59 20.2 (2.2) 

60-74 17.4 (3.7) 

75+ 7.9 (2.4) 

Estimated % of population in poverty 15.6 (6.5) 

Estimated % of white population 83.0 (16.9) 

Estimated % of African American population 9.1 (14.6) 

Estimated % of Latino population 9.3 (13.9) 

Crude Mortality Rates, mean (SD)   

Chronic Lower Respiratory Disease  70.2 (26.1) 

Diabetes Mellitus 33.7 (14.7) 

Hypertension 27.2 (17.0) 

Ischemic Heart Disease  151.0 (57.5) 

Environment, mean (SD)     

Long-term exposure to PM2.5 µg/m 8.0 (2.4) 

Connectivity risk, n     

No airport/highway 1194 

Crossed by a highway 619 

Next to Airport 1013 

Has an airport 220 
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Table 2. Ten highest COVID-19 mortality risk areas in highly populated counties (4th quartile). 

State County 
Observed 

counts 

Expected 

counts 
Connectivity 

PM25 

(u/gml) 

Uninsured 

(%) 

Poverty 

(%) 

ICU 

per 

100,000 

White 

race 

(%) 

African 

American 

race (%) 

Latino 

ethnicity 

(%) 

RR CI: [2.5%, 

97.5%] 

NJ Essex  1608 179 
Has an 

airport 

11.2 12.3 16.4 28.5 42.1 39.8 22.7 8.99 [8.55, 9.43] 

NJ Union  1030 125 
Next to 

airport 

11.4 11.8 9.8 13.9 56.2 21.2 31.1 8.24 [7.75, 8.75] 

NJ Passaic  892 113 
Next to 

Airport 

9.6 12.4 16.7 10.5 62.2 11.4 40.9 7.89 [7.38, 8.42] 

NJ Hudson  1143 151 
Next to 

Airport 

12.3 14.1 16.3 13.3 55.1 12.4 43.2 7.57 [7.14, 8.02] 

NJ Bergen  1528 209 
Next to 

Airport 

11.3 8.3 7.0 13.1 71.4 6.0 19.4 7.31 [6.95, 7.68] 

GA Dougherty  142 21 
No airport/ 

highway 

10.8 17 29.4 54.9 27 69.0 2.7 6.73 [5.66, 7.87] 

MI Wayne  2368 397 
Has an 

airport 

11.6 7.2 23.1 38.4 53.2 38.9 5.9 5.96 [5.73, 6.21] 

CT Hartford  1193 201 
Has an 

airport 

8.5 4.4 11.1 53.2 71.5 13.6 17.6 5.94 [5.6, 6.28] 

NM McKinley  95 16 
Crossed by a 

highway 

3.0 20.9 36 35.7 15 0.7 14.3 5.83 [4.71, 7.06] 

CT Fairfield  1231 213 
Next to 

Airport 

9.0 8.7 8.8 18.3 73.2 11.4 19.3 5.78 [5.46, 6.11] 
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Table 3. Adjusted county-level predictors of COVID19 deaths 

County-level covariates 
µ 2.5%   97.5% 

Sociodemographic         

Age          

Under 25 1.33 (1.20 , 1.47) 

25-34 1.32 (1.19 , 1.46) 

35-44 1.36 (1.23 , 1.51) 

45-59 1.51 (1.37 , 1.67) 

60-74 1.26 (1.14 , 1.39) 

75+ 1.65 (1.49 , 1.83) 

Estimated % of population in poverty 1.01 (1.01 , 1.02) 

Estimated % of White population 0.97 (0.97 , 0.97) 

Estimated % of African American population 0.99 (0.99 , 0.99) 

Estimated % of Latino population 1.01 (1.01 , 1.02) 

Crude Mortality Rates   

Chronic Lower Respiratory Disease  0.99 (0.99 , 0.99) 

Diabetes Mellitus 1.00 (0.99 , 1.00) 

Hypertension 1.00 (1.00 , 1.01) 

Ischemic Heart Disease  1.00 (1.00 , 1.00) 

Environment         

Long-term exposure to PM2.5 1.13 (1.11   1.14) 

Connectivity risk         

No airport/highway Ref Ref   Ref 

Crossed by a highway 1.06 (1.00 , 1.12) 

Next to airport 1.16 (1.10 , 1.22) 

Has an airport 1.18 (1.12 , 1.24) 

CI, 95% credible interval Bayesian R2 with SE 

 0.953 [0.001] 
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SUPLEMENTARY MATERIALS 

APPENDIX A: Covariate selection criteria and definitions 

All covariates were selected according to an evidence synthesis process of relevant references 
2,11-15. This section describes the sources of sociodemographic, concomitant comorbidities, 

environment and the spatial explicit cofactors according to the implied graph. 

Figure S1. Hypothetical DAG for the study 

 

All covariates ACS surveys are readily available and are described as follows: 

Age: Percent estimate of total population according to the following groups: under 25 years, 25 

to 34 years, 35-44 years, 45 to 59 years, 60 to 74 years, over 75 years. Variable names: 

DP05_0005PE, DP05_0006PE, DP05_0007PE, DP05_0008PE, DP05_0009PE, DP05_0010PE, 

DP05_0012PE, DP05_0013PE, DP05_0014PE, DP05_0015PE, DP05_0016PE, DP05_0017PE. 

Poverty: According to the census bureau, the income money threshold and the consumer Price 

Index (CPI-U). If a family's total income is less than the family's threshold, then every individual 

of that family is considered in poverty42. Variable name: S0601_C01_049E. 

Race: Self-identification of a person with one or more social groups. Percent estimate of white, 

black. Variable names: DP05_0037PE, DP05_0038PE. 

Ethnicity: Hispanic origin or not. Hispanics may report as any race. Percent estimate of Latino 

population. Variable names: DP05_0071P. 
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Underlying cause of death: Four COVID-related underlying cause of death including Chronic 

lower respiratory diseases (ICD-10: J40-J47), diabetes mellitus (ICD-10: E10-E14), hypertensive 

diseases (ICD-10: I10-I15), and ischemic heart diseases (ICD-10: I20-I25) were extracted from 

the CDC Wonder database9 using the ICD-10 standard code. 

PM2.5: For the exposure estimates, PM2.5 cross-validated exposure estimates were produced by 

van Donekelaar et al10. 

Figure S2. Exploratory data analysis of MR in PM2.5 quantiles, connectivity index, black and 

latino population quantiles. 

 

 

 

Table S1. State Abbreviations List. 

State Abbreviation 

ALABAMA AL 

ALASKA AK 

ARIZONA AZ 

ARKANSAS AR 

CALIFORNIA CA 

COLORADO CO 

CONNECTICUT CT 

DELAWARE DE 

FLORIDA FL 
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GEORGIA GA 

HAWAII HI 

IDAHO ID 

ILLINOIS IL 

INDIANA IN 

IOWA IA 

KANSAS KS 

KENTUCKY KY 

LOUISIANA LA 

MAINE ME 

MARYLAND MD 

MASSACHUSETTS MA 

MICHIGAN MI 

MINNESOTA MN 

MISSISSIPPI MS 

MISSOURI MO 

MONTANA MT 

NEBRASKA NE 

NEVADA NV 

NEW HAMPSHIRE NH 

NEW JERSEY NJ 

NEW MEXICO NM 

NEW YORK NY 

NORTH 

CAROLINA NC 

NORTH DAKOTA ND 

OHIO OH 

OKLAHOMA OK 

OREGON OR 

PENNSYLVANIA PA 

RHODE ISLAND RI 

SOUTH 

CAROLINA SC 

SOUTH DAKOTA SD 

TENNESSEE TN 

TEXAS TX 

UTAH UT 

VERMONT VT 

VIRGINIA VA 

WASHINGTON WA 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. .https://doi.org/10.1101/2020.07.11.20151563doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20151563
http://creativecommons.org/licenses/by-nd/4.0/


 

 

WEST VIRGINIA WV 

WISCONSIN WI 

WYOMING WY 

 

 

 

APPENDIX B: Statistical Analysis 

In certainly contexts where data belongs to certain group or cluster (nested structure), multilevel 

level models (MLMs) are a recommended approach to assess the group effects19. For this case 

study in which each state context and policies can influence health outcomes, MLMs offer a 

great flexibility to understand COVID-related mortality by avoiding overall averaging and 

retaining variation across subsamples (counties) on different states modeled as random 

intercepts. Therefore, we used a Bayesian multilevel analysis to assess the risk of COVID-related 

death per county adjusted by the selected covariates. For the model selection, complementarily to 

the evidence synthesis, we evaluated each variable after adjusting by age. All variables who have 

an RHAT less than 1.05 and acceptable effective sample size were allowed to be included in the 

final adjusted model.  

𝐶𝑂𝑉𝐼𝐷19𝑑𝑒𝑎𝑡ℎ𝑠~𝑃𝑜(𝐸𝑖𝜃𝑖) 

𝑙𝑜𝑔(𝜃𝑖𝑗) = 𝛽𝑜 + 𝛽1𝑃𝑀2.5 + 𝛽2𝐴𝑔𝑒𝑈𝑛𝑑𝑒𝑟25 + 𝛽3𝐴𝑔𝑒25−34 + 𝛽4𝐴𝑔𝑒35−44 + 𝛽5𝐴𝑔𝑒35−44

+ 𝛽6𝐴𝑔𝑒45−59 + 𝛽7𝐴𝑔𝑒60−74 + 𝛽8𝐴𝑔𝑒75+ + 𝛽9𝐵𝑙𝑎𝑐𝑘𝑃𝐸 + 𝛽10𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑃𝐸

+ 𝛽11𝐶𝐿𝑅𝐷𝐶𝑅 + 𝛽12𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝐶𝑅 + 𝛽13𝐻𝑇𝐴𝐶𝑅 + 𝛽14𝐼𝐻𝐷𝐶𝑅

+ 𝛽15𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐶𝑜𝑢𝑛𝑡𝑦 + 𝜎𝑗 + 𝜀𝑖𝑗 

𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(0,10) 

𝜎𝑗~ℎ𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,2), 𝑗 = 1, … , 50 𝑠𝑡𝑎𝑡𝑒𝑠 

Table S2. Unadjusted county-level predictors of COVID19 deaths. 

County-level covariates 
µ 2.5%   97.5% 

Sociodemographic         

Age          

Under 25 2.26 (2.06 , 2.48) 

25-34 2.44 (2.22 , 2.68) 

35-44 2.46 (2.24 , 2.70) 

45-59 2.43 (2.22 , 2.67) 

60-74 2.00 (1.82 , 2.20) 

75+ 2.74 (2.49 , 3.00) 

Estimated % of population 

in poverty 
1.04 (1.04 , 1.05) 
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Estimated % of white 

population 
0.97 (0.97 , 0.97) 

Estimated % of black 

population 
1.03 (1.03 , 1.03) 

Estimated % of latino 

population 
1.02 (1.02 , 1.02) 

Crude Mortality Rates   

Chronic Lower 

Respiratory Disease  
0.98 (0.98 , 0.98) 

Diabetes Mellitus 1.00 (1.00 , 1.00) 

Hypertension 1.01 (1.01 , 1.01) 

Ischemic Heart Disease  1.00 (1.00 , 1.00) 

Environment         

Long-term exposure to 

PM2.5 
1.29 (1.28 , 1.31) 

Connectivity risk         

No airport/highway Ref Ref   Ref 

Crossed by a highway 
1.01 (0.96 , 1.06) 

Next to Airport 1.35 (1.29 , 1.42) 

Has an airport 1.57 (1.50 , 1.65) 

 

Convergence diagnostics 

 

Different converge diagnostics were used to warrant the reproducibility and the right results on 

all Markov chain Monte Carlo models.  

All included covariates had an R-hat < 1.01. If chains have not mixed well (ie, the between- and 

within-chain estimates do not agree), R-hat is larger than 1. 

The effective sample size (ESS) captures how many independent draws contain the same amount 

of information as the dependent sample obtained by the NUTS sampler. We recommend a 

minimum ESS greater than 100 times the number of chains (4). 
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Figure S3. MCMC sampling confirming the convergence properties of the model. 
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Figure S4. Marginal effects showing each significant variable’s effect when the others are set to 

a value of zero. 
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APPENDIX C: Disease mapping 

Disease mapping is the process of visually depicting geographically indexed data in a spatial 

referenced distribution for explanatory purposes. Small area disease models are commonly used 

to quantify risk factors using lattice data.  

The general model in Small area disease models is expressed as 

𝑌𝑖~𝑃𝑜(𝐸𝑖 × 𝜃𝑖), 𝑖 = 1, … , 𝑛 

log(𝜃𝑖) = 𝛼 + 𝜎𝑖 + 𝑣𝑖 

Where 𝛼 denotes the overall risk level, 𝜎𝑖 is the random effect that models the state-level 

dependence of counties’ relative risk, and 𝑣𝑖 is the uncorrelated variance. 

Table S3. Relative risk by state. 

 

State Region 
RR CI: [2.5%, 

97.5%] 

SD Midwest 0.42 (0.19 , 0.89) 

MO Midwest 0.48 (0.30 , 0.77) 

ND Midwest 0.68 (0.31 , 1.41) 

WI Midwest 0.68 (0.42 , 1.09) 

KS Midwest 0.70 (0.41 , 1.18) 

MN Midwest 0.88 (0.55 , 1.41) 

IL Midwest 0.99 (0.64 , 1.54) 

NE Midwest 1.26 (0.73 , 2.16) 

IA Midwest 1.29 (0.82 , 2.03) 

OH Midwest 1.39 (0.89 , 2.17) 

IN Midwest 2.56 (1.64 , 4.02) 

MI Midwest 2.93 (1.92 , 4.50) 

RI North-East 0.08 (0.02 , 0.32) 

ME North-East 1.19 (0.55 , 2.55) 

VT North-East 1.34 (0.59 , 2.97) 

NH North-East 1.44 (0.62 , 3.30) 

PA North-East 1.85 (1.18 , 2.93) 

NJ North-East 6.69 (3.71 , 12.16) 

CT North-East 8.16 (3.60 , 18.73) 

MA North-East 9.35 (4.76 , 18.54) 

TN South 0.39 (0.24 , 0.63) 

AR South 0.40 (0.24 , 0.67) 

WV South 0.55 (0.30 , 1.00) 

TX South 0.60 (0.40 , 0.90) 

SC South 0.63 (0.38 , 1.06) 
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NC South 0.68 (0.44 , 1.03) 

VA South 0.78 (0.52 , 1.16) 

AL South 0.83 (0.51 , 1.33) 

FL South 0.90 (0.58 , 1.42) 

KY South 0.91 (0.57 , 1.45) 

OK South 1.01 (0.62 , 1.66) 

GA South 1.32 (0.87 , 2.02) 

DC South 1.44 (0.32 , 6.70) 

MD South 1.54 (0.86 , 2.76) 

MS South 1.77 (1.12 , 2.82) 

DE South 2.58 (0.83 , 8.19) 

LA South 3.79 (2.43 , 5.97) 

HI West 0.14 (0.04 , 0.48) 

WY West 0.20 (0.05 , 0.61) 

AK West 0.29 (0.11 , 0.72) 

UT West 0.36 (0.15 , 0.81) 

CA West 0.42 (0.25 , 0.70) 

MT West 0.64 (0.30 , 1.35) 

OR West 0.79 (0.41 , 1.52) 

ID West 0.87 (0.45 , 1.68) 

NM West 1.20 (0.61 , 2.36) 

NV West 1.23 (0.52 , 2.84) 

WA West 1.65 (0.94 , 2.90) 

AZ West 2.14 (1.05 , 4.38) 

CO West 4.33 (2.55 , 7.36) 

 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. .https://doi.org/10.1101/2020.07.11.20151563doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20151563
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figure S5. U.S. 2000 to 2018 Long-Term Mean PM2.5 Concentrations by County, mean=7.98 

µg/m (range is 1.42-13.30).

 
 

 Figure S6. U.S. Connectivity index by county. 
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