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Abstract: Therapeutic options to treat neurogenic motil-
ity disorders of the gastrointestinal tract are usually lim-
ited to symptomatic treatment. The capacity of the enteric 
nervous system (ENS) to regenerate and the fact that pro-
genitor cells of the enteric nervous system reside in the 
postnatal and adult gut led to the idea to develop cell-
based strategies to treat ENS related disorders. This short 
review focuses on recent developments in cell-based ENS 
regeneration, discussing advantages and disadvantages 
of various cell sources, functional impact of transplanted 
cells and highlights the challenges of translation of small 
animal studies to human application.
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Introduction
The enteric nervous system (ENS) regulates various func-
tions of the gastrointestinal tract, such as motility, blood 
flow, secretion and fluid exchange, and modulates the 
immune system of the gut [1–3]. The ENS derives mainly 
from vagal neural crest cells that enter the foregut during 
development and migrate along the gut, in order to colo-
nize the whole GI tract, forming an interconnected network 
of neurons and glial cells [4–6]. During neural coloniza-
tion of the growing GI tract, processes such as prolifera-
tion, migration and differentiation of enteric neural crest 
cells take place in parallel, orchestrated by a complex 
program of genes [7, 8]. Dysregulation of these processes 
leads to either qualitative changes in ENS composition or 

to quantitative alteration of the number of ENS cells within 
the gut. One of the most prominent developmental disor-
ders of the ENS is Hirschsprung disease (HSCR). HSCR is 
defined by a complete loss of neural crest-derived neurons 
and glial cells in the distal part of the colon, which results 
in chronic constipation, ileus, enterocolitis and failure to 
thrive [9]. In addition to congenital disorders of the ENS, 
many acquired and degenerative changes of the ENS can 
impair bowel function in children and adults [10]. Thera-
peutic options are limited for both developmental and 
acquired ENS disorders. In HSCR, surgical resection of the 
affected gut segment and colo-anal anastomosis lead to 
cure in many patients with short-segment disease, but are 
is associated with numerous long-term complications in 
those with syndromic or long-segment disease [10, 11].

Since therapeutic options are limited and quality 
of life appears to be impaired in a relevant proportion 
of patients with neurogenic motility disorders of the gut, 
a regenerative therapeutic approach was proposed many 
years ago [12–14]. The fact that stem or progenitor cells of 
the ENS also reside in the postnatal and adult gut in both 
animal models and humans led to the idea to isolate stem 
or progenitor cells of the ENS, to expand them in vitro and 
to re-implant them into the affected gut, in order to reha-
bilitate gut function.

During the last years, much effort was put into defin-
ing the ENS stem cell niche in animals and humans, and 
isolation and expansion protocols for ENS stem or pro-
genitor cells were developed and transplantation of these 
cells in in vitro and in vivo models was performed, mainly 
demonstrating survival and anatomic and partially func-
tional integration of transplanted cells into the host gut 
[10]. However, many aspects of a cell-based approach 
remain to be elucidated yet [15]. This short review sum-
marizes recent progress in the field of ENS regeneration 
focusing on the cell source, in vitro expansion, functional 
impact of ENS transplantation and technical aspects of 
cell delivery. Since HSCR is well defined from a genetic 
and clinical point of view, and numerous small animal 
models for HSCR exist, most of the research was per-
formed focusing on regeneration the ENS of HSCR animal 
models in the past.
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Cell source

The optimal cell source for ENS cell transplantation can 
be defined as easily accessible; harvested cells should 
proliferate in vitro to an extent that is sufficient to colonize 
the defective gut segment. The cells should migrate into 
the correct position after transplantation and differenti-
ate into proper cell types in the recipient gut, generating 
an interconnected network of neurons and glial cells. No 
adverse effects, such as tumor formation or graft rejection, 
should be associated with cell transplantation.

Cells of various anatomic origin and developmental 
stages have been proposed to serve as cell source for ENS 
cell transplantation. While ENS progenitor cells were gen-
erated from numerous tissues in the past, not all fulfill the 
above-mentioned criteria, and some, like central nervous 
system (CNS) cells, are so difficult to access that they are 
a priori not suitable for human application [12–14].

There are mainly three sources of cells to generate 
ENS progenitors that represent the currently most promis-
ing candidates: patient-derived ENS progenitors isolated 

from the gut, embryonic pluripotent stem cells (ES), and 
induced pluripotent stem cells (iPS). The advantages and 
disadvantages of these cell sources are discussed below 
(Figure 1).

Patient-derived ENS progenitor cells from 
the gut

It is generally accepted that progenitor cells of the ENS 
persist also in the postnatal gut of animals and humans 
[10]. Many studies demonstrated successful isolation 
and in vitro propagation of ENS progenitors from rodents 
and humans of various ages [18–22]. The use of these 
patient-derived cells is associated with the advantage that 
autologous cell transplantation can be performed and 
no immunosuppression needs to be initiated after trans-
plantation in order to prevent host-versus-graft disease. 
In addition, the cells are easily accessible either by lapa-
roscopic procedures [23] or by endoscopic suction biop-
sies [24], although the amount of tissue that can be taken 
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Figure 1: Schematic view of the important steps of ENS progenitor generation and transplantation.
(A) Generation of ENS progenitor cells from patient-derived induced pluripotent stem (iPS) cells. Somatic cell can be reprogrammed to gen-
erate iPS cells, which can be differentiated into ENS progenitor cells [16]. Since the cells are patient-derived, disease-associated gene muta-
tion might limit their proliferative, migratory and differentiation behavior. Thus, repair of the mutations might be necessary to rescue these 
defects, as described [16]. (B) Generation of ENS progenitor cells from pluripotent embryonic stem cells (ES cells) has been described by 
Fattahi et al. [17]. They were even able to demonstrate rescue of a HSCR mouse model by transplantation of generated ENS progenitors into 
the cecum of neonatal mice. (C) Generation of ENS progenitor cells derived from the patient’s gut. Isolation of the proper cell types relies on 
progenitor cell-specific cell surface markers. In contrast to ES or iPS cells, the self-renewal capacity of these cells is limited. Thus, optimiz-
ing the in vitro expansion condition is an important step in generating a sufficient number of cells that allows colonization of a large area.
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is limited. Progenitor cells isolated from postnatal gut 
were shown to differentiate into functional active enteric 
neurons and into glial cells when transplanted into the 
gut of rodents [19, 20, 25]. However, postnatally gener-
ated progenitor cells from the gut have a reduced capacity 
for self-renewal, and even though they can be passaged 
several times, they have been shown to lose their progeni-
tor cell state over time, which represents a major problem 
concerning cell expansion in vitro [26]. Another fact that 
may also contribute to reduced proliferative potential are 
disease-related gene mutations.

To overcome the problem of the low proliferation 
rate and reduced ENS progenitor cell expansion in vitro, 
several strategies to optimize ENS progenitor cell genera-
tion from the postnatal gut have been evaluated.

The basic requirement for an optimal yield of ENS 
progenitor cells is to isolate the most appropriate cell 
types from the gut. Although in small animal studies, 
genetically labeled ENS progenitor cells can be used, this 
approach is not suitable for human application. Cell iso-
lation from human tissue either relies on sorting of cells 
for distinct cell surface markers or on selective culture 
conditions that permit proliferation of mainly neural 
progenitor cells. Although such permissive culture condi-
tions lead to an enrichment of neural progenitors, which 
often form so called neurosphere like bodies, as their 
counterparts from the CNS, many other cell types such as 
fibroblasts or smooth muscle cells can be found in these 
cultures [19, 27]. Attempting to enrich primarily isolated 
cells for ENS progenitors in humans or mice, numer-
ous cell surface antigens have been proposed to serve 
as markers for selective neural progenitor cells isolation 
from the gut such as HNK-1 [28], p75 [29, 30], integrin α-4 
[31] and CD49 [32]. Although a concentration of prolifer-
ating neural cells in vitro can be achieved by cell sorting, 
the combination of markers that will isolate the highest 
and purest amount of enteric neural progenitors is still 
unknown. We recently found Fizzled-4, a Wnt receptor, 
to define a subpopulation of p75-sorted cells [33]. Pre-
liminary data demonstrate that only p75+/Fzd4+, but not 
p75+/Fzd4− cells proliferate in vitro. Thus, Fzd4 defines a 
subpopulation of human p75+ cells that might represent 
a purer population of ENS progenitor cells. Whether such 
attempts to enrich ENS progenitors will eventually lead to 
a significant improvement of in vitro cell expansion needs 
to be further investigated.

Optimizing cell culture conditions is another way to 
increase cell numbers prior to transplantation. ENS pro-
genitors are often grown in culture medium supplemented 
with growth factors like fibroblast growth factor and epi-
dermal growth factor. In addition, other factors such as 

glial cell-derived neurotrophic factor [34, 35], granulo-
cyte colony-stimulating factor [36], bacterial lipopoly-
saccharides [37] or endothelin 3 [35] have been shown to 
positively influence proliferation or stemness of cultured 
cells. In recent studies the importance of the Wnt signal-
ing pathway in proliferating ENS progenitors has been 
described. Neckel et al. [38] performed microarray analy-
sis and found Wnt signaling to be turned off when NBLs 
stop to proliferate and start to differentiate. In another 
study, a positive impact of Wnt agonists on neurosphere 
growth was demonstrated [39]. This complies with the 
observation of Rollo et al. [30], who found ENS progeni-
tors isolated from HSCR patients to be restricted in their 
proliferative potential, which could be partially rescued 
by chemical Wnt stimulation.

Although numerous studies have improved cell- 
isolation techniques and cell culture conditions, and 
novel genetic techniques are available to manipulate 
the isolated cells, it remains unclear if the postnatal 
gut will be the optimal cell source for ENS regeneration, 
in particular concerning generation of a sufficient cell 
number.

Embryonic pluripotent stem cells

The most striking characteristics of ES cells are their 
capacity for near unlimited self-renewal and that they 
can give rise to nearly any cell type, given that an appro-
priate differentiation protocol is established [17]. Thus, ES 
cells are more likely to generate a relevant cell number, 
compared with postnatal gut-derived cells, as discussed 
above. However, there are also some disadvantages that 
are associated with the use of ES cells that need to be 
addressed before application in human disease. Impor-
tantly, the use of embryonic tissue for human therapeu-
tic applications remains ethically problematic and it is 
unknown if ES cells will be available for this purpose 
in the future [40]. In addition, ES cells are usually not 
patient-derived; thus, host-versus-graft reaction will 
occur or immunosuppressant therapy will be necessary. 
Moreover, tumor formation has been an issue in ES cell 
transplantation. Although differentiated ES-derived cells 
are not supposed to result in tumor formation, acciden-
tal co-transplantation of not fully or undifferentiated ES 
cells are suspected to produce teratoma [41]. Therefore, 
reliable cell selection strategies need to be established 
to prevent transplantation of immature cells. Besides 
host-versus-graft reactions and ethical issues, the safety 
of ES cell-derived ENS progenitor cells need to be further 
examined.
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Induced pluripotent stem cells

Reprogramming of adult somatic cells allows turning them 
into iPS with also near-limitless self-renewal capacity and 
pluripotency. However, as in ES cells, the safety aspects 
need to be taken into consideration before application in 
human therapy to avoid tumor formation within the recip-
ient. In contrast to ES cells, iPS can be generated from 
patient-derived tissue; thus, autologous transplantation 
is possible, making immunosuppressive therapy unneces-
sary. However, as for gut-derived progenitor cells, autolo-
gous iPS might also be affected by disease-related gene 
mutation as demonstrated recently. Lai et  al. [16] gener-
ated iPS from patients with HSCR and differentiated them 
into ENS progenitor cells. Compared with iPS-derived ENS 
progenitors generated from non-HSCR patients, HSCR 
patient-derived progenitor cells showed significantly 
impaired differentiation and migration characteristics, 
which interestingly could be reversed by repairing under-
lying gene mutations.

Integration of ENS progenitor cells 
into recipient gut
ENS cell transplantation experiments were performed 
mainly in wild-type mice or rats with an intact ENS [27, 
42, 43]. These studies consistently demonstrated survival 
and migration of transplanted cells as well as their dif-
ferentiation into various neuron subtypes and glial cells 
and formation of interconnected ganglion-like struc-
tures within the myenteric plexus using both embryonic 
and postnatal murine ENS progenitor cells. Moreover, 
specific electric activity could be observed in neurons 
derived from transplanted ENS progenitors, which 
respond to electrical stimulation, fire action potentials 
and receive input from other neurons via synaptic con-
nections [42]. In addition, introduction of optogenetic 
techniques allowed Stamp et  al. [44] to further dissect 
functional integration of transplanted cells. They were 
able to demonstrate that light-dependent stimulation 
of transplanted cells lead to excitatory and inhibitory 
neuronal responses and were also able to identify graft 
derived interneurons within the recipient gut in vivo. As 
mentioned above, these  experiments were performed in 
animals with an intact ENS, which might serve as a scaf-
fold for transplanted cells. However, in the aganglionic 
gut of HSCR patients for example, such a scaffold will 
not be present. Thus, it is unclear, whether the microen-
vironment of the aganglionic gut will support functional 

integration of transplanted ENS progenitors. Preliminary 
studies have shown survival, migration and differentia-
tion of murine ENS progenitor cells when transplanted 
into in vivo HSCR mouse models. Whether this is as effec-
tive as in wild-type animals remains to be demonstrated 
[45].

Transplantation of human ENS progenitor cells 
was first performed in vitro organ/tissue culture, since 
immunological issues do not allow transplantation into 
immune competent mice. Lindley et  al. [20] implanted 
neurosphere-like bodies (NLBs) generated from neonatal 
human colon into aganglionic embryonic mouse gut. As 
Metzger et al. [19], they demonstrated neuronal differen-
tiation of implanted cells. In vivo transplantation experi-
ments were performed with immunocompromised mouse 
models with and without wild-type ENS. Hetz et  al. [25] 
implanted ENS progenitor cells that were generated from 
the postnatal human gut into immunocompromised mice, 
in which parts of the ENS were destroyed chemically 
before implantation. Although neuronal and glial differ-
entiation could be demonstrated, the functional impact 
on gut motility remained unclear. Cheng et al. [46] even 
performed implantation of human ENS progenitor cells 
into the aganglionic segment of a HSCR mouse model. 
They were able to demonstrate survival, migration and 
differentiation of implanted cells into neurons, but the 
functional impact of implanted cells could not yet be 
demonstrated.

In intriguing recent studies, human ENS progenitor 
cells of embryonic origin were implanted into the mouse 
colon of genetically generated models of ENS motility dis-
orders. Fattahi et al. [17] transplanted ES cell-derived ENS 
progenitors into the cecum of a HSCR mouse model and 
were able to show complete colonization of the recipi-
ent colon with the transplanted cells. Mouse models for 
HSCR usually die within 3–4  weeks after birth. Excit-
ingly, the authors demonstrated that cell transplantation 
was able to prevent mortality and restore colonic motil-
ity. Although this is the first study in which HSCR mice 
could be rescued by cell transplantation, cellular and 
subcellular mechanisms achieving these effects were not 
demonstrated.

McCann et al. [47] isolated ENS progenitor cells from 
the fetal human gut and transplanted them into wild-
type and nitric oxide synthase (NOS)-deficient mice. They 
found transplanted cells in about 50% of the recipient 
animals, which was attributed to the variability of donor 
tissue. Graft-derived cells differentiated into functional 
active neurons that responded to electrical stimulation, 
and even more excitingly, they were able to restore NOS-
dependent function in NOS-deficient mice.
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Cell delivery techniques
Reasonable progress has been made concerning gen-
eration of ENS progenitor cells and demonstrating their 
potential to restore gastrointestinal motility in small 
animals, but successful cell transplantation in humans 
will depend not only on the biological and genetic charac-
teristics of the donor and the recipient, but also on practi-
cal aspects, such as suitable cell delivery techniques. In 
mice, cells are usually injected into the gut wall as sus-
pension [43] or single NLB are introduced into subserosal 
pockets [42]. Although these implantation techniques 
have been shown to result in relevant colonization of the 
adjacent tissue, it is not supposed that these techniques 
of single-site implantation will result in the colonization 
of a relevant gut segment in humans, which will be dis-
proportionately larger than in small animals. New tech-
niques need to be developed to efficiently transplant the 
cells in a rather atraumatic fashion. Cheng et al. [48], for 
example, demonstrated injection of ENS progenitors via 
the endoscopic route into the colon of a HSCR mouse 
model. They were able to find the cells in 9/12 injected 
mice, but implanted cells were mainly located along the 
subserosal plane and did not migrate into the myenteric 
plexus region. This is in keeping with previous studies in 
which ENS progenitor cells were implanted into the myen-
teric plexus. In these experiments, only extensive longi-
tudinal and circumferential migration of transplanted 
cells within the gut wall was observed, but no or only 
rudimentary centripetal or centrifugal migration of the 
transplanted cells [42, 43]. Thus, layer-specific delivery of 
cells appears to be important and needs to be developed 
to translate the murine experiments into human applica-
tion. In addition, only few studies were performed exam-
ining the effect of co-transplantation of other cell types 
or growth, differentiation or chemotactic factors on graft 
survival, in vivo proliferation, differentiation and network 
formation in vivo. First studies, for example, indicate that 
adding serotonin agonists during transplantation results 
in a higher density of neurons in vitro and in vivo in the 
mouse or rat gut [49, 50]. Thus, new techniques need to 
be developed to enable large-area transplantation of ENS 
progenitors in the future.

Conclusion
Therapeutic options are limited for neurogenic disorders 
of the gut. Cell-based treatment strategies are promising, 
taking recent developments into account. However, many 
aspects need to be addressed before human application 

is possible, such as detailed examination of the mecha-
nisms leading to functional regeneration, further investi-
gation of safety aspects and surgical delivery techniques 
that allow colonization of large gut segments have to be 
developed. The research on ENS stem or progenitor cell 
therapy mainly focuses on motility; however, restoration 
of motility is only one aspect, and the other functions of 
the ENS should not be neglected when investigating the 
effects of ENS transplantation.
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