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ABSTRACT

Global pandemics such as COVID-19 have resulted in significant global social and economic disruption. Although
polymerase chain reaction (PCR) is recommended as the standard test for identifying the SARS-CoV-2, conven-
tional assays are time-consuming. In parallel, although artificial intelligence (AI) has been employed to contain
the disease, the implementation of Al in PCR analytics, which may enhance the cognition of diagnostics, is quite
rare. The information that the amplification curve reveals can reflect the dynamics of reactions. Here, we present
a novel Al-aided on-chip approach by integrating deep learning with microfluidic paper-based analytical devices
(LPADs) to detect synthetic RNA templates of the SARS-CoV-2 ORFlab gene. The pPADs feature a multilayer
structure by which the devices are compatible with conventional PCR instruments. During analysis, real-time
PCR data were synchronously fed to three unsupervised learning models with deep neural networks, including
RNN, LSTM, and GRU. Of these, the GRU is found to be most effective and accurate. Based on the experimentally
obtained datasets, qualitative forecasting can be made as early as 13 cycles, which significantly enhances the
efficiency of the PCR tests by 67.5% (~40 min). Also, an accurate prediction of the end-point value of PCR curves
can be obtained by GRU around 20 cycles. To further improve PCR testing efficiency, we also propose Al-aided
dynamic evaluation criteria for determining critical cycle numbers, which enables real-time quantitative analysis
of PCR tests. The presented approach is the first to integrate Al for on-chip PCR data analysis. It is capable of
forecasting the final output and the trend of qPCR in addition to the conventional end-point Cq calculation. It is
also capable of fully exploring the dynamics and intrinsic features of each reaction. This work leverages method-
ologies from diverse disciplines to provide perspectives and insights beyond the scope of a single scientific field.
It is universally applicable and can be extended to multiple areas of fundamental research.

1. Introduction

to effective public health measures is hard across the world [5]. The
ongoing outbreak of COVID-19 has unmasked the underfunded nature

Throughout history, infectious disease outbreaks have ravaged hu-
manity and destroyed civilizations. From the year 1996 to 2021, the
world has witnessed about 2988 disease outbreaks (Fig. 1a) including
SARS, Ebola, MERS, and COVID-19 [1]. Since 1970, more than 1,500
new pathogens have been discovered [2] and 51 to 67% of the world’s
population lacked essential health services according to the United Na-
tions in 2019 [3]. Almost 100 million people are still in extreme poverty
and surviving on just $1.90 or less per day [4]. On the other hand, even
if medical countermeasures are available, infectious diseases will remain
a great threat because of their rapid infectivity. Also, equitable access
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and inequality of health care. COVID-19 has four interconnected traits:
high reproduction number, a large number of asymptomatic or mild
symptom cases, relatively long incubation period, and survival of the
virus in some environments [6]. Reliable response to a new pandemic is
mainly based on surveillance and detection, clinical treatment, preven-
tion, and maintaining essential services [7]. Since developing new safe
and effective medications often take a long time and viruses may mutate,
containment and mitigation measures are the most key interventions to
curb infections. Of these, containment in the early stages of the outbreak
is critical for stopping transmission. Surveillance of at-risk people and
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identification of early case clusters based on polymerase chain reaction
(PCR) have played critically important roles in sustaining the contain-
ment. PCR-based screening and mass (community or city-wide) testing
have been routinely performed during the outbreak in mainland China
[8]. These risk-based, large-scale screenings have successfully facilitated
case finding and efficient restraining of epidemics and provided infor-
mation for the government to safely reopen societies.

Although PCR is recommended by the WHO as the gold standard test
for SARS-CoV-2, it is inherently laborious and time-consuming. Also, the
turnaround time of a conventional PCR typically requires 4 to 6 h [9].
The commercially available plate-based PCR assays generally need to
run 40 or more amplification cycles (~1 h) to complete an analysis.
While it should be noticed that the effectiveness of mass screening de-
pends heavily on testing frequency and the speed of analysis. Strategies
for more ‘smart surveillance’ of infectious diseases before their under-
lying large-scale emergence or re-emergence by the mutated virus are
still needed [10]. In this regard, new technologies can be implemented
to improve the mechanism and performance of PCR analytics, such as
Artificial Intelligence (AI) and microfluidic paper-based analytical de-
vices (WPADs).

Al especially machine learning, has been developed with a broad
range of applications for COVID-19 control and prevention [11,12].
For instance, enabled by large labeled datasets and GPUs, deep learn-
ing has shown excellent performance in machine vision tasks including
image classification and object detection such as the analysis of chest
radiographs (CXR) and chest computed tomography (CT) images [13—
15]. Also, merely relying on initial clinical symptoms, Al helped predict
COVID-19 test results [16]. Moreover, the growth and trend of the pan-
demic in countries worldwide have been forecasted [17]. Nevertheless,
PCR analysis has been surprisingly neglected from machine intelligence.
The dynamics of PCR are encoded in the time-oriented or chronological
sequence of normalized reporter value (Rn) on a variable of fluores-
cent intensity [18]. However, the time series information is typically
neglected by straightforward classifying the amplification curves into
positive or negative readouts. In principle, machine intelligence can dis-
regard the limitation of human cognition and is, therefore, a significant
improvement in PCR data analytics. Recently, Moniri et. al. proposed
a new amplification curve analysis method through a large volume of
raw data by digital PCR and supervised machine learning [19]. To the
best of our knowledge, Al-based dynamic analysis of PCR curves, which
means making regression or prediction synchronously along with reac-
tion, is barely studied. This capability will hold great potential to sup-
port current PCR-based studies in both clinical settings and fundamental
research.

Microfluidics enables precise fluidic control and manipulation at a
geometrically small scale (typically sub-millimeter) [20,21]. Compared
with conventional microfluidics, microfluidic paper-based analytical de-
vices (UPADs) have many promising merits: simple fabrication proto-
col and much less cost; relatively large surface-to-volume ratio due to
porous nature of paper; fluid transport by capillary action without the
need for external power sources [22,23]. Also, uPADs are portable and
easy to use. The listed merits make pPADs particularly suitable to use
in developing countries and areas short of medical resources [24,25]. In
the past years, paper microfluidics have successfully performed sensitive
assays that rival instrument-based nucleic acid amplification tests and
provided precision diagnostics for pathogens with a fast turnaround time
[26,27]. For instance, many pPADs have been developed and focused on
LAMP tests of nucleic acids in infectious diseases [28,29]. Similarly, this
technology could be leveraged for detecting SARS-CoV-2 nucleic acids
[30,31].

In this work, we present a novel Al-aided on-chip approach by inte-
grating deep learning algorithms with pPADs to detect RNA templates
of the SARS-CoV-2 ORF1ab gene. The pPADs employ a multilayer struc-
ture and evaporation-preventive packaging technology, by which the
device can be directly embedded into most qPCR instruments for data
acquisition. Real-time PCR data are synchronously delivered to three
unsupervised learning models with deep neural networks, including the
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stacked simple recurrent neural networks (RNN), the long short-term
memory (LSTM) networks, and the gated recurrent units (GRU) layers.
Of these, GRU is found to be the most effective and accurate for positive
sample detection. Qualitative forecasting becomes available as early as
13 cycles or about 10 min. Accurate end-point value prediction of PCR
curves can be obtained by GRU around 20 cycles with a mean absolute
percentage error (MAPE) of 2.1%. Model parameter assessment study
indicated that prediction accuracy improves along with the number of
datasets. For negative samples, LSTM and GRU provide accurate quali-
tative predictions before 25 cycles. In addition, an empirical calculation
method is proposed to determine the quantification cycle value (criti-
cal cycle) in real-time, which enables us to obtain the dynamics of PCR
reaction much more rapidly without sacrificing testing accuracy. Var-
ious methodologies from precision manufacturing, instrument technol-
ogy, molecular detection, and bioinformatics have been combined in
this work to provide perspectives and insights beyond the scope of a
single discipline. The presented approach is the first to integrated Al for
on-chip real-time PCR data analysis. Furthermore, it demonstrates ex-
cellent compatibility between Al and the real-time characterization of
biochemical reactions. Therefore, it is universally applicable and can be
extended to various areas.

2. Principle, device, and experiments
2.1. Principle

The methodological framework of the approach is illustrated in
Fig. 1b. Step 1 to 5 describes the workflow: sample collection, RT-qPCR
in uPADs, model training and validation, early prediction on time se-
ries, and final output. Here, we selected synthetic RdRp gene (RNA-
dependent RNA polymerase gene) in the open reading frame ORFlab
region of SARS-CoV-2 as a target (Fig. S1) and used a set of primer and
probe to detect its gene sequence. This operation was compatible with
the recently developed extraction-free SARS-CoV-2 RT-PCR. Synthetic
nucleic acid, negative control (NC), substrate mix, and enzyme mix were
introduced sequentially onto nPADs for on-chip tests. The pnPADs were
installed in a commercial qPCR instrument, which was then used for re-
liable data acquisition. The excellent compatibility between our device
and the commercial instrument also indicated the wide applicability of
the device and method. Unlike conventional RT-qPCR which provides
one-off results including positive/negative readout, Cq (quantification
cycle) at the end of a whole test, the Al-on-chip approach allowed real-
time analysis during the amplification cycles. Values of fluorescent in-
tensity during qPCR were recorded and real-time fed into the networks
for model train and test followed by prediction.

Classic machine learning employs algorithms such as the k-nearest
neighbor, support vector machine, and decision tree for feature learning,
model construction, and model training. Although these classical models
have been widely used in performing multiple tasks including classifica-
tion and pattern recognition, they often require structured data sets and
are dependent on human intervention to learn. For instance, the infor-
mation presented in PCR curves, which includes slope, mean, variance,
standard error, minimum and maximum values, as well as other known
features, can be intuitively gathered and processed by a human. Despite
being theoretically possible, the preprogrammed feature extraction and
filtering process are time-consuming and will be inconsistent by subjec-
tive experience. Additionally, the effect of these correlation mechanisms
on the final results may not be readily coded in advance.

Deep learning allows autonomous data processing towards sophis-
ticated and nonlinear feature abstraction through a cascade of layers
of neural networks, instead of inputting the optimum feature represen-
tation by expert knowledge [32]. Here, we utilized RNN, the algorithm
employed by Google’s voice search and Apple’s Siri, for qPCR sequential
data analysis. In parallel, the most well-known subsets of RNN, LSTM,
and GRU have been used for improving model performance. Using these
deep neural networks, features of PCR curves can be automatically ex-
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Fig. 1. Statistics of global infectious diseases and schematic of the proposed method. (a) Disease outbreaks recorded by WHO. (b) Schematic of the proposed

approach.

tracted followed by real-time model training without being explicitly
programmed. Essential fundamentals of RNN, LSTM, and GRU can be
found in literature [33,34]. In brief, all three networks take the present
and the past as input sources for determining the output or response
to new data. The decision made by these models at time step t-1 in-
fluences the decision at time step t. Different from classic (or "vanilla")
RNN, LSTM is composed of a cell containing an input gate, an output
gate and a forget gate. By adding the gating mechanism, information can
be stored in, written to, or read from a cell which is helpful to partially
avoid the vanishing gradient problem. Similarly, GRU keeps the mecha-
nism by deploying reset gate and update gate but excluding output gate.
Performances of the three models on predictive analysis of QPCR have
been studied in later sections.

2.2. Device design and fabrication

The architecture of a pPAD contains seven layers (Fig. 2a). Glass
slide containing 97% silica was attached by graphite thermal conduc-
tive adhesive at the bottom and used as a solid substrate (not shown
in the schematic and image). Since the thickness of a paper cannot
be neglected, three non-transparent layers of polyvinyl chloride (PVC)
were coated together on the substrate to create dumbbell-shaped hollow
wells, which were used for fixing paper fluidic layers. Then, the paper
layers were inserted into the wells. Double-sided adhesive polymethyl
methacrylate (PMMA) was used as a connecting layer. A thin film of
PVC with thermosensitive gel (ethylene-vinyl acetate copolymer, EVA)
was laminated on top of the paper. The PMMA layer strengthened the
binding of upper with lower PVC films. Finally, another black-colored
PVC layer was placed on top of the assembled device for reducing back-
ground noise from ambient lighting. For proof-of-concept study, the cur-
rent chip allows for parallelized testing of up to 4 samples and can be
further increased as needed. Circle-shaped paper layers in the periph-
eral region were designed as reagent inlets. Circles distributed in cen-
tral (fully covered by lamination film) were designated as reaction units.
The position and size (3.5 mm in diameter) of the reaction units were
rigidly designed so that the center of the units aligns with the light fo-

478

cus and the heat sink of the qQPCR instrument. The overall dimension of
the portable device is 20 mm x 20 mm X 1.6 mm in length, width, and
height, respectively. Additionally, the total cost of an assembled device
is limited to below 1.6 RMB. The layout design of each layer was com-
pleted in the vector graphics software Adobe Illustrator. More details
can be found in Fig. S2.

Fabrication of 4PADs employed laser cutting technology. The dis-
tance between lens and workpiece of the machine (JK-4060, Jingke
Company) was 60.0 mm. The power used for cutting paper, PMMA,
and PVC were 14.5, 15.0, and 15.0 W, respectively. The line speed
of the cutter was 12.0 mm/s. Packaging of the chip was completed by
combining both mechanical force and heating lamination. The pressure-
sensitive adhesive film was placed in between the device layers except
for both PVC/EVA-paper layers, and mechanical forces were applied to
strengthen the bonding. Through holes were drilled on the PVC/EVA
film in advance. Then, the patterned film was used for single-side paper
lamination (YE381, Soonye Tech. Co Ltd) at a temperature of 130 °C.
The lamination effectively eliminated chip reagents’ evaporation dur-
ing the thermal cycling of PCR. A scanning electron microscope (by FEI
Nova NanoSEM 230, Thermo Fisher) was used for morphology analysis
of fabricated devices. The total expense of a uPAD is around 0.24 USD
(Table S1), thus making the chip economically applicable in underde-
veloped areas.

2.3. Materials and procedure

Surface RNase Erasol was purchased from Phygene® Biotechnology
Co, Ltd (Fuzhou, Fujian, China). Whatman® Grade 5 filter papers were
purchased from GE Healthcare Life Sciences (Pittsburgh, PA., USA). PVC
pressure adhesive films were obtained from HUACHEN Paper (Jinhua,
Zhejiang, China). Laminating films (PET with EVA) with a thickness
of 0.03 mm were obtained from ZhongWei Technologies (Fuzhou, Fu-
jian, China). Double adhesive PET films were purchased from BOSSRON
(Guangzhou, Guangdong, China). EVA hot melt glue stick was obtained
from ZHONGHA (Jinhua, Zhejiang, China). COVID-19 Nucleic Acid Di-



H. Sun, L. Xiong, Y. Huang et al.

a

PVC tape

Lamlnatlon

Paper
PMMA

Reaction

PVC tape unit

Si0,

Fundamental Research 2 (2022) 476486

F e
o
I Z
60°C
| Ze0
| U g | so°C
e On-chip| &
- £u0 -
SoNEdy ve W o
| = k2 25°C
. ! 20 1x1 eyele x1 cycl 1 cycl
Ty it ycle x1 cycle x40 cycles x1 cycle
Tn-tube , [30min 6005 15@®)s 35 20)s 10s

Fig. 2. Chip design, fabrication, and experimental set-up. (a) Design of the paper chip. (b) Packaged chip prototypes. (c) Chip in a 4-channel multiplex gPCR
(quantitative polymerase chain reaction) machine. (d) Image of the machine. (e) The schematic of fluorescence detection. (f) Program operation panel (time duration

in brackets is set for on-chip tests).

agnostic Kit (PCR-Fluorescence Probing, NIRC20203400064) was ob-
tained from Sansure Biotech Inc. (Changsha, Hunan, China).

The COVID-19 testing kit consists of four reagents: Substrate Mix,
Enzyme Mix, synthetic RNA templates, and NC. Main ingredients of Sub-
strate Mix contain premiers (4.62%), probes (1.15%), dNTPs (3.85%),
MgCl, (0.77%), RNasin (0.48%) and PCR buffer (89.13%). Enzyme Mix
contains both RT enzyme (62.5%) and Taq enzyme (37.5%). The Posi-
tive Control is provided within vitro transcriptional RNA which contains
target genes (ORFlab, N gene) and internal standard gene fragments
(RNase P), whose fluorescein of hydrolysis probes is FAM, ROX, and
HEX, respectively. Negative Control contains saline only. 83 samples of
synthetic gene templates of SARS-CoV-2 were used following the proto-
col recommended by the manufacturer.

The experimental procedure started with placing the diagnostic kit
reagents at room temperature to allow them to equilibrate, followed by
a vortex step at a speed of 3000 rpm for each reagent. Then, substrate
mix (26 uL) and enzyme mix (4 uL) were pipetted into tubes for pre-
mixing by centrifuging at a speed of 2000 rpm for 15 s (MC-12plus,
JOAN LAB Equipment Co., Ltd). Next, the sample containing synthetic
RNA templates (10 uL) and NC were separately introduced to the tubes
containing 30 uL of PCR master mix. 1.5 uL of each mixed reagent was
introduced to the inlet of the 4PAD. To eliminate evaporation of on-chip
reagents, we sealed the inlets using hot melt glue. Then, the chip was
transferred to a qPCR instrument (Q2000B, LongGene Scientific Instru-
ments Co., Ltd.). Different from the in-tube tests, heating time for de-
naturation (at 95 °C), annealing, and elongation (at 60 °C) were 8 and
20 s for the on-chip test, comparing with 15 and 35 s for the in-tube test.
This meant the total run time for a conventional 40-cycle conventional
qPCR test was reduced by more than 880 s using the on-chip method.

3. Results and discussion
3.1. Data acquisition and evaluation
The on-chip dataset contains 83 data plots (during a period of 16

April 2021 to 5% June 2021) of synthetic gene templates of SARS-CoV-
2 using the protocol recommended by the manufacturer (Fig. 3a). For
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real-time data acquisition, the on-chip amplification data were auto-
matically written into a .txt file which was then read and processed by
the Al program using the same computer. LongGene Scientific Instru-
ments, the manufacturer of the PCR instrument provided the techni-
cal support for the real-time data transmission. Datasets of qQPCR in a
time-series format from the Center for Experimental Research in Clini-
cal Medicine (CERCM) of Fujian Provincial Hospital (during a period of
4th August 2020 to 3rd November 2020) and on-chip tests were also as-
sessed. The in-tube dataset (Fig. 3b) contains 11388 nucleic acid ampli-
fication curves. Cq values of these plots were mainly distributed within
a range of 20.0 to 37.0 (Fig. 3c).

On the basis that a value from data X at a given time is related
to the previous values, the series of values can be described as X =
{x}, x,,..x,}. Herein, (t) is the most recent value. This deep learning
model aims to predict (t+N) from historical values containing sequence
data features, where N is named as prediction interval (PI). PI is a range
of values for future prediction, and it is likely to be far more useful in
decision-making than an individual number. Using the two datasets, for
preliminary analysis, we calculated either the dynamic slope or the first-
order difference (FOD) of the Rn value at each cycle point: Ax, = X 1)-
X - Herein, t and x are cycle numbers and Rn values. Mean values of
FOD at each cycle of 83 (or 11388) curves were plotted as shown in
the inset of Fig. 3a (or Fig. 3b). Both of the FOD curves are overall bell-
shaped, which coincides with the sigmoid curves of the original ampli-
fication data. For in-tube tests, the FOD curve is sharper and the values
increase rapidly after 22 cycles and reach the peak value of 0.125 at the
29t cycle. While, for on-chip tests, the FOD curve starts to climb as early
as the 3rd cycle and maximizes with a value of 0.042 at the 23" cycle.
We attribute the early rise of FOD values to the paper material. The fi-
brous nature of the paper material provides a high surface-to-volume
ratio (S/V), which in turn enhances the detecting performance. Specif-
ically, paper porous microstructures create abundant reaction sites and
opportunities (Fig. 3d, e), and therefore significantly improves reaction
speed. Also, compared with the stereo in-tube reaction, fluid transport
in the in-plane dimension of paper chips dominates so that more fluo-
rescent reporters can be delivered onto the top surface, directly below
the light source, which improves detecting sensitivity (smaller limit of
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Fig. 3. Data evaluation and micromorphology analysis of cellulose paper. (a) A group of qPCR curves obtained by on-chip tests. (b) 11388 amplification curves
obtained from the clinical lab of Fujian Provincial Hospital. Insets of (a) and (b) describe the first-order difference value of the curves. (c¢) Cq distribution of the
curves. (d) Scanning electron microscope (SEM) image of paper material. (e) SEM image of the cross-section of a laminated paper chip.

detection). Finally, it has been proven that a higher S/V may induce
a wider linear range for fluorescein on microscale. The fluorescence
technique can further improve detection performance over traditional
colorimetric detection. Notably, the background fluorescence of the pa-
per material may cause complications during PCR tests. However, for
this study, the merits of the paper material outweigh the background
issue.

The symmetrical range of the FOD curve for the in-tube tests is de-
termined to be 18 cycles with a respective value increased from 0.008
at the 23 cycle to the maximum and then returned to 0.008 at the 40t
cycle. The corresponding range for on-chip tests is found to be 29 cycles,
starting with a value of 0.018 at the 12t cycle and returning to a value
of 0.019 at the 40t cycle. The rise of the FOD curve for the in-tube test
happened in a much later time than the on-chip test. Therefore, effective
forecasting of on-chip tests has more practical merits in shortening the
turnaround time of PCR assay. Based on the premises, the on-chip tests
were confirmed to be adopted for predictive analytics.

3.2. Deep learning pipeline

Python environmental (version: 3.8.5) and TensorFlow (version:
2.3.0) were employed to create deep learning models. Deep neural net-
works are usually hindered from time series forecasting since the data
are typically nonlinear and highly dynamic [35]. Here, we constructed
a deep learning pipeline to automate the workflow. The procedure of
the pipeline includes the processing of data augmentation and normal-
ization, dataset splitting followed by model training, testing, and time
series prediction.

Before feeding the data into the deep learning models, data aug-
mentation was firstly performed (Fig. 4a). This pre-processing step has
shown efficiency in improving model performances in general and is
popular in computer vision study, but not for time-series data process-
ing. In this work, we employed interpolation, which had been proven
to be effective for improving the performance of deep learning models
[36] to perform time-series data augmentation. Quadratic Bézier curve
fitting was selected as the interpolation method after comparing with
linear and cubic interpolation methods. Using the identical dataset, the
quadratic interpolation was the most robust, efficient, and simple, and

thus was adopted in this work. A set of data points was interpolated
between adjacent cycle numbers following the equation below:

P(1) = —(z— 1D?P + = ( 22 42t 4+ DPy + %t P,0<t<1

In addition, data normalization, which affects the accuracy and gen-
eralization of time series forecasting, is a necessary and important pre-
processing technique for deep learning [37]. We scaled the data to
a range of [0, 1] using the Min-Max normalization method (Fig. 4b)
expressed as: X=(X-Xp;,) / (Xpax-Xmin)- Subsequently, the time series
dataset was divided into train set and test set to fit the machine learning
model and evaluate the trained machine learning model, respectively
(Fig. 4c). The dataset splitting ratio was modulated from 0.85 to 0.95,
which was adjusted according to different stages of PCR tests. Specifi-
cally, for below 10 cycles, the ratio was set to be 0.85; between 11 and
15 cycles, the ratio was 0.9; beyond 15 cycles, the ratio was 0.95.

The selected data augmentation and normalization methods are typi-
cal and can be readily used for rapid data processing. The pre-processed
data was then applied to neural networks for model training. RNN is
well-suited for solving time series prediction issues [38]. Compared with
other commonly used neural networks that are formed by multilayer
perceptron and can only map input data to target vectors, RNN can trace
back to historical inputs. A back propagation algorithm was adopted for
training RNN. A typical RNN is based on a theory that h; = f(x, h,_;),
which introduces a recurrent structure. By stacking multiple RNNs on
top of each other, the performance can be further boosted. Therefore,
three hidden layers of vanilla RNN, LSTM, and GRU where each layer
contains multiple cells were employed (Fig. 4d, e). The applicability
of RNN has been mostly limited by gradients vanishing or exploding
issues. LSTM networks are a subset of RNN with an additional input
gate, an output gate and a forget gate added to each standard cell. The
three gates regulate the flow of information into and out of the cell.
By this regulating mechanism, LSTM can partially solve the vanishing
gradient problem. Similarly, GRU follows the mechanism by deploying
a reset gate and an update gate but excluding the output gate. GRU
has shown better performance on smaller and less frequent datasets.
Up to date, there have been limited reports on the interdisciplinary
study of PCR and RNN. Most recently, it has been revealed that a com-

480



H. Sun, L. Xiong, Y. Huang et al.

a Data augmentation b Normalization

Fundamental Research 2 (2022) 476486

¢ Dataset splitting

. 1. lE 03..
. _‘.—--W E>
N 48
. 48.20 Train Test
i il -O-H—o- 48.58..
‘ ‘ ® |
Input length 5x1
-]
0 _ﬂ —>[ — 8 Train ratio 0.85/0.9/0.95
3
0.009 g Layer #1 output 5%500
S
0.018 ; Layer #2 output 5x500
0.028 E Layer #3 output 1x500
0.037 Dense layer output | 1x1
0.047 . . .
: S : PI (for sample) to cycle #35
- . PI (for NC) to cycle #40
0.057
X + [0 NN Layer =——p Vector
b Transfer
Layer 1| Layer 2| Layer 3 X Pointwise
A 4 55 (O Operation '< Concatenate
Input layer >>C
Pty Output layer | (X GRU g
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of the three networks. (f) Parameters of the network.

bination of RNN with biological features outperforms other methods
for activity prediction of RNA design [39]. Also, prediction of PCR am-
plification based on primer and template sequences was achieved us-
ing RNN [40]. As laboratory studies, both of the reports were not fo-
cused on dynamically predicting the end-point output of PCR by pre-
vious data along the amplification curve. This ability, however, will be
much attractive and practical for clinical settings. In this work, for the
first time, RNN, LSTM, and GRU acquire knowledge straightforwardly
through the training process and are applied to predict the Rn val-
ues of PCR tests. Parameters of the neural networks are illustrated in
Fig. 4f. Input length indicates the number of data points in sequence
fed into the deep learning model. Using the open-source software li-
brary Keras, stacked RNN, LSTM and GRU were constructed. Within
the network, each of the three hidden layers contained 500 neurons.
Linear activation function was adopted by vanilla RNN layers. Hyper-
bolic tangent activation function or Tanh was used for LSTM and GRU
layers. Mean squared error (MSE) was used as a loss function and adap-
tive moment estimation was selected as the optimizer. A dense layer
connected all the neurons in the third RNN/LSTM/GRU layer. PI for
unknown sample tests was set to be 35 cycles following a common ob-
servation in qPCR tests. For negative control tests, the PI was 40 cycles
for adequately detecting the background signal which may affect final
interpretation.

3.3. Accuracy

qPCR curve in a sigmoidal shape is the fluorescence response to the
growth of amplified product during the reaction process. Conventional
PCR analytics primarily focuses on quantitative responses involving cy-
cle number determination. Analysis based on Cq (or Ct used by ma-
chine manufacturers and clinicians) provides a quantitative assessment
by focusing on the exponential growth region of the amplification curve.

481

However, Ct refers to a real-time predictive value whose scientific accu-
racy or clarity is heavily dependent on PCR instruments. Generally, the
threshold for obtaining Ct values is set either based on an internal quan-
titation standard (by instrument manufacturer) or empirical evaluation.
Typically, a qPCR instrument software sets the threshold at 10 times
the standard deviation (SD) of the fluorescence value of the baseline.
However, the manufacturer also emphasized that the threshold can be
set at any point in the exponential phase of PCR. Furthermore, a base-
line is defined as the initial cycles of PCR during which the variation in
fluorescence signal (usually from the 3" to the 15 cycle) is insignif-
icant. Limitations of the traditional method lie in (1) the cycle range
of baseline. Specifically, the baseline can only be assessed after 15 cy-
cles, and thus an earlier Cq value cannot be obtained in real-time until
the 15™ cycle (even though the end cycle value can be smaller than
that of the 151). (2) Processing of anomalous signals. Provided that
the threshold is low, the presence of signal anomalies (may be due to
bubbles or evaporation) makes the distinction of Cq values between a
false threshold crossing and signal response difficult. In some cases, even
minute errors in the baselining process can cause false signals to cross
the threshold. (3) Variation of Cq values. Based on recent literature, Cq
values of SARS-CoV-2 testing varied greatly between and within meth-
ods, sometimes even within a single test using the identical instrument
[41]. Therefore, the difference in Cq values for the same target cannot
be simply neglected. By employing the deep learning models, the dy-
namics of the amplification reaction process can be directly measured.
Features hidden in time-series amplification data were automatically ex-
tracted and studied without requiring user intervention. Therefore, dy-
namic mechanisms of the PCR reaction can be explored in much more
detail compared with human cognition.

For a proof-of-concept study, a group of PCR curves consisting of
three positive samples and three NC tests was selected. Firstly, time-
series datasets were kept as a reference for algorithm comparison. Early
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Fig. 5. The real (in light blue) and predicted (in gradient orange) curves consisted of trained, tested, and predicted values by the recurrent neural

networks. (a) to (c) from positive samples. (d) to (f) from negative samples.

predictions of positive time-series data were made starting from the 215t
cycle for samples #1 and #2, and from the 22" cycle for sample #3.
Predictions on all the negative data were started from the 25™ cycle.
For the positive samples, true values of Rn at the end-point cycle using
WPADs were obtained to be 3293.87, 4074.67, and 6946. For the three
NCs, true values of Rn at the end-point cycle were 801, 2682.93, and
531. Using vanilla RNN, LSTM, and GRU algorithms, 35-cycle ampli-
fication for a positive sample and 40-cycle amplification for NC tests
were predicted. Train/test loss plots of the three models using the mean
squared error (MSE) function are shown in Fig. S3. All MSE values de-
creased with model iterations until reaching a saturation value.

Specifically, mean Rn values at the point (the 35 cycle for positive
sample) predicted by vanilla RNN (Fig. 5) were 1142.27, 1911.48, and
4583.40. Mean Rn values at the same point (the 40 cycle for the neg-
ative control) predicted by RNN were 35.76, 1661.07, and 538.97. We
used the MAPE to evaluate accuracy:

n
b d, — predicted
MAPE:Z observed, — predicted, y 100

=1

The values were 20.47%, 14.76%, 9.94% for the three positive sam-
ples, and 29.53%, 9.47%, 14.79% for NCs by vanilla RNN-based pre-
diction. The forecasted trends by RNN were inconsistent with the true
values. Therefore, it can be concluded that the accuracy of the vanilla
RNN method was unacceptable.

By contrast, using the identical datasets, mean Rn values at the
end-point predicted by stacked LSTM (Fig. 6) for the positive samples
were 1691.07, 4194.63, and 5029.1, and 60.45, 2287.7 and 482.57 for
the NCs, respectively. The corresponding MAPE values were 13.77%,
8.58%, 7.91% for the three positive samples, and 29.18%, 2.25%,
14.98% for NCs. The dynamic trends of the forecasting curves were anal-
ogous to the true plots of positive samples #2, #3 (Fig. 6b, ¢) and neg-
ative control #2, #3 (Fig. 6e, f). However, the prediction made based
on the LSTM methods showed rather a large discrepancy from the true
curves for both positive sample #1 and NC #1. Notably, for this case
of NC#1, the deep learning model predicted the output to be negative
which coincided with the real results. A potential explanation is that
some of the reagents may have evaporated in the first 20 cycles, as indi-
cated by the true data curve (Fig. 6d). After reagents were introduced to
the paper chips, the background fluorescence of the paper was known
to be suppressed. Nevertheless, if the device was improperly packaged,
the thermal cycling process could cause the paper to dry due to evapora-
tion, thus inducing background fluorescence. After the paper completely
dried out, the fluorescent signal increase rapidly due to the paper back-
ground intensity. Furthermore, the magnitude of this false signal was

observed, n
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not on the same scale as obtained from actual PCR tests. Consequently,
we can conclude that the predictive performance by the LSTM algorithm
was better than that of vanilla RNN but still has room for improvement.

Finally, Mean Rn values at the end-point predicted by stacked GRU
(Fig. 7) for sample and NC tests were 3239.87, 4110.54, 6821.57, and
63.92, 2302.53 504.56, respectively. Correspondingly, MAPE values
were 3.57%, 1.18%, 1.65% for the three positive samples, and 29.1%,
3.6%, 13.25% for NCs by GRU-based prediction. The dynamic trends of
predicted curves were in good agreement with the true plot for all posi-
tive and negative samples (Fig. 7) except the NC #1 (Fig. 7d). The offset
phenomenon in Fig. 7d has been discussed above. Here, we noticed a
linearly increasing trend in the true plot as shown in NC #2 test. Al-
though the end-point values were relatively high compared with other
NC tests, they were still well below the end-point values of the sample
tests. Therefore, the monotonically increasing of signals was not caused
by nucleic acid amplification. This downward trend was also found in
the other two NC tests using the GRU model, which could be easily con-
strued as a negative control. Thus, based on the deep learning prediction
method, anomalous data from pseudo reactions were more likely to be
recognized as a negative output. To sum up, the GRU model was highly
accurate for quantitative analysis and was well-suited for interpreting
information from PCR tests. For qualitative analysis, the deep learning
model can also make an accurate prediction in a binary format. Mea-
surements of prediction accuracy using MAPE, MAE, and SMAPE are
shown in Table S2.

As seen in Fig. 7, the standard deviations (SD) of predicted data were
146.89,192.17, and 271.97 by positive testing results, and 5.97, 119.66,
35.47 by NC tests. After 10 repeated tests, all SD values were lower by
more than an order of magnitude of the output, indicating excellent
reproducibility. The robustness of measurements was also evaluated by
interpreting results regardless of the experiences of the manipulator per-
forming or reviewing the test. As a result, the machine intelligence aided
on-chip qPCR has the potential to achieve highly automatic and robust
diagnostics.

3.4. Early prediction

In general, accuracy is the most significant evaluation criterion. At
the same time, rapid screening and detection of a pathogen at the be-
ginning of an unknown infectious disease is critical. The most attrac-
tive merit of Al-aided on-chip qPCR is the rapidness or less turnaround
time for each assay. For instance, for SARS-CoV-2 detection, no quanti-
tative assays have yet received Emergency Use Authorization (EUA) by
the Food and Drug Administration (FDA). There is also no international
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standardization available, which is necessary for quantitative assays. In
this scenario, predictive analytics should target an optimum balance be-
tween earliness, which is an ability to provide a decision early, and ac-
curacy.

In the above accuracy study, we employed deep neural networks for
predicting data in the latter sequence from a given cycle number (21, 22,
or 25). Here, for revealing the earliness of prediction by this approach,
we took positive sample #3 which had a nearly standard sigmoid shape
and NC #3 for demonstrative study. Since the end-point value reflect-
ing final reaction yields is a critical indicator for the determination of
positive or negative results, the correlation of early cycle numbers with
final fluorescent intensities was obtained as shown in Fig. 8. For the
positive sample (Fig. 8a, c), predicted intensity at the endpoint (the
35th cycle) was consistently lower (~1000) compared with the inten-
sity value before the 13 cycles. Then, the predicted value raised rapidly
when the 13 cycle data was fed to the train/test dataset of the deep
learning model. The average output value was 6406.02 which was com-
parable to the true value of 6984. After this, the predicted value gently
decreased for a short period ranging from the 15% to the 17t cycle fol-
lowed by rising again. When data from the 20% and 215t cycles were en-
tered, predicted values were found to be in good agreement with the true
data.
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and predicted values by the gate recurrent unit

Based on the empirical data, a criterion is defined for qualitative
prediction: a sample can be determined as positive when the intensi-
ties at a cycle and the subsequent two cycles exceed a threshold. Here,
we use Rn = 3000 as a threshold which is reasonable considering the
data shown in Fig. 3a. Following the criterion, the sample can be deter-
mined as positive at the end of the 13t cycle, thus effectively shortening
the qPCR time duration by 67.5%. Considering the time cost of an on-
chip PCR was limited to below 40 min, the turnaround time of Al-aided
microfluidic assay was merely about 12 min. The applicability can be
extended further because the dynamic or real-time nature of Al-based
prediction will certainly offer knowledge before the end of reactions.
Moreover, for a quantitative study, the criterion can be explained as: a
cycle number can be determined as the critical number when the inten-
sity at the cycle and the subsequent two cycles are all above the thresh-
old. Output values predicted at the critical cycle were comparable to the
true data. The deep learning model can be further improved by training
more datasets. Keeping experimental settings and operation procedures
consistent, target loads in different reaction units can be compared us-
ing the discussed critical cycle values. Therefore, the quantification of
intragroup assays can be performed. Similarly, the cycle-dependent out-
put of NC predicted by GRU-based networks is presented in Fig. 8b, d.
Using the identical criteria, the sample can be safely seen as negative
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at the end of the 35 cycle. Besides end-point values illustrated here, It should be worth noting that the Cq value has shown inconsistency
more data in sequence are presented in Fig. S4. among assays most recently [42]. Furthermore, it is difficult for the con-

Theoretically, considering the definition of baseline and threshold ventional gPCR to calculate Cq during reaction in a real-time manner.
by conventional qPCR analysis [41], the Cq value can be easily affected Finally, the existing laboratory or clinical qPCR tests usually output Cq
by the parameters set by the operator or software of the instrument. value on the scale of a whole test without automatic discrimination of
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individual reactions. By contrast, the Al-aided method can perform in-
tuitive and accurate real-time analytics promoting a novel paradigm of
qPCR analysis independent of Cq. Also, the method is capable of fore-
casting the final output of QPCR and the trend of amplification curves be-
fore end-point Cq calculation. Most importantly, the prediction method
fully explored the dynamics or signal features of each reaction, and thus
this theoretical innovation will assist scientists and physicians to evalu-
ate the individual variation.

3.5. Parameter assessment

Currently, there are few standardizations and guides on hyperparam-
eter tuning for Al methods. We observed the number of interpolated data
and the input length of the data series affected the calculation speed and
accuracy most significantly. Thus, we performed a trial process to fur-
ther evaluate the chosen parameters of the GRU-based neural network.
Parameter setting details are listed in Table S3. In brief, 11 data groups
were built containing the number of interpolated data ranging from 2
to 600. For each interpolation, various input lengths ranging from 1 to
10 were used. The time cost of a single run, train and test loss, and vari-
ance between true data and the predicted at the end-point were studied
among the groups (Fig. 9).

With interpolation data increasing, time consumption for each fore-
casting run also increased and became more apparent for group #8.
Within a group, more input data also takes more computing power to
process. On the other hand, the MSE value decreased with increasing
data quantity, especially for the test process. This indicates an improved
training and validation accuracy by using a larger dataset. Then, offsets
between true data and predicated value became optimized at group #3,
which included 10 interpolation data with input lengths of 4 or 5. The
offset started to slowly rise with dataset capacity after group #3. The re-
sults consolidate the parameter setting of the neural network by which
the run time for a single PCR test was 50 to 57 s, which was compara-
ble to a PCR cycle. Notably, the time cost can be decreased further by
gathering more computing resources.

Finally, we investigated the overfitting issue based on the selected
GRU model. The impact of input cycle number (i.e. data for training
and testing) on overfitting in the deep learning model was studied. MSE
values at the 40t epoch on loss function curves of the 83 samples were
plotted against input cycle numbers as shown in Fig. S5. Overall, both
the training loss and validation loss decreased with the cycle number
used for prediction. Using data by 10 or 12 qPCR cycles, the training
loss is much lower than validation loss by an order of magnitude. In this
case, overfitting may exist and the prediction results had low accuracy.
When cycle numbers increased to between 14 and 18, variations be-
tween the two-loss functions reduced to the same magnitude except for
a few outliers. Then, training loss became similar to but slightly lower
than validation loss when data included 20 cycles or more. Also, in this
scenario, values of outliers were restricted below 0.001. Considering
qPCR signals observed by this work were on the magnitude of 1000
(Fig. 3a) and the data normalization process, the overfitting had been
effectively restrained by the parameters settings.

4, Conclusion

This work leverages various methodologies from multiple dis-
ciplines, including precision manufacturing, instrument technology,
molecular detection, and bioinformatics, to provide perspectives and
insights beyond the scope of a single scientific area. A novel Al-aided
on-chip approach to detect RNA templates of the SARS-CoV-2 ORFlab
gene target was presented. tPADs that are compatible with the commer-
cial gPCR machine were developed for on-chip data acquisition. gPCR
data were delivered to three deep neural networks consisting of stacked
RNN, LSTM, and GRU. GRU had the best performance in terms of accu-
racy and earliness. Qualitative forecasting became available as early as
13 cycles indicating an improvement of PCR testing efficiency of 67.5%
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as the turnaround time was reduced to 12 min. Accurate prediction of
end-point value and dynamic trend of qPCR curves were obtained by
GRU around the 20™ cycle. The mean absolute percentage error by the
GRU model was 2.1%. Additionally, the model parameter assessment
study indicated that prediction accuracy improved along with the num-
ber of datasets. We also empirically proposed a calculation method for
obtaining a critical cycle for quantitative analysis of intra-assay. The
presented approach was the first to integrate Al for on-chip qPCR data
analysis and it enabled novel predictive analytics for the diagnosis of
infectious diseases. The approach was capable of forecasting the final
output and trend of qPCR independent of end-point Cq calculation but
fully exploring the dynamics or intrinsic features of each reaction. This
innovation may assist the whole society to accelerate the response to
novel disease outbreaks. Al-aided analytics is universally applicable and
can be extended to multiple areas of fundamental research. Nowadays,
point-of-care testing (POCT) and personalized medicine (PM) are be-
coming more realistic with the growth of new diagnostic and informat-
ics methods. In the future, integration of Al-aided diagnosis, POCT, PM
with the internet of things (IoT) concept could be valuable to pursue.
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