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a b s t r a c t 

Global pandemics such as COVID-19 have resulted in significant global social and economic disruption. Although 

polymerase chain reaction (PCR) is recommended as the standard test for identifying the SARS-CoV-2, conven- 

tional assays are time-consuming. In parallel, although artificial intelligence (AI) has been employed to contain 

the disease, the implementation of AI in PCR analytics, which may enhance the cognition of diagnostics, is quite 

rare. The information that the amplification curve reveals can reflect the dynamics of reactions. Here, we present 

a novel AI-aided on-chip approach by integrating deep learning with microfluidic paper-based analytical devices 

(μPADs) to detect synthetic RNA templates of the SARS-CoV-2 ORF1ab gene. The μPADs feature a multilayer 

structure by which the devices are compatible with conventional PCR instruments. During analysis, real-time 

PCR data were synchronously fed to three unsupervised learning models with deep neural networks, including 

RNN, LSTM, and GRU. Of these, the GRU is found to be most effective and accurate. Based on the experimentally 

obtained datasets, qualitative forecasting can be made as early as 13 cycles, which significantly enhances the 

efficiency of the PCR tests by 67.5% ( ∼40 min). Also, an accurate prediction of the end-point value of PCR curves 

can be obtained by GRU around 20 cycles. To further improve PCR testing efficiency, we also propose AI-aided 

dynamic evaluation criteria for determining critical cycle numbers, which enables real-time quantitative analysis 

of PCR tests. The presented approach is the first to integrate AI for on-chip PCR data analysis. It is capable of 

forecasting the final output and the trend of qPCR in addition to the conventional end-point Cq calculation. It is 

also capable of fully exploring the dynamics and intrinsic features of each reaction. This work leverages method- 

ologies from diverse disciplines to provide perspectives and insights beyond the scope of a single scientific field. 

It is universally applicable and can be extended to multiple areas of fundamental research. 
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. Introduction 

Throughout history, infectious disease outbreaks have ravaged hu-

anity and destroyed civilizations. From the year 1996 to 2021, the

orld has witnessed about 2988 disease outbreaks ( Fig. 1 a) including

ARS, Ebola, MERS, and COVID-19 [1] . Since 1970, more than 1,500

ew pathogens have been discovered [2] and 51 to 67% of the world’s

opulation lacked essential health services according to the United Na-

ions in 2019 [3] . Almost 100 million people are still in extreme poverty

nd surviving on just $1.90 or less per day [4] . On the other hand, even

f medical countermeasures are available, infectious diseases will remain

 great threat because of their rapid infectivity. Also, equitable access
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o effective public health measures is hard across the world [5] . The

ngoing outbreak of COVID-19 has unmasked the underfunded nature

nd inequality of health care. COVID-19 has four interconnected traits:

igh reproduction number, a large number of asymptomatic or mild

ymptom cases, relatively long incubation period, and survival of the

irus in some environments [6] . Reliable response to a new pandemic is

ainly based on surveillance and detection, clinical treatment, preven-

ion, and maintaining essential services [7] . Since developing new safe

nd effective medications often take a long time and viruses may mutate,

ontainment and mitigation measures are the most key interventions to

urb infections. Of these, containment in the early stages of the outbreak

s critical for stopping transmission. Surveillance of at-risk people and
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dentification of early case clusters based on polymerase chain reaction

PCR) have played critically important roles in sustaining the contain-

ent. PCR-based screening and mass (community or city-wide) testing

ave been routinely performed during the outbreak in mainland China

8] . These risk-based, large-scale screenings have successfully facilitated

ase finding and efficient restraining of epidemics and provided infor-

ation for the government to safely reopen societies. 

Although PCR is recommended by the WHO as the gold standard test

or SARS-CoV-2, it is inherently laborious and time-consuming. Also, the

urnaround time of a conventional PCR typically requires 4 to 6 h [9] .

he commercially available plate-based PCR assays generally need to

un 40 or more amplification cycles ( ∼1 h) to complete an analysis.

hile it should be noticed that the effectiveness of mass screening de-

ends heavily on testing frequency and the speed of analysis. Strategies

or more ‘smart surveillance’ of infectious diseases before their under-

ying large-scale emergence or re-emergence by the mutated virus are

till needed [10] . In this regard, new technologies can be implemented

o improve the mechanism and performance of PCR analytics, such as

rtificial Intelligence (AI) and microfluidic paper-based analytical de-

ices (μPADs). 

AI, especially machine learning, has been developed with a broad

ange of applications for COVID-19 control and prevention [ 11 , 12 ].

or instance, enabled by large labeled datasets and GPUs, deep learn-

ng has shown excellent performance in machine vision tasks including

mage classification and object detection such as the analysis of chest

adiographs (CXR) and chest computed tomography (CT) images [13–

5] . Also, merely relying on initial clinical symptoms, AI helped predict

OVID-19 test results [16] . Moreover, the growth and trend of the pan-

emic in countries worldwide have been forecasted [17] . Nevertheless,

CR analysis has been surprisingly neglected from machine intelligence.

he dynamics of PCR are encoded in the time-oriented or chronological

equence of normalized reporter value (Rn) on a variable of fluores-

ent intensity [18] . However, the time series information is typically

eglected by straightforward classifying the amplification curves into

ositive or negative readouts. In principle, machine intelligence can dis-

egard the limitation of human cognition and is, therefore, a significant

mprovement in PCR data analytics. Recently, Moniri et. al. proposed

 new amplification curve analysis method through a large volume of

aw data by digital PCR and supervised machine learning [19] . To the

est of our knowledge, AI-based dynamic analysis of PCR curves, which

eans making regression or prediction synchronously along with reac-

ion, is barely studied. This capability will hold great potential to sup-

ort current PCR-based studies in both clinical settings and fundamental

esearch. 

Microfluidics enables precise fluidic control and manipulation at a

eometrically small scale (typically sub-millimeter) [ 20 , 21 ]. Compared

ith conventional microfluidics, microfluidic paper-based analytical de-

ices (μPADs) have many promising merits: simple fabrication proto-

ol and much less cost; relatively large surface-to-volume ratio due to

orous nature of paper; fluid transport by capillary action without the

eed for external power sources [ 22 , 23 ]. Also, μPADs are portable and

asy to use. The listed merits make μPADs particularly suitable to use

n developing countries and areas short of medical resources [ 24 , 25 ]. In

he past years, paper microfluidics have successfully performed sensitive

ssays that rival instrument-based nucleic acid amplification tests and

rovided precision diagnostics for pathogens with a fast turnaround time

 26 , 27 ]. For instance, many μPADs have been developed and focused on

AMP tests of nucleic acids in infectious diseases [ 28 , 29 ]. Similarly, this

echnology could be leveraged for detecting SARS-CoV-2 nucleic acids

 30 , 31 ]. 

In this work, we present a novel AI-aided on-chip approach by inte-

rating deep learning algorithms with μPADs to detect RNA templates

f the SARS-CoV-2 ORF1ab gene. The μPADs employ a multilayer struc-

ure and evaporation-preventive packaging technology, by which the

evice can be directly embedded into most qPCR instruments for data

cquisition. Real-time PCR data are synchronously delivered to three

nsupervised learning models with deep neural networks, including the
477 
tacked simple recurrent neural networks (RNN), the long short-term

emory (LSTM) networks, and the gated recurrent units (GRU) layers.

f these, GRU is found to be the most effective and accurate for positive

ample detection. Qualitative forecasting becomes available as early as

3 cycles or about 10 min. Accurate end-point value prediction of PCR

urves can be obtained by GRU around 20 cycles with a mean absolute

ercentage error (MAPE) of 2.1%. Model parameter assessment study

ndicated that prediction accuracy improves along with the number of

atasets. For negative samples, LSTM and GRU provide accurate quali-

ative predictions before 25 cycles. In addition, an empirical calculation

ethod is proposed to determine the quantification cycle value (criti-

al cycle) in real-time, which enables us to obtain the dynamics of PCR

eaction much more rapidly without sacrificing testing accuracy. Var-

ous methodologies from precision manufacturing, instrument technol-

gy, molecular detection, and bioinformatics have been combined in

his work to provide perspectives and insights beyond the scope of a

ingle discipline. The presented approach is the first to integrated AI for

n-chip real-time PCR data analysis. Furthermore, it demonstrates ex-

ellent compatibility between AI and the real-time characterization of

iochemical reactions. Therefore, it is universally applicable and can be

xtended to various areas. 

. Principle, device, and experiments 

.1. Principle 

The methodological framework of the approach is illustrated in

ig. 1 b. Step 1 to 5 describes the workflow: sample collection, RT-qPCR

n μPADs, model training and validation, early prediction on time se-

ies, and final output. Here, we selected synthetic RdRp gene (RNA-

ependent RNA polymerase gene) in the open reading frame ORF1ab

egion of SARS-CoV-2 as a target (Fig. S1) and used a set of primer and

robe to detect its gene sequence. This operation was compatible with

he recently developed extraction-free SARS-CoV-2 RT-PCR. Synthetic

ucleic acid, negative control (NC), substrate mix, and enzyme mix were

ntroduced sequentially onto μPADs for on-chip tests. The μPADs were

nstalled in a commercial qPCR instrument, which was then used for re-

iable data acquisition. The excellent compatibility between our device

nd the commercial instrument also indicated the wide applicability of

he device and method. Unlike conventional RT-qPCR which provides

ne-off results including positive/negative readout, Cq (quantification

ycle) at the end of a whole test, the AI-on-chip approach allowed real-

ime analysis during the amplification cycles. Values of fluorescent in-

ensity during qPCR were recorded and real-time fed into the networks

or model train and test followed by prediction. 

Classic machine learning employs algorithms such as the k-nearest

eighbor, support vector machine, and decision tree for feature learning,

odel construction, and model training. Although these classical models

ave been widely used in performing multiple tasks including classifica-

ion and pattern recognition, they often require structured data sets and

re dependent on human intervention to learn. For instance, the infor-

ation presented in PCR curves, which includes slope, mean, variance,

tandard error, minimum and maximum values, as well as other known

eatures, can be intuitively gathered and processed by a human. Despite

eing theoretically possible, the preprogrammed feature extraction and

ltering process are time-consuming and will be inconsistent by subjec-

ive experience. Additionally, the effect of these correlation mechanisms

n the final results may not be readily coded in advance. 

Deep learning allows autonomous data processing towards sophis-

icated and nonlinear feature abstraction through a cascade of layers

f neural networks, instead of inputting the optimum feature represen-

ation by expert knowledge [32] . Here, we utilized RNN, the algorithm

mployed by Google’s voice search and Apple’s Siri, for qPCR sequential

ata analysis. In parallel, the most well-known subsets of RNN, LSTM,

nd GRU have been used for improving model performance. Using these

eep neural networks, features of PCR curves can be automatically ex-
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Fig. 1. Statistics of global infectious diseases and schematic of the proposed method. (a) Disease outbreaks recorded by WHO. (b) Schematic of the proposed 

approach. 
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f  
racted followed by real-time model training without being explicitly

rogrammed. Essential fundamentals of RNN, LSTM, and GRU can be

ound in literature [ 33 , 34 ]. In brief, all three networks take the present

nd the past as input sources for determining the output or response

o new data. The decision made by these models at time step t-1 in-

uences the decision at time step t. Different from classic (or "vanilla")

NN, LSTM is composed of a cell containing an input gate, an output

ate and a forget gate. By adding the gating mechanism, information can

e stored in, written to, or read from a cell which is helpful to partially

void the vanishing gradient problem. Similarly, GRU keeps the mecha-

ism by deploying reset gate and update gate but excluding output gate.

erformances of the three models on predictive analysis of qPCR have

een studied in later sections. 

.2. Device design and fabrication 

The architecture of a μPAD contains seven layers ( Fig. 2 a). Glass

lide containing 97% silica was attached by graphite thermal conduc-

ive adhesive at the bottom and used as a solid substrate (not shown

n the schematic and image). Since the thickness of a paper cannot

e neglected, three non-transparent layers of polyvinyl chloride (PVC)

ere coated together on the substrate to create dumbbell-shaped hollow

ells, which were used for fixing paper fluidic layers. Then, the paper

ayers were inserted into the wells. Double-sided adhesive polymethyl

ethacrylate (PMMA) was used as a connecting layer. A thin film of

VC with thermosensitive gel (ethylene-vinyl acetate copolymer, EVA)

as laminated on top of the paper. The PMMA layer strengthened the

inding of upper with lower PVC films. Finally, another black-colored

VC layer was placed on top of the assembled device for reducing back-

round noise from ambient lighting. For proof-of-concept study, the cur-

ent chip allows for parallelized testing of up to 4 samples and can be

urther increased as needed. Circle-shaped paper layers in the periph-

ral region were designed as reagent inlets. Circles distributed in cen-

ral (fully covered by lamination film) were designated as reaction units.

he position and size (3.5 mm in diameter) of the reaction units were

igidly designed so that the center of the units aligns with the light fo-
478 
us and the heat sink of the qPCR instrument. The overall dimension of

he portable device is 20 mm × 20 mm × 1.6 mm in length, width, and

eight, respectively. Additionally, the total cost of an assembled device

s limited to below 1.6 RMB. The layout design of each layer was com-

leted in the vector graphics software Adobe Illustrator. More details

an be found in Fig. S2. 

Fabrication of 𝜇PADs employed laser cutting technology. The dis-

ance between lens and workpiece of the machine (JK-4060, Jingke

ompany) was 60.0 mm. The power used for cutting paper, PMMA,

nd PVC were 14.5, 15.0, and 15.0 W, respectively. The line speed

f the cutter was 12.0 mm/s. Packaging of the chip was completed by

ombining both mechanical force and heating lamination. The pressure-

ensitive adhesive film was placed in between the device layers except

or both PVC/EVA-paper layers, and mechanical forces were applied to

trengthen the bonding. Through holes were drilled on the PVC/EVA

lm in advance. Then, the patterned film was used for single-side paper

amination (YE381, Soonye Tech. Co Ltd) at a temperature of 130 °C.

he lamination effectively eliminated chip reagents’ evaporation dur-

ng the thermal cycling of PCR. A scanning electron microscope (by FEI

ova NanoSEM 230, Thermo Fisher) was used for morphology analysis

f fabricated devices. The total expense of a 𝜇PAD is around 0.24 USD

Table S1), thus making the chip economically applicable in underde-

eloped areas. 

.3. Materials and procedure 

Surface RNase Erasol was purchased from Phygene® Biotechnology

o, Ltd (Fuzhou, Fujian, China). Whatman® Grade 5 filter papers were

urchased from GE Healthcare Life Sciences (Pittsburgh, PA., USA). PVC

ressure adhesive films were obtained from HUACHEN Paper (Jinhua,

hejiang, China). Laminating films (PET with EVA) with a thickness

f 0.03 mm were obtained from ZhongWei Technologies (Fuzhou, Fu-

ian, China). Double adhesive PET films were purchased from BOSSRON

Guangzhou, Guangdong, China). EVA hot melt glue stick was obtained

rom ZHONGHA (Jinhua, Zhejiang, China). COVID-19 Nucleic Acid Di-
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Fig. 2. Chip design, fabrication, and experimental set-up. (a) Design of the paper chip. (b) Packaged chip prototypes. (c) Chip in a 4-channel multiplex qPCR 

(quantitative polymerase chain reaction) machine. (d) Image of the machine. (e) The schematic of fluorescence detection. (f) Program operation panel (time duration 

in brackets is set for on-chip tests). 
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gnostic Kit (PCR-Fluorescence Probing, NIRC20203400064) was ob-

ained from Sansure Biotech Inc. (Changsha, Hunan, China). 

The COVID-19 testing kit consists of four reagents: Substrate Mix,

nzyme Mix, synthetic RNA templates, and NC. Main ingredients of Sub-

trate Mix contain premiers (4.62%), probes (1.15%), dNTPs (3.85%),

gCl 2 (0.77%), RNasin (0.48%) and PCR buffer (89.13%). Enzyme Mix

ontains both RT enzyme (62.5%) and Taq enzyme (37.5%). The Posi-

ive Control is provided within vitro transcriptional RNA which contains

arget genes (ORF1ab, N gene) and internal standard gene fragments

RNase P), whose fluorescein of hydrolysis probes is FAM, ROX, and

EX, respectively. Negative Control contains saline only. 83 samples of

ynthetic gene templates of SARS-CoV-2 were used following the proto-

ol recommended by the manufacturer. 

The experimental procedure started with placing the diagnostic kit

eagents at room temperature to allow them to equilibrate, followed by

 vortex step at a speed of 3000 rpm for each reagent. Then, substrate

ix (26 𝜇L) and enzyme mix (4 𝜇L) were pipetted into tubes for pre-

ixing by centrifuging at a speed of 2000 rpm for 15 s (MC-12plus,

OAN LAB Equipment Co., Ltd). Next, the sample containing synthetic

NA templates (10 𝜇L) and NC were separately introduced to the tubes

ontaining 30 𝜇L of PCR master mix. 1.5 𝜇L of each mixed reagent was

ntroduced to the inlet of the 𝜇PAD. To eliminate evaporation of on-chip

eagents, we sealed the inlets using hot melt glue. Then, the chip was

ransferred to a qPCR instrument (Q2000B, LongGene Scientific Instru-

ents Co., Ltd.). Different from the in-tube tests, heating time for de-

aturation (at 95 °C), annealing, and elongation (at 60 °C) were 8 and

0 s for the on-chip test, comparing with 15 and 35 s for the in-tube test.

his meant the total run time for a conventional 40-cycle conventional

PCR test was reduced by more than 880 s using the on-chip method. 

. Results and discussion 

.1. Data acquisition and evaluation 

The on-chip dataset contains 83 data plots (during a period of 16 th 

pril 2021 to 5 th June 2021) of synthetic gene templates of SARS-CoV-

 using the protocol recommended by the manufacturer ( Fig. 3 a). For
479 
eal-time data acquisition, the on-chip amplification data were auto-

atically written into a .txt file which was then read and processed by

he AI program using the same computer. LongGene Scientific Instru-

ents, the manufacturer of the PCR instrument provided the techni-

al support for the real-time data transmission. Datasets of qPCR in a

ime-series format from the Center for Experimental Research in Clini-

al Medicine (CERCM) of Fujian Provincial Hospital (during a period of

 

th August 2020 to 3rd November 2020) and on-chip tests were also as-

essed. The in-tube dataset ( Fig. 3 b) contains 11388 nucleic acid ampli-

cation curves. Cq values of these plots were mainly distributed within

 range of 20.0 to 37.0 ( Fig. 3 c). 

On the basis that a value from data X at a given time is related

o the previous values, the series of values can be described as 𝑋 =
 𝑥 1 , 𝑥 2 , .. 𝑥 𝑡 } . Herein, (t) is the most recent value. This deep learning

odel aims to predict (t + N) from historical values containing sequence

ata features, where N is named as prediction interval (PI). PI is a range

f values for future prediction, and it is likely to be far more useful in

ecision-making than an individual number. Using the two datasets, for

reliminary analysis, we calculated either the dynamic slope or the first-

rder difference (FOD) of the Rn value at each cycle point: Δx t = x (t + 1) -

 (t) . Herein, t and x are cycle numbers and Rn values. Mean values of

OD at each cycle of 83 (or 11388) curves were plotted as shown in

he inset of Fig. 3 a (or Fig. 3 b). Both of the FOD curves are overall bell-

haped, which coincides with the sigmoid curves of the original ampli-

cation data. For in-tube tests, the FOD curve is sharper and the values

ncrease rapidly after 22 cycles and reach the peak value of 0.125 at the

9 th cycle. While, for on-chip tests, the FOD curve starts to climb as early

s the 3rd cycle and maximizes with a value of 0.042 at the 23 rd cycle.

e attribute the early rise of FOD values to the paper material. The fi-

rous nature of the paper material provides a high surface-to-volume

atio (S/V), which in turn enhances the detecting performance. Specif-

cally, paper porous microstructures create abundant reaction sites and

pportunities ( Fig. 3 d, e), and therefore significantly improves reaction

peed. Also, compared with the stereo in-tube reaction, fluid transport

n the in-plane dimension of paper chips dominates so that more fluo-

escent reporters can be delivered onto the top surface, directly below

he light source, which improves detecting sensitivity (smaller limit of
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Fig. 3. Data evaluation and micromorphology analysis of cellulose paper. (a) A group of qPCR curves obtained by on-chip tests. (b) 11388 amplification curves 

obtained from the clinical lab of Fujian Provincial Hospital. Insets of (a) and (b) describe the first-order difference value of the curves. (c) Cq distribution of the 

curves. (d) Scanning electron microscope (SEM) image of paper material. (e) SEM image of the cross-section of a laminated paper chip. 
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etection). Finally, it has been proven that a higher S/V may induce

 wider linear range for fluorescein on microscale. The fluorescence

echnique can further improve detection performance over traditional

olorimetric detection. Notably, the background fluorescence of the pa-

er material may cause complications during PCR tests. However, for

his study, the merits of the paper material outweigh the background

ssue. 

The symmetrical range of the FOD curve for the in-tube tests is de-

ermined to be 18 cycles with a respective value increased from 0.008

t the 23 rd cycle to the maximum and then returned to 0.008 at the 40 th 

ycle. The corresponding range for on-chip tests is found to be 29 cycles,

tarting with a value of 0.018 at the 12 th cycle and returning to a value

f 0.019 at the 40 th cycle. The rise of the FOD curve for the in-tube test

appened in a much later time than the on-chip test. Therefore, effective

orecasting of on-chip tests has more practical merits in shortening the

urnaround time of PCR assay. Based on the premises, the on-chip tests

ere confirmed to be adopted for predictive analytics. 

.2. Deep learning pipeline 

Python environmental (version: 3.8.5) and TensorFlow (version:

.3.0) were employed to create deep learning models. Deep neural net-

orks are usually hindered from time series forecasting since the data

re typically nonlinear and highly dynamic [35] . Here, we constructed

 deep learning pipeline to automate the workflow. The procedure of

he pipeline includes the processing of data augmentation and normal-

zation, dataset splitting followed by model training, testing, and time

eries prediction. 

Before feeding the data into the deep learning models, data aug-

entation was firstly performed ( Fig. 4 a). This pre-processing step has

hown efficiency in improving model performances in general and is

opular in computer vision study, but not for time-series data process-

ng. In this work, we employed interpolation, which had been proven

o be effective for improving the performance of deep learning models

36] to perform time-series data augmentation. Quadratic Bézier curve

tting was selected as the interpolation method after comparing with

inear and cubic interpolation methods. Using the identical dataset, the

uadratic interpolation was the most robust, efficient, and simple, and
480 
hus was adopted in this work. A set of data points was interpolated

etween adjacent cycle numbers following the equation below: 

𝑃 𝑖 ( 𝑡 ) = 

1 
2 
( 𝑡 − 1) 2 𝑃 𝑖 + 

1 
2 
(−2 𝑡 2 + 2 𝑡 + 1) 𝑃 𝑖 +1 + 

1 
2 
𝑡 2 𝑃 𝑖 +2 , 0 ≤ 𝑡 ≤ 1 

In addition, data normalization, which affects the accuracy and gen-

ralization of time series forecasting, is a necessary and important pre-

rocessing technique for deep learning [37] . We scaled the data to

 range of [0, 1] using the Min-Max normalization method ( Fig. 4 b)

xpressed as: x = ( x - x min ) / ( x max - x min ). Subsequently, the time series

ataset was divided into train set and test set to fit the machine learning

odel and evaluate the trained machine learning model, respectively

 Fig. 4 c). The dataset splitting ratio was modulated from 0.85 to 0.95,

hich was adjusted according to different stages of PCR tests. Specifi-

ally, for below 10 cycles, the ratio was set to be 0.85; between 11 and

5 cycles, the ratio was 0.9; beyond 15 cycles, the ratio was 0.95. 

The selected data augmentation and normalization methods are typi-

al and can be readily used for rapid data processing. The pre-processed

ata was then applied to neural networks for model training. RNN is

ell-suited for solving time series prediction issues [38] . Compared with

ther commonly used neural networks that are formed by multilayer

erceptron and can only map input data to target vectors, RNN can trace

ack to historical inputs. A back propagation algorithm was adopted for

raining RNN. A typical RNN is based on a theory that h t = f(x t , h t − 1 ) ,

hich introduces a recurrent structure. By stacking multiple RNNs on

op of each other, the performance can be further boosted. Therefore,

hree hidden layers of vanilla RNN, LSTM, and GRU where each layer

ontains multiple cells were employed ( Fig. 4 d, e). The applicability

f RNN has been mostly limited by gradients vanishing or exploding

ssues. LSTM networks are a subset of RNN with an additional input

ate, an output gate and a forget gate added to each standard cell. The

hree gates regulate the flow of information into and out of the cell.

y this regulating mechanism, LSTM can partially solve the vanishing

radient problem. Similarly, GRU follows the mechanism by deploying

 reset gate and an update gate but excluding the output gate. GRU

as shown better performance on smaller and less frequent datasets.

p to date, there have been limited reports on the interdisciplinary

tudy of PCR and RNN. Most recently, it has been revealed that a com-
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Fig. 4. Deep learning pipeline. (a) Data acquisition and augmentation; (b) Normalization; (c) Splitting; (d) Model training, test, and prediction. (e) Internal structure 

of the three networks. (f) Parameters of the network. 
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ination of RNN with biological features outperforms other methods

or activity prediction of RNA design [39] . Also, prediction of PCR am-

lification based on primer and template sequences was achieved us-

ng RNN [40] . As laboratory studies, both of the reports were not fo-

used on dynamically predicting the end-point output of PCR by pre-

ious data along the amplification curve. This ability, however, will be

uch attractive and practical for clinical settings. In this work, for the

rst time, RNN, LSTM, and GRU acquire knowledge straightforwardly

hrough the training process and are applied to predict the Rn val-

es of PCR tests. Parameters of the neural networks are illustrated in

ig. 4 f. Input length indicates the number of data points in sequence

ed into the deep learning model. Using the open-source software li-

rary Keras, stacked RNN, LSTM and GRU were constructed. Within

he network, each of the three hidden layers contained 500 neurons.

inear activation function was adopted by vanilla RNN layers. Hyper-

olic tangent activation function or Tanh was used for LSTM and GRU

ayers. Mean squared error (MSE) was used as a loss function and adap-

ive moment estimation was selected as the optimizer. A dense layer

onnected all the neurons in the third RNN/LSTM/GRU layer. PI for

nknown sample tests was set to be 35 cycles following a common ob-

ervation in qPCR tests. For negative control tests, the PI was 40 cycles

or adequately detecting the background signal which may affect final

nterpretation. 

.3. Accuracy 

qPCR curve in a sigmoidal shape is the fluorescence response to the

rowth of amplified product during the reaction process. Conventional

CR analytics primarily focuses on quantitative responses involving cy-

le number determination. Analysis based on Cq (or Ct used by ma-

hine manufacturers and clinicians) provides a quantitative assessment

y focusing on the exponential growth region of the amplification curve.
481 
owever, Ct refers to a real-time predictive value whose scientific accu-

acy or clarity is heavily dependent on PCR instruments. Generally, the

hreshold for obtaining Ct values is set either based on an internal quan-

itation standard (by instrument manufacturer) or empirical evaluation.

ypically, a qPCR instrument software sets the threshold at 10 times

he standard deviation (SD) of the fluorescence value of the baseline.

owever, the manufacturer also emphasized that the threshold can be

et at any point in the exponential phase of PCR. Furthermore, a base-

ine is defined as the initial cycles of PCR during which the variation in

uorescence signal (usually from the 3 rd to the 15 th cycle) is insignif-

cant. Limitations of the traditional method lie in (1) the cycle range

f baseline. Specifically, the baseline can only be assessed after 15 cy-

les, and thus an earlier Cq value cannot be obtained in real-time until

he 15 th cycle (even though the end cycle value can be smaller than

hat of the 15 th ). (2) Processing of anomalous signals. Provided that

he threshold is low, the presence of signal anomalies (may be due to

ubbles or evaporation) makes the distinction of Cq values between a

alse threshold crossing and signal response difficult. In some cases, even

inute errors in the baselining process can cause false signals to cross

he threshold. (3) Variation of Cq values. Based on recent literature, Cq

alues of SARS-CoV-2 testing varied greatly between and within meth-

ds, sometimes even within a single test using the identical instrument

41] . Therefore, the difference in Cq values for the same target cannot

e simply neglected. By employing the deep learning models, the dy-

amics of the amplification reaction process can be directly measured.

eatures hidden in time-series amplification data were automatically ex-

racted and studied without requiring user intervention. Therefore, dy-

amic mechanisms of the PCR reaction can be explored in much more

etail compared with human cognition. 

For a proof-of-concept study, a group of PCR curves consisting of

hree positive samples and three NC tests was selected. Firstly, time-

eries datasets were kept as a reference for algorithm comparison. Early



H. Sun, L. Xiong, Y. Huang et al. Fundamental Research 2 (2022) 476–486 

Fig. 5. The real (in light blue) and predicted (in gradient orange) curves consisted of trained, tested, and predicted values by the recurrent neural 

networks. (a) to (c) from positive samples. (d) to (f) from negative samples. 
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redictions of positive time-series data were made starting from the 21 st 

ycle for samples #1 and #2, and from the 22 nd cycle for sample #3.

redictions on all the negative data were started from the 25 th cycle.

or the positive samples, true values of Rn at the end-point cycle using

PADs were obtained to be 3293.87, 4074.67, and 6946. For the three

Cs, true values of Rn at the end-point cycle were 801, 2682.93, and

31. Using vanilla RNN, LSTM, and GRU algorithms, 35-cycle ampli-

cation for a positive sample and 40-cycle amplification for NC tests

ere predicted. Train/test loss plots of the three models using the mean

quared error (MSE) function are shown in Fig. S3. All MSE values de-

reased with model iterations until reaching a saturation value. 

Specifically, mean Rn values at the point (the 35 th cycle for positive

ample) predicted by vanilla RNN ( Fig. 5 ) were 1142.27, 1911.48, and

583.40. Mean Rn values at the same point (the 40 th cycle for the neg-

tive control) predicted by RNN were 35.76, 1661.07, and 538.97. We

sed the MAPE to evaluate accuracy: 

𝐴𝑃 𝐸 = 

𝑛 ∑
𝑡 =1 

||||
𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑑 𝑡 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒 𝑑 𝑡 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑑 𝑡 

|||| ×
100 
𝑛 

The values were 20.47%, 14.76%, 9.94% for the three positive sam-

les, and 29.53%, 9.47%, 14.79% for NCs by vanilla RNN-based pre-

iction. The forecasted trends by RNN were inconsistent with the true

alues. Therefore, it can be concluded that the accuracy of the vanilla

NN method was unacceptable. 

By contrast, using the identical datasets, mean Rn values at the

nd-point predicted by stacked LSTM ( Fig. 6 ) for the positive samples

ere 1691.07, 4194.63, and 5029.1, and 60.45, 2287.7 and 482.57 for

he NCs, respectively. The corresponding MAPE values were 13.77%,

.58%, 7.91% for the three positive samples, and 29.18%, 2.25%,

4.98% for NCs. The dynamic trends of the forecasting curves were anal-

gous to the true plots of positive samples #2, #3 ( Fig. 6 b, c) and neg-

tive control #2, #3 ( Fig. 6 e, f). However, the prediction made based

n the LSTM methods showed rather a large discrepancy from the true

urves for both positive sample #1 and NC #1. Notably, for this case

f NC#1, the deep learning model predicted the output to be negative

hich coincided with the real results. A potential explanation is that

ome of the reagents may have evaporated in the first 20 cycles, as indi-

ated by the true data curve ( Fig. 6 d). After reagents were introduced to

he paper chips, the background fluorescence of the paper was known

o be suppressed. Nevertheless, if the device was improperly packaged,

he thermal cycling process could cause the paper to dry due to evapora-

ion, thus inducing background fluorescence. After the paper completely

ried out, the fluorescent signal increase rapidly due to the paper back-

round intensity. Furthermore, the magnitude of this false signal was
482 
ot on the same scale as obtained from actual PCR tests. Consequently,

e can conclude that the predictive performance by the LSTM algorithm

as better than that of vanilla RNN but still has room for improvement.

Finally, Mean Rn values at the end-point predicted by stacked GRU

 Fig. 7 ) for sample and NC tests were 3239.87, 4110.54, 6821.57, and

3.92, 2302.53 504.56, respectively. Correspondingly, MAPE values

ere 3.57%, 1.18%, 1.65% for the three positive samples, and 29.1%,

.6%, 13.25% for NCs by GRU-based prediction. The dynamic trends of

redicted curves were in good agreement with the true plot for all posi-

ive and negative samples ( Fig. 7 ) except the NC #1 ( Fig. 7 d). The offset

henomenon in Fig. 7 d has been discussed above. Here, we noticed a

inearly increasing trend in the true plot as shown in NC #2 test. Al-

hough the end-point values were relatively high compared with other

C tests, they were still well below the end-point values of the sample

ests. Therefore, the monotonically increasing of signals was not caused

y nucleic acid amplification. This downward trend was also found in

he other two NC tests using the GRU model, which could be easily con-

trued as a negative control. Thus, based on the deep learning prediction

ethod, anomalous data from pseudo reactions were more likely to be

ecognized as a negative output. To sum up, the GRU model was highly

ccurate for quantitative analysis and was well-suited for interpreting

nformation from PCR tests. For qualitative analysis, the deep learning

odel can also make an accurate prediction in a binary format. Mea-

urements of prediction accuracy using MAPE, MAE, and SMAPE are

hown in Table S2. 

As seen in Fig. 7 , the standard deviations (SD) of predicted data were

46.89, 192.17, and 271.97 by positive testing results, and 5.97, 119.66,

5.47 by NC tests. After 10 repeated tests, all SD values were lower by

ore than an order of magnitude of the output, indicating excellent

eproducibility. The robustness of measurements was also evaluated by

nterpreting results regardless of the experiences of the manipulator per-

orming or reviewing the test. As a result, the machine intelligence aided

n-chip qPCR has the potential to achieve highly automatic and robust

iagnostics. 

.4. Early prediction 

In general, accuracy is the most significant evaluation criterion. At

he same time, rapid screening and detection of a pathogen at the be-

inning of an unknown infectious disease is critical. The most attrac-

ive merit of AI-aided on-chip qPCR is the rapidness or less turnaround

ime for each assay. For instance, for SARS-CoV-2 detection, no quanti-

ative assays have yet received Emergency Use Authorization (EUA) by

he Food and Drug Administration (FDA). There is also no international
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Fig. 6. The real (in light blue) and predicted (in gradient orange) curves consisted of trained, tested, and predicted values by the long short-term memory 

method. (a) to (c) from positive samples. (d) to (f) from negative samples. 

Fig. 7. The real (in light blue) and predicted (in gradient orange) curves consisted of trained, tested, and predicted values by the gate recurrent unit 

method. (a) to (c) from positive samples. (d) to (f) from negative samples. 
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tandardization available, which is necessary for quantitative assays. In

his scenario, predictive analytics should target an optimum balance be-

ween earliness, which is an ability to provide a decision early, and ac-

uracy. 

In the above accuracy study, we employed deep neural networks for

redicting data in the latter sequence from a given cycle number (21, 22,

r 25). Here, for revealing the earliness of prediction by this approach,

e took positive sample #3 which had a nearly standard sigmoid shape

nd NC #3 for demonstrative study. Since the end-point value reflect-

ng final reaction yields is a critical indicator for the determination of

ositive or negative results, the correlation of early cycle numbers with

nal fluorescent intensities was obtained as shown in Fig. 8 . For the

ositive sample ( Fig. 8 a, c), predicted intensity at the endpoint (the

5 th cycle) was consistently lower ( ∼1000) compared with the inten-

ity value before the 13 cycles. Then, the predicted value raised rapidly

hen the 13 th cycle data was fed to the train/test dataset of the deep

earning model. The average output value was 6406.02 which was com-

arable to the true value of 6984. After this, the predicted value gently

ecreased for a short period ranging from the 15 th to the 17 th cycle fol-

owed by rising again. When data from the 20 th and 21 st cycles were en-

ered, predicted values were found to be in good agreement with the true
ata. U  

483 
Based on the empirical data, a criterion is defined for qualitative

rediction: a sample can be determined as positive when the intensi-

ies at a cycle and the subsequent two cycles exceed a threshold. Here,

e use Rn = 3000 as a threshold which is reasonable considering the

ata shown in Fig. 3 a. Following the criterion, the sample can be deter-

ined as positive at the end of the 13 th cycle, thus effectively shortening

he qPCR time duration by 67.5%. Considering the time cost of an on-

hip PCR was limited to below 40 min, the turnaround time of AI-aided

icrofluidic assay was merely about 12 min. The applicability can be

xtended further because the dynamic or real-time nature of AI-based

rediction will certainly offer knowledge before the end of reactions.

oreover, for a quantitative study, the criterion can be explained as: a

ycle number can be determined as the critical number when the inten-

ity at the cycle and the subsequent two cycles are all above the thresh-

ld. Output values predicted at the critical cycle were comparable to the

rue data. The deep learning model can be further improved by training

ore datasets. Keeping experimental settings and operation procedures

onsistent, target loads in different reaction units can be compared us-

ng the discussed critical cycle values. Therefore, the quantification of

ntragroup assays can be performed. Similarly, the cycle-dependent out-

ut of NC predicted by GRU-based networks is presented in Fig. 8 b, d.

sing the identical criteria, the sample can be safely seen as negative
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Fig. 8. Early prediction tests. (a) Correlation of early cycle number with predicted intensity at the end of the 35 th cycle (positive sample). (b) Correlation of early 

cycle number with predicted intensity at the end of the 40 th cycle (negative sample). (c) Dynamic prediction based on medium cycle number and quantification 

cycle-based criterion. (d) Dynamic prediction based on medium cycle number (#25) and negative determination. 

Fig. 9. Parameter assessment tests. (a) Comparison study of time cost by 11 groups using gate recurrent unit (GRU) method. (b) Comparison study of train and 

test loss by 11 groups using GRU. (c) Comparison study of deviations of end-point output by 11 groups using GRU. 
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t the end of the 35 th cycle. Besides end-point values illustrated here,

ore data in sequence are presented in Fig. S4. 

Theoretically, considering the definition of baseline and threshold

y conventional qPCR analysis [41] , the Cq value can be easily affected

y the parameters set by the operator or software of the instrument.
484 
t should be worth noting that the Cq value has shown inconsistency

mong assays most recently [42] . Furthermore, it is difficult for the con-

entional qPCR to calculate Cq during reaction in a real-time manner.

inally, the existing laboratory or clinical qPCR tests usually output Cq

alue on the scale of a whole test without automatic discrimination of
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ndividual reactions. By contrast, the AI-aided method can perform in-

uitive and accurate real-time analytics promoting a novel paradigm of

PCR analysis independent of Cq. Also, the method is capable of fore-

asting the final output of qPCR and the trend of amplification curves be-

ore end-point Cq calculation. Most importantly, the prediction method

ully explored the dynamics or signal features of each reaction, and thus

his theoretical innovation will assist scientists and physicians to evalu-

te the individual variation. 

.5. Parameter assessment 

Currently, there are few standardizations and guides on hyperparam-

ter tuning for AI methods. We observed the number of interpolated data

nd the input length of the data series affected the calculation speed and

ccuracy most significantly. Thus, we performed a trial process to fur-

her evaluate the chosen parameters of the GRU-based neural network.

arameter setting details are listed in Table S3. In brief, 11 data groups

ere built containing the number of interpolated data ranging from 2

o 600. For each interpolation, various input lengths ranging from 1 to

0 were used. The time cost of a single run, train and test loss, and vari-

nce between true data and the predicted at the end-point were studied

mong the groups ( Fig. 9 ). 

With interpolation data increasing, time consumption for each fore-

asting run also increased and became more apparent for group #8.

ithin a group, more input data also takes more computing power to

rocess. On the other hand, the MSE value decreased with increasing

ata quantity, especially for the test process. This indicates an improved

raining and validation accuracy by using a larger dataset. Then, offsets

etween true data and predicated value became optimized at group #3,

hich included 10 interpolation data with input lengths of 4 or 5. The

ffset started to slowly rise with dataset capacity after group #3. The re-

ults consolidate the parameter setting of the neural network by which

he run time for a single PCR test was 50 to 57 s, which was compara-

le to a PCR cycle. Notably, the time cost can be decreased further by

athering more computing resources. 

Finally, we investigated the overfitting issue based on the selected

RU model. The impact of input cycle number (i.e. data for training

nd testing) on overfitting in the deep learning model was studied. MSE

alues at the 40 th epoch on loss function curves of the 83 samples were

lotted against input cycle numbers as shown in Fig. S5. Overall, both

he training loss and validation loss decreased with the cycle number

sed for prediction. Using data by 10 or 12 qPCR cycles, the training

oss is much lower than validation loss by an order of magnitude. In this

ase, overfitting may exist and the prediction results had low accuracy.

hen cycle numbers increased to between 14 and 18, variations be-

ween the two-loss functions reduced to the same magnitude except for

 few outliers. Then, training loss became similar to but slightly lower

han validation loss when data included 20 cycles or more. Also, in this

cenario, values of outliers were restricted below 0.001. Considering

PCR signals observed by this work were on the magnitude of 1000

 Fig. 3 a) and the data normalization process, the overfitting had been

ffectively restrained by the parameters settings. 

. Conclusion 

This work leverages various methodologies from multiple dis-

iplines, including precision manufacturing, instrument technology,

olecular detection, and bioinformatics, to provide perspectives and

nsights beyond the scope of a single scientific area. A novel AI-aided

n-chip approach to detect RNA templates of the SARS-CoV-2 ORF1ab

ene target was presented. μPADs that are compatible with the commer-

ial qPCR machine were developed for on-chip data acquisition. qPCR

ata were delivered to three deep neural networks consisting of stacked

NN, LSTM, and GRU. GRU had the best performance in terms of accu-

acy and earliness. Qualitative forecasting became available as early as

3 cycles indicating an improvement of PCR testing efficiency of 67.5%
485 
s the turnaround time was reduced to 12 min. Accurate prediction of

nd-point value and dynamic trend of qPCR curves were obtained by

RU around the 20 th cycle. The mean absolute percentage error by the

RU model was 2.1%. Additionally, the model parameter assessment

tudy indicated that prediction accuracy improved along with the num-

er of datasets. We also empirically proposed a calculation method for

btaining a critical cycle for quantitative analysis of intra-assay. The

resented approach was the first to integrate AI for on-chip qPCR data

nalysis and it enabled novel predictive analytics for the diagnosis of

nfectious diseases. The approach was capable of forecasting the final

utput and trend of qPCR independent of end-point Cq calculation but

ully exploring the dynamics or intrinsic features of each reaction. This

nnovation may assist the whole society to accelerate the response to

ovel disease outbreaks. AI-aided analytics is universally applicable and

an be extended to multiple areas of fundamental research. Nowadays,

oint-of-care testing (POCT) and personalized medicine (PM) are be-

oming more realistic with the growth of new diagnostic and informat-

cs methods. In the future, integration of AI-aided diagnosis, POCT, PM

ith the internet of things (IoT) concept could be valuable to pursue. 
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