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Larvae of the insect Galleria mellonella are increasingly being used for studying

pathogenic microbes and their virulencemechanisms, and as a rapid model for screening

novel antimicrobial agents. The larvae (waxworms) are most frequently infected by

injection of pathogenic organisms into the haemocoel through the insect’s prolegs. The

mostly widely usedmethod for restraining the waxworms for injection is by grasping them

between the operator’s fingers, which puts the operator at risk of needle stick injury,

an important consideration when working with highly pathogenic and/or drug-resistant

microorganisms. While use of a stab proof glove can reduce this risk of injury, it does

so at the loss of manual dexterity and speed, resulting in a more labor-intensive, and

cumbersome assay. We describe a simple cost effective device (the so-called “Galleria

Grabber”) for restraining waxworms for injection that keeps the operator’s fingers clear

of the needle thus reducing the risk of injury.
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INTRODUCTION

Larvae (waxworms) of the Greater wax moth Galleria melonella have become a widely used
surrogate host for studying pathogenic microbes. In recent years, they have been used for studying
virulence mechanisms, investigating differences between clinical isolates as well as for preliminary
investigation of the efficacy of antimicrobial compounds, for a wide range of both Gram-positive
and Gram-negative bacteria (Joyce and Gahan, 2010; McLaughlin et al., 2012; Ramarao et al., 2012;
Loh et al., 2013; Thomas et al., 2013; Williamson et al., 2014; Adamson et al., 2015; Champion
et al., 2016; Johnston et al., 2016; Moreira et al., 2016; Nale et al., 2016; Yang et al., 2016), fungi
(Alcazar-Fuoli et al., 2015; Forastiero et al., 2015; Borman et al., 2016; de Lacorte Singulani et al.,
2016; Frenkel et al., 2016; Gago et al., 2016; Santos et al., 2016), and viruses (Garzon et al.,
1978; Buyukguzel et al., 2007; Özkan and Coutts, 2015). The use of waxworms as a model host
has many advantages. The waxworms themselves are cheap and easy to obtain from commercial
insect suppliers, and can be housed in large numbers to allow for greater study sizes at low cost.
Waxworms possess an innate immune system that contains many analogous functions to that
seen in humans, including phagocytosis and the production of antimicrobial peptides and reactive
oxygen and nitrogen species (Wojda, 2016). Unlike other non-mammalian model organisms,
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such as Caenorhabditis elegans, Danio rerio, and Drosophila
melanogaster (Glavis-Bloom et al., 2012; Arvanitis et al., 2013;
Panayidou et al., 2014; Lopez Hernandez et al., 2015), waxworms
can be incubated at 37◦C which allows for the study of clinically
relevant human pathogens at a temperature that mimics the
human host. Finally, as insects, G. mellonella are not currently
subject to the same ethical restrictions that small mammalian
models are, meaning there is a low barrier to entry for researchers
wishing to move their studies into a model host.

Infection of waxworms is typically carried out on 5th instar
insects, when the waxworms are at their largest, typically around
2 cm in length and 100mg in weight. The most common method
of infection is by injection into the haemocoel through the
last proleg of the insect; methods for injection vary between
laboratories. One method is to immobilize the needle itself and
then place the waxworm onto the needle for injection. Another
more favored method is to immobilize the waxworms between
the operator’s fingers (Fuchs et al., 2010) and place the needle
into the insect’s proleg, lifting the needle away from the operator
with the insect attached before pushing the plunger on the
syringe. Both of these injection techniques present a hazard to
the researcher and can result in needle stick injury and possible
infection.

A recent article highlighted the use of a stab-proof glove to
reduce the chance of this type of injury while immobilizing the
waxworms over a pipette tip fixed to some paper (Harding et al.,
2013). We have tried this technique and found that, while safer
for the operator, using a stab-proof glove reduces the efficiency of
injection, from 3–4 to 1 infection per minute, resulting in a lower
injection rate and a more labor-intensive assay. Because of this,
we investigated the possibility of using a simple restraining device
to hold waxworms in place for injection, in a way that removes
the operator’s hand from the vicinity of the needle, allowing for
maximum mobility, and safety of the operator.

MATERIALS AND METHODS

Preparation of Bacteria
The Staphylococcus aureus isolate XEN36 (Francis et al., 2000)
(Perkin Elmer) was grown overnight with shaking at 200 rpm
in Tryptic Soy broth (Oxoid) at 37◦C. Cells were washed twice
in phosphate buffered saline (PBS) (Sigma-Aldrich) and then
resuspended in PBS to an optical density at 600 nm (OD600)
of 1, equivalent to ∼5 × 109 CFU ml−1. Resuspended cultures
were serially diluted and plated onto Tryptic Soy agar (Oxoid) to
retrospectively determine the bacterial counts used for injection.
Inoculation doses were drawn into 1 ml ultra-fine (29 gauge)
needle insulin syringes (BD, Wellington) for injection into the
waxworms. Groups of waxworms were injected with 20µl of
either phosphate-buffered saline (PBS) or ∼5 × 107, 5 × 108, or
5× 109 CFU ml−1 S. aureus XEN36.

Selection, Infection, and Monitoring of
G. mellonella Waxworms
Fifth instar waxworms were selected based on consistency in
size and split into eight groups of 12. Four groups were injected
with either PBS or doses of 106–108 CFU S. aureus XEN36 using

the most common technique of grasping the waxworms between
the operator’s thumb and index finger and injecting into the
waxworm’s last proleg. The remaining four groups were injected
with either PBS or doses of 106–108 CFU S. aureus XEN36
using the newly described restraining device (which we have
dubbed the “Galleria Grabber”), which comprises a 12 × 9 cm
kitchen sponge and a large bulldog clip (∼50 cm) (Figure 1A).
To comfortably restrain the waxworms, the sponge was folded
in half and secured using the bulldog clip (Figure 1B). The
open ends of the folded sponge were peeled back and held
in place (Figure 1C). Next, a waxworm was placed within the
sponge and held in place while the open end of the sponge was
released (Figure 1D). Once the waxworm was securely held in
place, the insulin syringe was inserted into the haemocoel via the
insect’s last proleg (Figure 1E). Once the needle was in place the
waxworm was released from the restraining device (Figure 1F).
If the needle is correctly placed, the waxworm remains attached
to the needle of the syringe. Once the needle had been securely

FIGURE 1 | Injection of waxworms using a novel restraint device. The

“Galleria Grabber” restraint device is comprised of a 15 mm thick sponge and

bulldog clip (A). The sponge is folded in half lengthways and secured within a

bull dog clip with the open end facing outwards (B). The open ends of the

folded sponge are peeled back and held in place (C). The waxworm to be

injected is placed within the sponge and held in place while the open end of

the sponge is released. The closing of the sponge secures the waxworm in

place for injection (E). Once the needle is placed, the syringe is lifted with the

waxworm in place and the plunger is pushed to inject the desired inoculum (F).
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FIGURE 2 | Waxworms (n = 12 per group) were infected with varying

concentrations of S. aureus XEN36 or phosphate-buffered saline (PBS)

by injection into the haemocoel via the last proleg while restrained

either between the thumb and index finger of the operator (solid lines),

or using the “Galleria Grabber” restraint device (dashed lines), and

survival measured over 5 days.

inserted into the waxworm, the insect was removed from the
restraining device and the plunger of the syringe pushed down
to inject the desired inoculum.

Once injected, waxworms were housed in individual wells of
24 well-tissue culture dishes (Nunc) with the lids taped down
to ensure against escape. These dishes were placed inside a
secondary container to ensure containment.Waxwormmortality
was monitored over 5 days.

RESULTS AND DISCUSSION

We observed no differences in the infection dynamics between
the groups of waxworms injected with S. aureus XEN36 after

restraint using the novel “Galleria Grabber” device described
compared to restraint by holding the waxworms between the
operator’s thumb and index finger. For both restraint techniques,
we observed no mortality from the waxworms injected with PBS
(Figure 2). In contrast, the majority of waxworms injected with
∼108 CFU S. aureus XEN36 died within 24 h (Figure 2). We
observed a dose dependent mortality for waxworms injected with
S. aureus XEN36, with 66% of waxworms injected with ∼105

CFU succumbing to infection (Figure 2). No mortality was seen
after injection with 106 CFU S. aureus XEN36 (Figure 2).

The “Galleria Grabber” allows for easy injection of a large
number of waxworms (∼3 per minute), while greatly reducing
the opportunity for the operator to suffer a needle stick injury.
With the increasing popularity of waxworms as a model host
for studies involving dangerous human pathogens (Champion
et al., 2016), including clinical and/or drug-resistant isolates,
protecting researchers from accidental laboratory infection is
of great importance. While the use of a stab-resistant glove
addresses this issue, it does compromise the speed at which
waxworms can be injected. With this new restraint method,
we were also able to inject smaller waxworms with ease.
Most importantly, the new methodology described removes
the operator’s hand from the vicinity of needles loaded with
pathogenic/drug-resistant microbes, allowing for maximum
mobility and safety of the operator without compromising the
speed of the assay.
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