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As of December 2020, since the beginning of the year 2020, the COVID-19 pandemic has claimed worldwide more than 1 million
lives and has changed human life in unprecedented ways. Despite the fact that the pandemic is far from over, several countries
managed at least temporarily to make their first-wave COVID-19 epidemics to subside to relatively low levels. Combining an
epidemiological compartment model and a stability analysis as used in nonlinear physics and synergetics, it is shown how the
first-wave epidemics in the state of New York and nationwide in the USA developed through three stages during the first half of
the year 2020. These three stages are the outbreak stage, the linear stage, and the subsiding stage. Evidence is given that the
COVID-19 outbreaks in these two regions were due to instabilities of the COVID-19 free states of the corresponding infection
dynamical systems. It is shown that from stage 1 to stage 3, these instabilities were removed, presumably due to intervention
measures, in the sense that the COVID-19 free states were stabilized in the months of May and June in both regions. In this
context, stability parameters and key directions are identified that characterize the infection dynamics in the outbreak and
subsiding stages. Importantly, it is shown that the directions in combination with the sign-switching of the stability parameters
can explain the observed rise and decay of the epidemics in the state of New York and the USA. The nonlinear physics
perspective provides a framework to obtain insights into the nature of the COVID-19 dynamics during outbreak and subsiding
stages and allows to discuss possible impacts of intervention measures. For example, the directions can be used to determine
how different populations (e.g., exposed versus symptomatic individuals) vary in size relative to each other during the course of
an epidemic. Moreover, the timeline of the computationally obtained stages can be compared with the history of the
implementation of intervention measures to discuss the effectivity of such measures.

1. Introduction

Within less than one year, the coronavirus disease 2019
(COVID-19) pandemic has claimed more than 1million lives
[1]. In view of this tragic number, it is important to study the
regions and periods in which the COVID-19 epidemics at
least regionally and temporarily subsided. In this context,
studying the rise and decay of COVID-19 epidemics from
the related perspective of nonlinear physics and synergetics
allows to address the emergence and subsiding of the disease
in a unifying way that helps to understand the possible
impacts of COVID-19 intervention measures. According to

the World Health Organization, the COVID-19 pandemic
originated from Wuhan city, China, in December 2019 [2].
The disease spread quickly through China and beyond. As
of the end of the year 2020, the disease has affected nations
on all seven continents of the world [1]. Intervention mea-
sures ranging from face mask mandates to the lockdown of
businesses have been put in place worldwide and have shown
the potential to slow down the spread of the disease [3–6]. In
this context, epidemiological measures and parameters have
been considered such as the reproduction number and the
effective contact rate, where the reproduction number is
defined as the expected number of infected individuals
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directly generated by a typically infected person [7], and the
effective contact rate is the rate with which effective contacts
(contact leading to an infection) are made. A decrease of the
reproduction number or the effective contact rate due to
the implementation of an intervention measure indicates
that the measure at hand works successfully. In fact, vari-
ous studies have used those measures in order to shown
that the implementation of intervention measures indeed
has reduced the spread of COVID-19 [4, 8, 9]. In particu-
lar, it has been suggested to consider so-called active inter-
vention policies that permanently monitor the infection
status of a population and adjust continuously the inter-
vention measures according to the observed status [10,
11]. With the help of such a dynamic feedback system, it
is possible to make sure that the health care system of a
country under consideration is not overburdened by the
hospitalization of COVID-19 patients. However, the
COVID-19 pandemic is affected by many factors [12, 13]
including environmental factors such as the level of air pol-
lution [12]. In particular, the particulate matter levels in the
air may have an effect on the infection dynamics [13].
When considering the implementation of intervention
measures, in general, and the shutdown of businesses, in
particular, one should keep in mind the typically negative
effects on the economics [14].

Among the many ways to describe the time course of
COVID-19 cases (e.g., by means of autoregressive integrated
moving average models [15]), epidemiological compartment
models such as susceptible-exposed-infected-recovered
(SEIR) models [16, 17] have been important tools to under-
stand COVID-19 data and to examine the impact of inter-
vention measures. Such SEIR models and generalized SEIR
models have been used to examine COVID-19 epidemics in
various countries around the globe [18–23]. For the current
work, the study by Ngonghala et al. [24] is of particular inter-
est. In this study, a generalized SEIR model was developed.
The model involves nonquarantined and quarantined indi-
viduals. Accordingly, it accounts for susceptible (Su), exposed
(Eu), and symptomatic infectious (Iu) nonquarantined or
nonisolated individuals and susceptible (Sq), exposed (Eq),
and symptomatic infectious (Ih) quarantined or isolated
individuals. For susceptible and exposed individuals, the
attributes quarantined versus nonquarantined are used. In
contrast, for symptomatic infectious individuals, the attri-
butes isolated versus nonisolated are used. In particular,
hospitalized symptomatic individuals belong to the compart-
ment Ih, whence the subindex “h.” Note that the compart-
ment of isolated symptomatic individuals does not contain
intensive care unit (ICU) cases. The model describes ICU
COVID-19 patients (Iicu) as their own class. Moreover,
asymptomatic infectious COVID-19 cases (Ia) constitute a
compartment of their own. Finally, the model involves the
compartment (R) of individuals recovered from COVID-19
and the compartment of COVID-19 associated deaths (D).
The infectious compartments are Iu, Ia, and Ih. Figure 1 pre-
sents the compartments and a flow diagram describing the
transitions of individuals between the compartments. For
the sake of brevity, the phrase symptomatic infectious indi-
viduals will be abbreviated by symptomatic individuals.

As indicated in Figure 1, nonquarantine susceptibles (Su)
get into contact with an individual of one of the infectious
compartments and make one of three possible transitions.
They get infected such that they become exposed individuals
and are quarantined (Eq). They get infected such that they
become exposed individuals but are not quarantined (Eu).
They do not get infected but are quarantined (Sq). The quar-
antined susceptible individuals (Sq) either leave quarantine
and become nonquarantined susceptibles (Su) or they are
infected during quarantine and become quarantined exposed
individuals (Eq). Nonquarantine exposed individuals (Eu)
either become quarantined exposed individuals (Eq), isolated
symptomatic individuals (Ih), nonisolated symptomatic indi-
viduals (Iu), or asymptomatic infectious individuals (Ia). In
contrast, quarantine exposed individuals (Eq) either become
isolated symptomatic individuals (Ih) or asymptomatic infec-
tious individuals (Ia). As far as nonisolated symptomatic
individuals (Iu) are concerned, they either become isolated
cases (Ih), recover (R), or decease due to COVID-19 (D). In
contrast, isolated symptomatic individuals (Ih) either become
ICU cases (Iicu), recover (R), or decease due to COVID-19 (D).
ICU cases either recover (R) or decease due to COVID-19 (D).
Finally, asymptomatic infectious individuals (Ia) either
recover (R), decease due to COVID-19 (D), or develop symp-
toms and become isolated symptomatic cases (Ih). As men-
tioned above, the model by Ngonghala et al. [24] is aimed at
distinguishing between nonquarantined or nonisolated indi-
viduals, on the one hand, and quarantined or isolated individ-
uals, on the other. To this end, in Figure 1, the compartments
that refer to quarantined or isolated individuals have been
shaded in gray.

Epidemiological models as reviewed above have been
analyzed frommathematical [25, 26] and numerical perspec-
tives [27]. However, relatively little emphasis has been put on
the nonlinear physics underlying the emergence as well as the
subsiding of those epidemics. Accordingly, in general, an
infectious disease emerges in a population due an instability:
the infection dynamical system evolves away from an unsta-
ble disease-free fixed point [28]. An illustrative example of a
mechanical system exhibiting an instability (or an unstable
fixed point) is a ball on the top of hill. In general, instabilities
are characterized by stability parameters, called eigenvalues.
Any instability exhibits at least one positive stability parame-
ter (or eigenvalue) [29–31]. Within the nonlinear physics
perspective [29], in general, and the framework of synergetics
[30, 31], in particular, this stability parameter determines the
disease outbreak under consideration. Using the synergetics
framework, recently, a three-stage model for COVID-19 epi-
demic has been developed that demonstrates that both the
emergence and the subsiding of a COVID-19 epidemic are
determined by the aforementioned positive stability parame-
ter [32]. Similar stage models have been used in a study on
the COVID-19 epidemic in Italy [9] and in a multicountry
study addressing the COVID-19 epidemics in China, the
USA, and a number of European countries [6]. The three-
stage model when applied to describe COVID-19 associated
deaths is illustrated schematically in Figure 2. The main panel
in Figure 2 shows schematically the time course of the
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cumulative COVID-19 associated deaths (here, over a period
of one month) during the three model stages of an epidemic
under consideration. The stages are denoted by S1, S2, and S3
and are characterized by an exponential increase (S1), a lin-
ear increase (S2), and a deaccelerating increases (S3) of
COVID-19 deaths. The underlying circumstances of the
infection dynamical system that produce those three charac-
teristic dynamical regimes can be described in terms of the
largest (or maximal) stability parameter of the system
(denoted by λmax). The first stage (S1) with exponentially
increasing COVID-19 deaths is consistent with a positive
maximal parameter, the linear stage (S2) is consistent with
a maximal parameter equal to zero, and the subsiding stage
(S3) with a maximal parameter that assumes a negative num-
ber. The two inserts on the top of Figure 2 illustrate schemat-
ically the characteristic dynamics in the outbreak (S1) and

subsiding (S3) stages as seen in the epidemiological state
space under consideration. In general, a n-dimensional state
space spanned by n variables X1,⋯, Xn is considered. Under
appropriate conditions, in stage 1, there is a specific direction
related to the maximal positive stability parameter λmax. This
direction can be described with the help of a vector vk that is
called an eigenvector. In general, a system described in an n
-dimensional state space can exhibit up to n different stability
parameters that come with n different directions (i.e., eigen-
vectors), which constitute the key directions of the system
at hand. As far as the specific vector vk related to the positive
stability parameter is concerned, the vector typically is
referred to as unstable eigenvector because it is related to
an instability [29–31]. As long as the initial epidemiological
state is sufficiently close to the disease-free state, based on
general theoretical considerations [31, 32], it follows that
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Figure 1: Infectious disease model developed in Ref. [24].
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Figure 2: Three-stage model as developed in Ref. [32].
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the infection dynamics will evolve during the COVID-19
outbreak along that particular direction. In a similar vein,
under appropriate conditions, during the subsiding of the
epidemic (S3), the direction vk related to the maximal (now
negative) stability parameter characterizes the infection
dynamics. Accordingly, the infection dynamics subsides
and converges to the disease-free state along the key direction
specified by vk. In Ref. [32], the three-stage model was stud-
ied in the context of a two-dimensional epidemiological state
space (i.e., the case n = 2 was considered). In the current
study, a higher-dimensional state space will be considered.

Using the aforementioned three-stage modelling
approach, the study [32] suggests that the lockdown inter-
vention measures that were implemented during the spring
months of 2020 in 15 out of 20 European countries induced
a switch of the positive stability parameter of their epidemio-
logical systems to a negative one. This switch will be called
the sign-switching phenomenon. For those 15 countries,
the COVID-19 free fixed point was stabilized, and the daily
new infections decayed towards relatively low levels [32].

In the present study, the three-stage modelling approach
is used to analyze the epidemics in the state of New York and
nationwide in the USA during the first half of the year 2020,
in which for both regions the infection dynamics exhibited a
first-wave character. The 10-variable model by Ngonghala
et al. [24] reviewed above will be used. The three-stage anal-
ysis demonstrated schematically in Figure 2 will be con-
ducted in a five-dimensional subspace of the model (i.e., the
case n = 5 will be considered). The model-based analysis will
demonstrate that the first-wave epidemics in those regions
showed the sign-switching phenomenon reported from the
aforementioned European countries. It will be argued that
this kind of stabilization was at least in part due to the inter-
vention measures implemented in the state of New York and
nationwide in the USA. In doing so, the study goals are two-
fold. The study is aimed at analyzing the rise and decay of the
COVID-19 epidemics in the USA and the state of New York
in the first half of the year 2020 by combining epidemiologi-
cal modelling and nonlinear physics. In addition, within this
combined approach, the study is aimed at addressing the effi-
cacy of intervention measures.

2. Material and Methods

2.1. Data. The study evaluated data of COVID-19 associated
deaths occurring regional in the state of New York and nation-
wide in the USA. COVID-19 death data are from Ref. [33].

2.2. Measures. Following Ref. [24], the current study consid-
ered two related measures: cumulative COVID-19 associated
deaths and daily deaths.

2.3. Model Formulation. In the current study, the generalized
SEIRmodel developed in Ref. [24] and described in the intro-
duction (see also Figure 1) was used to describe the time
course of the COVID-19 epidemics in the state of New York
and nationwide in the USA. For the present study, the recov-
ered individuals can be neglected as will be clear below. The
evolution equations read [24] as follows:

dSu
dt

= −F Su + k1 Sq, ð1Þ

d Sq
dt

= 1 − pð ÞFSu − θjF + k1
� �

Sq, ð2Þ

d Eu

dt
= 1 − qð ÞpFSu − k2 Eu, ð3Þ

dEq

dt
= qpFSu + αEu + θjF Sq − k3 Eq, ð4Þ

dIu
dt

= f1σu Eu − k4 Iu, ð5Þ

dIh
dt

= f2σu Eu + rσq Eq + ϕ Iu + σaIa − k5 Ih, ð6Þ

dIa
dt

= 1 − f1 − f2ð Þσu Eu + 1 − rð ÞσqEq − k6 Ia, ð7Þ

d Iicu
dt

= υ Ih − k7 Iicu, ð8Þ

dD
dt

= δu Iu + δh Ih + δa Ia + δicu Iicu: ð9Þ

The model equations (1) to (4) involve the force of infec-
tion F [16] defined by [24].

F = β
Iu + ηa Ia + ηh Ihð Þ

N − θq Eq + Ih + Iicu
� � : ð10Þ

In equation (10), the variable N is the population size. In
the present study, following the arguments of previous works
[21, 32, 34], variations in N over time were neglected since
the observation period was relatively short and the variable
D at all times was much smaller than N . Equations (1) to
(10) involve the parameters p, q, f1, f2, θj, θq, α, σu, σq, ϕ, r,
ν, δu, δh, δa, δicu, ηa, ηh, k1,…,k7, and β, which are semiposi-
tive. Importantly, in Ref. [24], the parameter βwas used as an
effective contact rate measure that takes impacts of interven-
tion measures like physical distancing into account. How-
ever, in Ref. [24], the impact of wearing a face mask was
described by a separate mathematical factor. In contrast, in
the present study, the parameter β includes impacts of all
kind of intervention measures (including wearing face
masks) that lower the probability of an infection. For sake
of completeness, the description of all other parameters
together with their values is given in Table 1. For New York
state, N = 19,400,000 was used. For the USA, we put N =
331,000,000. A detailed description of the parameters can
be found in Ref. [24].

The disease-free fixed point of the model defined by
equations (1) to (10) is the state for which the solutions do
not change over time and for which there are neither exposed
nor infectious individuals in the population. In order to study
the outbreak of a novel infectious disease such as COVID-19,
it is typically assumed that the whole population is suscepti-
ble. Consequently, the disease-free fixed point is given by Su
=N and Sq = Eu = Eq = Iu = Ih = Ia = Iicu =D = 0. In general,
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fixed points can be asymptotically stable, neutrally stable, or
unstable [29]. For the current study, only the neutrally stable
and unstable cases are relevant. A fixed point is unstable
when the infection dynamics abandons the fixed point [29–
31] (recall the mechanical example of a ball placed on the
top of hill). In contrast, in the case of a stable fixed point,
the infection dynamics converges towards the fixed point. A
mechanical illustration of such a fixed point is a marble at
the bottom of a bowl. For a neutrally stable fixed point, there
is at least one dimension that features a continuous set of
possible states to which the infection dynamics can converge.
A mechanical example of a neutrally stable fixed point is a
marble sitting at some point at the bottom of a horizontally
oriented pipe. Since in what follows a relatively short period
will be considered, this dimension is given by the nonquaran-
tined susceptible individuals Su. When the epidemic has
completely subsided such that all infectious and exposed
individuals have either recovered or have deceased from
COVID-19, there is not a particular value that Su can assume
but Su can assume any value in an appropriately defined
interval (just as the aforementioned marble in the pipe can
rest at any point along the bottom of the pipe). In the rest

of the paper, stable will be understood as neutrally stable
for the sake of brevity. From previous work [24], it follows
that the disease-free fixed point is unstable if the effective
contact rate β is larger than a critical value βcrit and stable
if β is smaller than the critical value (for similar consider-
ations see also Ref. [21, 32]). The critical value can be
computed from

βcrit = k2k4k5k6
p Bu + ηa Ba + ηh Bhð Þ , ð11Þ

where Bu, Ba, and Bh are expressions of the model parameters
that can be found in Ref. [24]. As such, the epidemiological
model defined by (1) to (10) is a nonlinear dynamical system.
In order to study the dynamics close to the disease-free fixed
point, the nonlinearities can approximately be modelled by
means of linear functions [30, 31]. The linearized dynamical
system thus obtained can be described in terms of a lineariza-
tion matrix. This matrix characterizes the dynamical system
with respect to the original axes of the state space under con-
sideration (e.g., the axes labelled X1,⋯, Xn in the inserts of

Table 1: Description of model parameters and values as reported in Ref. [24].

Parameter Description NY value USA value

p Probability of infection per contact 0.8073 0.7163

q Proportion of being quarantined 0.2 Same as NY

f1 Proportion of exposed Eu who transition to Iu 0.4 Same as NY

f2 Proportion of exposed Eu who transition to Ih 0.2 Same as NY

θj Efficacy of quarantine 0.5 Same as NY

θq General efficacy of quarantine and isolation 1.0 Same as NY

α Quarantine rate of exposed Eu 0.1160/d 0.1065/d

σu 1/σu is incubation period of exposed Eu 0.1961/d Same as NY

σq 1/σq is incubation period of exposed Eq 0.1961/d Same as NY

ϕ Isolation rate of Iu 0.2/d Same as NY

r Proportion of exposed Eq who transition to Ih 0.7 Same as NY

ν Rate of progression to ICU case 0.083/d Same as NY

δu Death rate of nonisolated infectious Iu 0.015/d Same as NY

δh Death rate of isolated infectious Ih 0.015/d Same as NY

δa Death rate of asymptomatic cases Ia 0.0075/d Same as NY

δicu Death rate of ICU patients 0.0225/d Same as NY

ηa Reduced infectiousness for asymptomatic cases 0.5 Same as NY

ηh Reduced infectiousness for isolated cases Ih 0.5 Same as NY

k1 Removal rate of Sq 0.0714/d Same as NY

k2 Removal rate of Eu 0.3129/d 0.3026/d

k3 Removal rate of Eq 0.1961/d Same as NY

k4 Removal rate of Iu 0.3150/d Same as NY

k5 Removal rate of Ih 0.2230/d Same as NY

k6 Removal rate of Ia 0.3908/d 0.4563/d

k7 Removal rate of Iicu 0.1125/d Same as NY
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Figure 2). However, a new set of axes can be defined in terms
of the aforementioned key directions or eigenvectors (such as
the vector vk shown in Figure 2). In doing so, the matrix
characterizing the dynamics with respect to those new axes
assumes the simple form of a diagonal matrix. The diagonal
elements define mathematically the aforementioned stability
parameters or eigenvalues [30, 31]. When carrying out this
approach, by linearizing the model equations (1) to (10) at
the disease-free fixed point, the relevant 9 by 9 linearization
matrix can be obtained. For the stability of the fixed point,
the dynamics of the variables Iicu and D do not play a role
because they do not feedback into the linearized versions of
equations (1) to (7). Therefore, the relevant linearization
matrix is a 7 by 7 submatrix for the variables Sq, Su, Eu, Eq,
Iu, Ih, and Ia. From the matrix, the stability parameters char-
acterizing the dynamics close to the fixed point and the fixed
point as such can be determined. The 7 by 7 matrix exhibits
one parameter equal to zero due to the fact that demographic
terms in the model are neglected [21]. This results in the
aforementioned neural stability with respect to the variable
Su. The 7 by 7 submatrix also exhibits the stability parameter
−k1, which reflects that in the absence of any exposed or
infectious individuals the dynamics of Sq is given by dSq/dt
= −k1 Sq, see equation (2). That is, the quarantined suscepti-
bles decay exponentially because they leave quarantine. Con-
sequently, the stability of the fixed point is eventually
determined by the remaining 5 stability parameters. They
can be obtained from a 5 by 5 submatrix related to the
dynamics of the variables Eu, Eq, Iu, Ih, and Ia. The 5 by 5
matrix reads

L =

−k2 0 1 − qð Þpβ 1 − qð Þpβηh 1 − qð Þpηa
α −k3 qpβ qpβηh qpβηa

f1 σu 0 −k4 0 0
f2 σu rσq ϕ −k5 σa

1 − f1 − f2ð Þσu 1 − rð Þσq 0 0 −k6

0
BBBBBBBB@

1
CCCCCCCCA
:

ð12Þ

Note that stability parameters may assume complex
numbers that are composed of real and imaginary parts
[29]. With the help of the stability parameters, stability can
be mathematically defined. If the matrix L exhibits a positive
stability parameter or a parameter featuring a positive real
part, then the disease-free fixed point is unstable. If all
parameters are negative or have negative real parts, then
the disease-free fixed point is stable. From the aforemen-
tioned considerations, it follows that for β larger than βcrit
the 5 by 5 matrix exhibits at least one positive parameter
(or a parameter with positive real part), whereas for β smaller
than βcrit all stability parameters are negative (or exhibit
negative real parts). In the special case when β equals βcrit,
there is at least one parameter that equals zero, which is the
largest parameter. Consequently, the three cases (i) β > β
crit, (ii) β = βcrit, and (iii) β < βcrit correspond to the three
cases (i) λmax > 0, (ii) λmax = 0, and (iii) λmax < 0 of the
three-stage model reviewed in the introduction, see also
Figure 2. In other words, they correspond to the three stages

S1, S2, and S3. In this context, note that the critical condition
(ii), for which λmax = 0 holds, is referred to as the bifurcation
point of the system. Importantly, from dynamical systems
theory [29] and the theory of synergetics [30, 31], it follows
that slightly above the bifurcation point (i.e., β is slightly
larger than βcrit), there exist a key direction vk (see
Figure 2 again) related to the positive stability parameter
λmax that dominates the infection dynamics [21, 32] as dis-
cussed in the introduction. This direction is referred to as
the order parameter of the COVID-19 outbreak [21, 30,
31]. The direction vk can be tracked through different stages
of an epidemic (see Results). In particular, when the epidemic
subsides (presumably due to the impact of interventions), the
vector vk can describe the dominant direction of the decaying
infection dynamics in the epidemiological 5 variable spaces
(see Results).

2.4. Model-Based Data Analysis. Following the two studies
reviewed in the introduction, namely, (i) the study [32] on
a three-stage scheme of the first-wave COVID-19 epidemics
in 20 European countries and (ii) the study [24] in which
COVID-19 associated deaths have been used for fitting the
models (1)-(10), the three-stage scheme was used to fit
COVID-19 associated deaths from the state of New York
and the USA to the model defined by equations (1) to (10).
As mentioned above, data were obtained from Ref. [33]. As
illustrated in Figure 2, the three-stage scheme [32] consists
of an outbreak stage (stage 1), a critical stage (stage 2), and
a final stage (stage 3). From the previous discussion, it follows
that in the outbreak stage, β is assumed to be larger than
βcrit, the disease-free fixed point is unstable, and the cases
and deaths increase more or less exponentially. In the critical
stage, the COVID-19 epidemic is brought to some extent
under control such that β is close to the critical value βcrit
and the fixed point is about to become stable. Note that in
this stage the course of an epidemic typically exhibits a linear
increase rather than an exponential one [32]. In the final
stage, β drops below βcrit, the COVID-19 free fixed point
is stabilized (presumably due to intervention measures),
and the epidemic subsides. For more details, see Ref. [32].
As in Ref. [24], COVID-19 associated deaths were considered
starting March 1, 2020. Unlike Ref. [24], the whole 4 months
period fromMarch 1 to June 30 describing the first half of the
year 2020 was considered. During that period, both the data
from the state of New York and the nationwide USA data
showed first-wave epidemics (see Results). As in Ref. [32],
the parameter βwas estimated for stages 1 and 3 using a stan-
dard nonlinear fitting procedure to minimize the error
between the model predicted deaths (as described by the var-
iableD) and the observed deaths, while for stage 2 the param-
eter β was fixed at the critical value βcrit. All other model
parameters were taken from Ref. [24] and are listed in
Table 1. Note that the time points t1 and t2 of the beginning
of stages 2 and 3 were varied to find the optimal time points
that produced the best fit between model predicted and
observed deaths. Since the time points t1 and t2 were derived
from data, the analysis is regarded as a data-driven approach.
Stability parameters (i.e., eigenvalues) were determined from
the matrix L defined by equation (12). The COVID-19
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outbreak key directions (i.e., order parameters) were deter-
mined from matrix L in stage 1. Likewise, the key directions
(i.e., eigenvectors) determining the COVID-19 subsiding
were determined from matrix L in stage 3.

3. Results and Discussion

Figure 3 shows the data and modelling results for the state of
New York. Panel (a) presents the cumulative confirmed
deaths (gray circles) in the 4 months period from March 1
to June 30. The model fit is shown as well (solid black line).
The model captured the characteristic sigmoid shape of the
trajectory. The two vertical lines indicate the time points t1
and t2 of the beginning of stages 2 and 3 with t1 = 29 days
(March 30) and t2 = 31 days (April 1). Panel (b) shows the
daily new deaths as reported (gray circles) and obtained from
the model (solid black line). The time points t1 = 29 days and
t2 = 31 days are indicated as well, again, by vertical lines.
Taking panels (a) and (b) together, the model-based analysis
suggests that stage 2 was relatively short. Accordingly,
COVID-19 emerged in March 2020 in the state of New York
due to an instability (see below), and the outbreak was char-
acterized by a dramatic increase in COVID-19 associated
deaths. However, the infection dynamics changed within
March such that at the end of March the unstable disease-
free fixed point was about to become stable. The critical stage
2 was relatively short. Beginning of April, the disease dynam-
ics entered stage 3. The disease-free fixed point was stabi-
lized. Taking a conservative point of view, the analysis

suggests that at least in May and June the fixed point was sta-
ble. Panel (b) demonstrates the delay of the stabilization
effect on the trajectory of daily deaths. The tragic peak of
about 1000 new deaths per day occurred around days 35 to
40 (April 5 to April 10), that is, a few days after the infection
dynamics entered stage 3.

Panel (c) of Figure 3 shows the stability parameters (i.e.,
eigenvalues) obtained from the matrix L defined by equation
(12) for stages 1 (outbreak stage) and 3 (subsiding stage). As
expected, stage 1 was characterized by a set of values (circles
connected by solid lines) that showed a positive stability
parameter (here labelled k = 1), whereas stage 3 showed a
set of parameters (squares connected by a dotted line) that
were either real-valued and negative or had negative real
parts. This illustrates that (as expected) the disease-free fixed
point was unstable in stage 1 and stable in stage 3. Note that
in stage 1, all stability parameters were real-valued. In con-
trast, stage 3 showed a pair of complex-valued parameters
(k = 4 and k = 5). The real parts of such parameters are equal
[29–31] as can be seen in panel (c). Note that panel (c) only
presents the real parts of the stability parameters. Imaginary
parts are not shown. Qualitatively, panel (c) shows the
important sign-switching phenomenon that is required for
an epidemic to end [32]: a positive stability parameter
describing the instability of a virus-free epidemiological state
of a population under consideration turns into a negative
one. In this context, the estimated effective contact rates for
stages 1 and 3 were β = 1:81/d and β = 0:23/d, respectively,
with a critical value of βcrit = 0:43/d. As expected, β was

2

3

×104

1

0
0

D
ea

th
s

10050
Days since March 1

(a)

1000

500

0
0 50 100

N
ew

 d
ea

th
s

Days since March 1

(b)

1
–0.8

–0.4

0

0.4
Stage 1

Stage 3Ei
ge

nv
al

ue
 (1

/d
)

2 3 4 5
Label k

(c)
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epidemiological three-stage model (solid black line); (b) new daily deaths (reported and fitted); (c) eigenvalues (i.e., stability parameters)
of the matrix L defined by equation (12) in stages 1 (circles) and 3 (squares).
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larger than the critical value in stage 1 and smaller than the
critical value in stage 3.

In the first week of March 2020, the state of New York
confirmed the first COVID-19 cases. In the same week, the
first COVID-19 associated deaths were reported [33].
COVID-19 cases increased rapidly and so did the number
of COVID-19 associated deaths. In particular, around March
20, the death toll passed the 100 mark. As a reaction to the
COVID-19 outbreak, intervention measures were imple-
mented step-by-step. A few milestones are the declaration
of the state of emergency for the state of New York on March
7 [35], the prohibition of gatherings involving more than 500
people on March 12 [36], the partial, regional lockdown of
New York City on March 16 [37] that involved public school
closures and the closure of bars and restaurants, and finally
the full state-wide lockdown on March 20 [38] that involved
a state-wide stay-at-home order and effectively the closure of
all businesses except for essential businesses such as food
shops and pharmacies. This timeline of events matches to
some extent with the model-based data-driven analysis of
the COVID-19 epidemic in the state of New York reported
above. As reported above, around the end of March and the
beginning of April, the disease dynamics switched from stage
1 to stages 2 and 3. The partial lockdown of New York City
on March 16 and the state-wide lockdown on March 20 took
place two weeks and one week earlier, respectively. In line
with the literature on the effectiveness of intervention mea-
sures [3–5, 39], it is plausible to assume that at least in part
the intervention measures contributed to the qualitative
change of the infection dynamics from a dynamics character-
ized by an unstable COVID-19 free fixed point to a dynamics

characterized by a stable COVID-19 free fixed point. In other
words, it is plausible to assume that the decay of the effective
contact rate β below the critical value βcrit and related to that
the sign-switching of the parameter k = 1 (i.e., λmax) from a
positive to a negative sign was at least in part caused by the
intervention measures implemented in New York City and
the state of New York.

Figure 4 summarizes the COVID-19 associated deaths
reported from the entire USA and its model-based analysis.
Just as in Figure 3, panel (a) of Figure 4 presents the cumula-
tive confirmed deaths (gray circles) versus the model fit (solid
black line). Again, the model adequately described the sig-
moid shape of the trajectory. The time points t1 and t2 (indi-
cated by vertical lines) were given by t1 = 33 days (April 3)
and t2 = 38 days (April 8). Panel (b) shows the reported daily
new deaths (gray circles) and the model fit (solid black line)
with the time points t1 and t2 indicated as well. According
to panels (a) and (b), on the nationwide scale of the USA,
the stage 1 infection dynamics took place during the whole
month of March and was characterized by a nationwide dra-
matic increase of COVID-19 associated deaths. Around the
first week of April, the infection dynamics changed its char-
acter and entered stage 2, in which the fixed point was about
to become stable. The model-based analysis suggests that
stage 2 was relatively short (i.e., less than 1 week). The infec-
tion dynamics eventually entered stage 3, in which the fixed
point was stabilized (at least from this large-scaled perspec-
tive that addresses the entire USA). According to our
model-based analysis, the disease-free fixed point was stable
at the end of the first half of the year 2020, that is, in May
and June 2020. This is consistent with the more or less
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Figure 4: COVID-19 associated deaths reported from the USA fromMarch 1 to June 30, 2020, and model-based analysis. (a–c) as in Figure 3.
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monotonic decay of the daily new deaths in May and June
2020 as shown in panel (b). Just as in the case of the analysis
of the data from the state of New York, panel (b) of Figure 4
illustrates a delay of the effect of the stabilization of the
COVID-19 free state on the daily new COVID-19 associated
deaths. The daily death trajectory reached a high plateau of
about 2500 deaths per day during the period from days 37
to 55 (April 7 to 30), although (at least according to our
model-based analysis) the COVID-19 free fixed point was
stabilized already around the beginning of that plateau (i.e.,
around April 8). Finally, note that second and third waves
have been observed meanwhile in countries around the
world. Such second and third waves have also been observed
in the second half of the year 2020 on the nationwide scale of
the USA, which, however, is beyond the scope of this study.

Panel (c) of Figure 4 shows the stability parameters for
stages 1 and 3. Stage 1 featured one real-valued positive
parameter λmax (here labelled k = 1) indicating that the
disease-free fixed point was unstable. In contrast, stage 3 fea-
tured a set of values that were all negative or exhibited nega-
tive real parts. Importantly, the parameter k = 1 (i.e., λmax)
switched its sign from a positive to a negative value (sign-
switching phenomenon [32]), demonstrating the change in
stability of the disease-free fixed point from an unstable to
a stable one. Note that both stages featured pairs of
complex-valued parameters (labelled k = 4 and k = 5). The
model-based analysis produced estimated effective contact
rates of β = 1:38/d and β = 0:39/d for stages 1 and 3, respec-
tively, with a critical value of βcrit = 0:49/d. Consequently, β
was larger than βcrit in stage 1 and smaller than βcrit in stage
3 (as expected), which is also consistent with the observed
sign-switching phenomenon of λmax.

Early intervention measures on the large scale of the USA
aimed to prevent SARS-CoV-2 infected individuals from
entering the USA. To this end, travel restrictions against sev-
eral countries such as China and the European countries
were put in place [40, 41]. Nevertheless, as reported by the
World Health Organization [42], on March 12, the epidemic
in the USA had reached about 1000 confirmed cases and had
claimed 29 lives. On March 13, President Donald Trump
declared the national emergency to fight the COVID-19 epi-
demic in the USA [39]. The number of COVID-19 associated
deaths continued to increase rapidly as can be seen in panel
(a) of Figure 4. In April 2020, the USA became the country
with the highest death toll worldwide [43]. By the end of
March, most states of the USA had issued stay-at-home
orders [44]. That is, the country was nationwide under lock-
down. The timeline of those nationwide stay-at-home orders
fits with the model-based data-driven analysis reported
above that suggests that in the first week of April the nation-
wide epidemic was brought under control in the sense that (i)
the epidemic switched from state 1 to stages 2 and 3, (ii) the
effective contact rate dropped below the critical threshold,
and (iii) the COVID-19 free epidemiological state was stabi-
lized. That is, the intervention measures implemented in
March 2020 probably contributed to those changes. In other
words, by comparing the history of events about the imple-
mentation of intervention measures to the model-based
data-driven identified epidemiological stages, it is plausible

to assume that the implementation of intervention measures
regionally in the state of New York and nationwide in the
USA was the likely cause for the subsiding of the COVID-
19 cases at the end of the first half of the year 2020.

In closing these considerations, let us note that while the
deterministic model defined by Eqs. (1) to (10) can capture
the temporal patterns of the observed trajectories shown in
panels (a) and (b) of Figures 3 and 4, it does not account
for stochastic aspects [45]. Stochastic aspects of the data
become clearly visible when examining the daily new deaths
as shown in panels (b) of Figures 3 and 4. In this context,
for example, a SEIR Markov chain model has been suggested
to study COVID-19 trajectories and the impacts of interven-
tion measures within a stochastic framework [5].

Table 2 presents the key directions (i.e., eigenvectors)
related to the largest stability parameters λmax in stages 1
and 3 in the five-dimensional epidemiological space spanned
by the variables Eu, Eq, Iu, Ih, and Ia. Note that vectors are
normalized to unity [30, 31]. Consequently, the magnitude
of the vectors is not an issue. At issue is the direction in which
they point in their respective state spaces. Table 2 shows the
stage 1 vectors for the state of New York and the USA nation-
wide that are related to the positive stability parameter λmax
labelled k = 1 in panels (c) of Figures 3 and 4. In stage 1,
the infection dynamics in the state of New York and the
USA increased exponentially along the directions specified
by the respective vectors [21, 30, 31]. In contrast, in all other
directions of the five-dimensional (Eu, Eq, Iu, Ih, Ia) space
perturbations away from the disease-free fixed point decayed
(because the stability parameters k = 2,⋯, 5 were negative or
exhibit negative real parts). Therefore, the stage 1 vectors
shown in Table 2 determined the dynamics of the COVID-
19 outbreaks in the state of New York and nationwide in
the USA. They correspond to the vector vk shown schemati-
cally in Figure 2. Using the terminology of synergetics [21, 30,
31, 46], they describe the order parameters of the COVID-19
epidemics in those two regions. Table 2 also presents the key
directions (i.e., eigenvectors) of stage 3 related to the largest
(but negative) parameter λmax of stage 3 shown in panels
(c) of Figures 3 and 4 at k = 1. These vectors describe direc-
tions along which the COVID-19 dynamics decayed towards
the origin (see Figure 2 again), that is, the COVID-19 free
state, in May and June. Importantly, the dynamics along
those directions had the largest time constant relative to all
other possible directions. That is, the dynamics in all other
directions decayed relatively quickly towards the origin
(because the stability parameters k = 2,⋯, 5 or real parts
were larger in the amount than the stability parameter with
index k = 1). Therefore, the key dynamics that determined
how fast the COVID-19 epidemics subsided was the dynam-
ics along those directions related to the k = 1 stability param-
eter. Since those directions capture the stabilization stage,
they have been referred to as stabilization directions in
Table 2. As can be seen in Table 2, the COVID-19 order
parameters both of the state of New York and the USA
pointed strongly in the direction of the axis of the nonquar-
antined exposed individuals (Eu). It points in the direction
of the unknown or undetected exposed individuals. In con-
trast, the order parameters pointed only to a small degree
in the direction of the nonisolated symptomatic infectious
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(Iu) or asymptomatic infectious (Ia) individuals. Accord-
ingly, in March 2020, the epidemics both regionally in the
state of New York and nationwide in the USA produced a
more dramatic increase of exposed individuals as compared
to nonquarantined symptomatic or asymptomatic individ-
uals. The stabilization vectors that dominated (according to
our model-based analysis) the infection dynamics in the state
of New York and the USA in May and June 2020 pointed pri-
marily in the direction of the isolated symptomatic infectious
(Ih) individuals. That is, the model-based analysis suggests
that during May and June 2020, the decay of individuals of
this compartment was relatively large as compared to the
decay of individuals of the remaining four compartments.
For illustration purposes of the meaning of the order param-
eters and stabilization directions, let us assume that during
the outbreak and the subsiding stages, the infection dynamics
was completely dominated by the order parameters and sta-
bilization directions listed in Table 2. In this case, the weights
(or coordinates) of components Eu, Eq, Iu, Ih, and Ia can be
equated with individuals. Accordingly, during the outbreak
in March 2020 in the state of New York and the USA, when
the number of nonisolated symptomatic individuals (Iu)
increased by 12, then in the same period of time, the number
of unobserved (i.e., nonquarantined) exposed individuals (Eu)
increased by 79 and 74, respectively. Roughly speaking, for
every nonisolated symptomatic individual, seven nonquaran-
tined exposed individuals showed up. Similarly, during the
months of May and June characterized by subsiding epidemics
in the state of New York and the USA, when the number of
isolated symptomatic (e.g., hospitalized) individuals (Ih)
decayed by 80 and 75, respectively, then in the same period,
the number of nonisolated symptomatic individuals (Iu)
decreased only by 10 and 12. Roughly speaking, for every 8
hospitalized (or otherwise isolated) patients who were cured
(or deceased), the group of nonisolated symptomatic individ-
uals only decayed by 1 person. COVID-19 order parameters
have been previously been identified for the outbreaks in
Wuhan city, China, and 22 administrative regions of Italy
[21]. In this context, a standard four-variable SEIR model
was used. For the data fromWuhan city, the vector describing
stabilization direction was determined as well. Interesting, for
the epidemic in Wuhan city, this vector characterizing the
subsiding of the epidemic exhibited a larger coefficient for
the exposed individuals as compared to the order parameter
characterizing the epidemic outbreak. This relationship is just
opposite to the relationship between the stabilization direc-

tion and the order parameter for the epidemics in the state
of New York and the USA (see Table 2). Having said that,
it is difficult to compare the two model-based analyses
because the four-variable SEIR model used in Ref. [21] cannot
be easily mapped to the generalized SEIR model described by
equations (1) to (10).

The previous discussions reveal that the nonlinear phys-
ics perspective can be used to obtain a number of practical
insights that can be summarized as follows:

(i) Stage 2 as the Tipping Point Indicating That a Mini-
mal Goal of Intervention Policies Has Been Achieved.
As pointed out by Wu et al. [47], intervention mea-
sures should minimally reduce the reproduction
number (see Introduction) to a value of 1. This con-
dition of an epidemic with reproduction number
equal to 1 corresponds to the stage 2 of the three-
stage model. Reaching this tipping point by means
of the implementation of intervention measures
indicates that the measures were successful in stop-
ping the typically exponential increase of infections
observed in the initial stage of an epidemic. The
data-driven three stage approach rooted in the con-
cepts of nonlinear physics allows to identify this tip-
ping point. Note that while tipping points frequently
correspond to undesired events, this is not the case
in the current context. The tipping point of stage 2
has to be reached first [6, 32, 47]. Subsequently, the
intervention measures should suppress the infection
process under consideration even harder to initiate
the subsiding of the infection dynamics

(ii) Speed of Changes in Group Sizes or Compartment
Sizes. The nonlinear physics approach yields a rela-
tively simple way to determine the speed with which
group sizes change relative to each other. Here, the
groups are defined by the individuals of the com-
partments defined by epidemiological models (for
examples, see above)

(iii) Set of Stability Parameters (Eigenvalues) Can Provide
Supplementary Insights about the COVID-19
Dynamics. Stability parameters may exhibit nonvan-
ishing imaginary parts, which indicates that the
infection dynamics is characterized by an oscillatory
component. In fact, for the state of New York, such

Table 2: Order parameters and stabilization directions characterizing the rise and decay of the COVID-19 epidemics during the first half of
the year 2020 in the state of New York and nationwide in the USA.

Stage 1 Stage 3
Order parameter Stabilization direction

Component State of New York USA State of New York USA

Eu 0.79 0.74 0.34 0.45

Eq 0.47 0.47 0.45 0.46

Iu 0.12 0.12 0.10 0.12

Ih 0.35 0.35 0.80 0.75

Ia 0.15 0.15 0.16 0.14
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nonvanishing imaginary parts were identified for
the COVID-19 dynamics of the state of New York
during the subsiding stage (Figure 3(c)) and for
the COVID-19 dynamics nationwide in the USA
both during the outbreak and subsiding stages
(Figure 4(c)). While in those examples, the oscilla-
tory components did not make essential contribu-
tions to the trajectories under consideration
(Figures 3(a) and 4(a)); in general, oscillatory com-
ponents may make an essential contribution to the
infection dynamics. If so, they may be difficult to
distinguish from new outbreaks. Carrying out the
analysis as shown above, may help to clarify,
whether a sudden increase in a COVID-19 trajec-
tory describes a new outbreak or is part of a rising
or subsiding wave that exhibits an oscillatory
component

(iv) Data-Driven Partitioning of COVID-19 Waves. The
approach separates COVID-19 waves into three
stages guided by the general principles of dynamical
systems theory and nonlinear physics that are
assumed to determine the rise and decay of COVID-
19 waves. Since the partitioning is data-driven, the
approach reduces a possible interpretation-bias of
researchers who attempt to interpret COVID-19 tra-
jectories (see also Refs. [6, 32])

4. Conclusions

A key finding of this study is that the first-wave COVID-19
epidemics during the first half of the year 2020 observed
nationwide in the USA and regionally in the state of New
York emerged via an instability of the virus-human system
and subsided via a stabilization of that instability. From the
analysis presented above, the conclusion can be drawn that
the three-stage model featuring an outbreak stage, a critical
(linear) stage, and a subsiding stage can capture the key
characteristics of first-wave epidemics not only for Euro-
pean countries (as demonstrated in an earlier study [32])
but also the USA and US states such as the state of New
York. Having said that future studies have to work out
the details for other US states beyond the state of New
York. As far as research on the COVID-19 pandemic is
concerned, the study results suggest that researchers exploit
the tools of nonlinear physics in order to obtain insights
into the nature of the infection dynamics during the out-
break and subsiding stages of COVID-19 waves. In particu-
lar, the study encourages future investigations to compare
the history of events about the implementation of interven-
tion measures with the timeline of data-driven identified
epidemiological stages in order to address the efficiency of
intervention measures.
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