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Abstract: The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury
caused by physical and chemical stresses during normal daily movement and/or under disease
conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic
membrane resealing process involving interactions of multiple intracellular proteins including dysfer-
lin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised
muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dys-
function in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53
aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma
fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature
supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle mem-
brane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane
repair mechanisms could represent a viable therapeutic strategy for ALS.
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1. Introduction

ALS is a fatal neuromuscular disease characterized by progressive motor neuron loss
and muscle wasting. Riluzole (Rilutek) and Edaravone (Radicava), the two FDA approved
treatments for ALS, demonstrate only limited efficacy to slow disease progression [1]. In
most cases, the disease may be the product of multiple inter-related factors, with many
efforts focused on identifying distinct patient subsets using various integrated-omics
approaches [2]. While diverse cell types, biological mechanisms, and genetic factors are
implicated in sporadic and familial ALS pathogenesis, there are also commonly shared
pathological and clinical features [3]. Progressive respiratory muscle weakness is a main
cause of morbidity and eventually death in all forms of ALS [4–6].

Motor neurons communicate with individual muscle fibers at neuromuscular junctions
(NMJs), and retrograde signals are also conducted from muscle back to nerve [7]. While ALS
is classically considered a “dying-forward” process starting in motor neurons, accumulating
evidence [8–17] also implicates early muscle cell dysfunction in ALS pathophysiology. The
degree to which a “dying-back” process [18–20] starting distally at NMJs or “dying-forward”
from the CNS contributes to ALS progression remains unsettled and may vary in different
patient subsets. Regardless of the direction of communication and relative contribution of
different cell types to ALS progression (e.g., glia, neurons, myofibers), NMJ loss and the
resulting skeletal muscle denervation is a critical early pathogenic event in both patients
and animal models [21–24]. Because NMJ is the critical site involving bidirectional crosstalk
between myofibers and the motor neurons [13,16,18–20,25–27], sustaining NJM integrity
may slow disease progression. The molecular mechanisms accounting for NMJ loss and
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myofiber degeneration in ALS have attracted more attention in recent years, as strategies
to slow these processes and/or enhance intrinsic muscle repair/regeneration could have
broad therapeutic significance across different ALS subtypes [28].

Owing to the discovery of multiple genes that constitute the key components of cell
membrane repair machinery, including dysferlin, annexin, caveolin, and MG53/TRIM72,
etc., multiple review articles have been made that address the membrane repair defects
linking to muscular dystrophy and heart failure, etc. [29–33]. However, currently there is
none on the topic of membrane repair defects in ALS. This article is to review existing liter-
ature supporting the concept that ALS is a disease of oxidative-stress induced disruption of
muscle membrane repair that compromise the integrity of the NMJ and hence augmenting
membrane repair mechanisms could represent a viable therapeutic strategy for ALS.

2. Mitochondrial Dysfunction and Oxidative Stress in ALS Skeletal Muscle

Skeletal muscle is responsible for voluntary movements of the entire body, thus com-
prises one of the largest and most metabolically active tissues [34]. Given these energetic
demands, it is not surprising that mitochondria account for 4–15% of myofiber volume [35].
Mitochondrial dysfunction is regarded as a major contributor to ALS pathology [36,37].
Both familial and sporadic ALS patients show striking mitochondrial defects and abnormal-
ities of oxidative stress in motor neurons and skeletal muscle [38–43]. While mitochondrial
dysfunction is a major source of excessive production of reactive oxygen species (ROS)
leading oxidative stress, mitochondria themselves are a known target of oxidative stress
due to the high sensitivity of their membrane and mtDNA to ROS. It is believed that mito-
chondrial dysfunction and oxidative stress play key role in neuromuscular degeneration in
ALS [44–46].

Mouse models expressing human ALS mutations (e.g., SOD1G93A (G93A)) recapitulate
many features of human disease [47], and have been widely used to investigate pathogenic
mechanisms and preclinical therapies for ALS [37,48–51]. The G93A mice demonstrate
early mitochondrial dysfunction and enhanced reactive oxygen species (ROS) production
in skeletal muscle [14–16,26,52]. Markedly elevated skeletal muscle ROS production is also
an early abnormality in muscles from other ALS mouse models such as mice knockout
for TDP-43 and VAPB [4,53–55]. The ROS accumulation in G93A skeletal muscle has
been revealed by proteomics, biochemical and enzymatic assays [52,53,56]. Our prior
studies demonstrated increased cytosolic and mitochondrial ROS levels in G93A myofibers
beginning prior to symptom onset [14]. In this study, we generated a double transgenic
mouse model (G93A/mt-cpYFP) to visualize dynamic ROS-related “mitoflash” events
in G93A myofibers [14,26]. “Mitoflash” events are spontaneous fluorescent transients of
the mitochondrial targeted, circularly permuted yellow fluorescent protein (mt-cpYFP),
and has been associated with mitochondrial ROS production [57]. Widespread mitoflash
activities has been revealed in myofibers derived from G93A/mt-cpYFP mice prior to
symptom onset, which was not seen in wild type (WT) mt-cpYFP myofibers. The increased
mitoflash activity is associated with increased opening of mitochondrial transition pores
(mPTP) [26,57–60]. mPTP opening can promote mitochondrial ROS production [61,62]. We
also detected an elevated level of the mitochondrial protein cyclophilin D (CypD) in G93A
skeletal muscle [14], which is accompanied by abnormalities in mitochondrial structure
and function [11,13,16]. CypD is a known activator of mPTP opening [63–67] and CypD-
related mPTP opening is tightly associated with mitoflash activities [68–70]. Enhanced
CypD has been associated with more frequent and widespread mitoflash activities in
myofibers [58,71,72]. Thus, CypD-mediated mPTP opening may be one of the underlying
mechanisms to enhanced ROS production in ALS muscle. However, it is worth to note
that increased CypD level may not be a solo cause of excessive ROS generation in ALS
skeletal muscle. Other factors, such as mitochondrial Ca2+ overload, oxidizing agents, thiol
oxidation, HSP90., etc., also promote high-conductance opening of mPTP in pathological
conditions including ALS [73].
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3. ALS Mice Exhibit Sarcolemma Fragility and Mitochondrial Dysfunction in
Proximity to NMJs Prior to Symptom Onset

Intraperitoneal injection of Evans Blue dye (EB) is widely used as an in vivo marker of
abnormal myofiber permeability from sarcolemma damage [74–77]. We observed consis-
tently elevated intracellular EB penetration in the diaphragm and tibialis anterior muscles
of G93A mice after downhill running [78]. Even without the exercise challenge, a significant
portion of diaphragm myofibers in 2-month-old G93A mice (pre-symptomatic) showed
EB penetration. The phenomenon became more prominent when the G93A mice reached
4-month of age (i.e., after symptom onset). In contrast, EB penetration was not seen in the
diaphragm of WT controls, with or without running, at 2- or 4-months of age [78]. These
observations indicate that the increase of sarcolemma vulnerability occurs early in the
course of the disease in ALS mice.

The enhanced sarcolemma fragility is most striking near NMJs. After downhill run-
ning, isolated flexor digitorum brevis (FDB) myofibers from 2-month-old G93A mice
exhibited intracellular accumulation of FM 1-43, a cell membrane impermeable dye often
used for ex vivo evaluation of sarcolemma integrity [30,77,79], forming a gradient centered
around the NMJ. This phenomenon was not observed in myofibers derived from WT
mice [78]. These data suggest that NMJs are focally more susceptible to injury than other
regions of the sarcolemma, and exercise-induced NMJ injury is exacerbated in G93A mice
before ALS symptom onset. Remarkably, mitochondrial lesion appears first at the region
harboring NMJ in the G93A muscle with a myofiber segment showing mitochondrial inner
membrane depolarization prior to ALS symptom onset, and this myofiber segment at the
NMJ with depolarized mitochondria exhibits uncontrolled hyperactive Ca2+ activity, which
should never occur in normal WT myofibers [13,16]. This early mitochondrial lesion in
proximity to NMJ may be a cause of sarcolemma damage initiated at NMJ.

Nicotinic acetylcholine receptors (nAchR) are abundant in the postsynaptic membrane
of NMJ. There is evidence of an elevated Ca2+ permeability of nAchR in adult mammalian
muscle [80], and increased nAchR expression was found in G93A muscle [81]. It can
be expected that following repetitive stimulations, mitochondria near NMJ could face
elevated local intracellular [Ca2+], leading to mitochondrial Ca2+ overload at NMJ [15].
Mitochondrial Ca2+ overload also triggers mPTP opening, which causes mitochondrial
depolarization and promotes ROS generation [62]. The depolarized mitochondria have
reduced capacity to take up Ca2+, thus, an increased cytosolic Ca2+ release events were
observed at region near NMJ of G93A myofibers [13,16]. This abnormal Ca2+ release
could further stress neighboring normal mitochondria with Ca2+ overload, causing mPTP
opening, mitochondrial depolarization and excessive ROS generation in a vicious cycle
started from NMJ. As the cell membrane is a major target of direct ROS attack [46,82],
it is possible that early mitochondrial lesion with excessive ROS near NMJ initiates the
membrane leakage observed at NMJ in G93A myofibers. Furthermore, those lesions could
propagate and affect the entire myofiber during ALS disease progression, although the
underlying molecular natures need to be further explored. In addition to damaging the lipid
membrane of sarcolemma, elevated ROS level could also affect the normal membrane repair
mechanism, which will be further discussed below. Indeed, disorganized T-tubule networks
were observed near the NMJ in the myofibers of G93A mice before ALS symptom onset,
becoming more striking at later stages of disease. The degree of T-tubule disorganization
correlated with the abnormal mitochondrial depolarization at NMJs [78]. As skeletal muscle
mitochondrial dysfunction and enhanced oxidative stress are described in different genetic
and sporadic ALS subtypes, the resulting sarcolemma fragility may similarly be a common
phenomenon.

4. MG53-Mediated Membrane Repair Is Compromised in ALS

The stress to myofiber integrity resulting from repeated muscle contraction-relaxation
(such as in the diaphragm muscle during respiration) is offset by intrinsic sarcolemma re-
pair mechanisms. The dynamic balance between potentially injurious stress and membrane
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repair can be shifted towards myofiber damage in situations where a disease state amplifies
the stress beyond the intrinsic capacity for repair, and/or disrupts the repair mechanisms
themselves. MG53 is a member of the tri-partite motif (TRIM) E3-ligase family protein
(encoded by TRIM72) [83], which is highly expressed in skeletal muscle [84]. Upon acute
plasma membrane injury, MG53 acts as a sensor to oxidized intracellular microenviron-
ments, and then facilitates trafficking of intracellular vesicles to form membrane repair
patches at focal sites of injured sarcolemma. MG53 is the molecule that first arrives at
the injury site (within 2 s following sarcolemma rupture) and plays an essential role in
maintaining sarcolemma integrity [77,85–87]. Genetic ablation of MG53 results in defective
membrane repair and diminished tissue regenerative capacity [77,85,88,89]. Conversely,
transgenic mice with sustained elevation of MG53 in the bloodstream (tPA-MG53) live a
long, healthy life span with enhanced tissue-regenerative capacity following injury [90].

We have demonstrated that MG53 forms membrane patches on the sarcolemma
specifically in proximity to NMJs to preserve NMJ integrity under normal physiological
condition [78]. Impaired MG53-related membrane repair function could play an essential
role in the progressive degeneration of NMJs in ALS. As discussed above, mitochondrial
dysfunction is a major cause of excessive ROS production in ALS muscle [14,38–43,52].
Our studies suggest that the prominent and persistently enhanced oxidative stress in
ALS muscle limits the movement of intracellular MG53 vesicles, causing abnormal MG53
protein aggregation. The intracellular aggregation of MG53 protein could compromise the
MG53-related sarcolemma repair mechanism. We observed pathologic MG53 aggregation
in all examined muscle types of the G93A mice including fast and slow twitch muscles,
and importantly also in postmortem human diaphragm and psoas muscles samples from
both sporadic and familial ALS patients (harboring different ALS mutations), but not in
controls. [78]. Therefore, compromised MG53-mediated membrane repair function appears
to be a common feature of different familial and sporadic ALS subtypes.

The effects of exercise training on ALS progression remains controversial [91,92].
Several published cohort studies suggest an association between intense physical activities
and increased risk of ALS [93–96]. Furthermore, the effects of exercise training on ALS
progression remains controversial, with some studies suggesting modest benefits from
mild or moderate exercise while others, especially of more strenuous physical exertion,
may be detrimental [91,92]. A trial of diaphragm muscle pacing reduced survival in ALS
patients with respiratory insufficiency [97–101]. Similarly, in our ALS mouse studies, even
modest exercise worsened diaphragm damage [78].

5. Therapeutic Potential of Exogenously Administered MG53 in ALS

We evaluated the potential efficacy of recombinant human MG53 (rhMG53) using the
ALS G93A mouse model [78]. Adding rhMG53 to the extracellular solution significantly
attenuated intracellular FM 1-43 accumulation in G93A myofibers in vitro. We treated
3-month-old G93A mice (after symptom onset) with intravenous rhMG53 (2 mg/kg body
weight) once daily for 2 weeks. The rhMG53 injected mice exhibited less denervated NMJs
in the diaphragm and more surviving motor neuron cell bodies in the spinal cord anterior
horns compared with the saline injected control groups [78]. We also produced a PEGylated
rhMG53 (PEG-rhMG53) protein with increased half-life of rhMG53 in circulation [102,103].
PEG-rhMG53 was similarly administered to three-month-old G93A mice (2 mg/kg body
weight, every other day for one month). The life span of the PEG-rhMG53 injected mice was
significantly prolonged for 13 days on average compared with the saline injected group,
and the benefits were observed in both male and female mice. The PEG-rhMG53 treatment
also slowed weight loss [78].

As MG53 is present at low levels in circulation under normal physiologic conditions
in human and rodents [104–107], administration of exogenous rhMG53 is not likely to
produce neutralizing antibodies as peripheral tolerance to this protein has already occurred.
Studies in multiple mouse models reported no observable toxic effects with long-term
administration of rhMG53 [104,108]. rhMG53 protein has been found to protect various
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cell types against membrane disruption, and ameliorate the pathology associated with
muscular dystrophy [104], acute lung injury [109], myocardial infarction [110], acute kidney
injury [111] and ischemic brain damage [112] in rodent and large animal models of these
diseases.

MG53 protein is released from skeletal muscle as a myokine [33]. We previously
demonstrated elevated serum levels of endogenous MG53 in a mouse model of muscular
dystrophy (mdx) compared to WT mice [104]. Similarly, serum MG53 was markedly
elevated in the 2-month-old G93A mice after downhill running—likely a reflection of
enhanced skeletal muscle membrane injury [78]. Interestingly, serum MG53 levels in later
stage ALS mice was reduced to levels lower than in WT mice. This reduced serum MG53
level could be due to muscle atrophy in later stage of disease, perhaps combined with
diminished MG53 secretion due to the pathological aggregation we observed with disease
progression in the ALS mice.

6. Conclusions and Future Perspectives

Our early studies using the G93A mouse model established a role for mitochondria
Ca2+ signaling and ROS in mediating the crosstalk between muscle and neurons at the
NMJ during ALS progression [13–16,26]. As illustrated in Figure 1, during ALS progres-
sion, mitochondrial dysfunction in muscle myofibers leads to excessive ROS production,
which promotes ectopic aggregation of cytosolic MG53 and loss of function. This worsens
sarcolemma disruption, resulting in a vicious cycle of worsening oxidative stress, muscle
membrane damage, and NMJ degeneration. Treating ALS mice with exogenous rhMG53
can enhance the formation of membrane sealing patches at the damaged sarcolemma,
accounting for the reduced membrane leaking we observed in vitro, preservation of di-
aphragm muscle NMJs and motor neuron cell bodies in the spinal cord in vivo, as well as
prolonging life and slowing weight loss.
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 Figure 1. Proposed mechanisms of membrane repair defects at NMJ in ALS and the restoration by
exogenous rhMG53. NMJ is the critical site of neuromuscular interactions. During ALS progression,
abnormalities in mitochondrial respiratory activities at NMJ elevates ROS production, leading to
ectopic aggregation of cytosolic MG53, undermining its membrane repair function, which exacerbates
sarcolemma disruption leading to accumulation of extracellular content in the cytosol. Exogenously
applied rhMG53 could be recruited to the sites of membrane injury, forming sealing patches to
alleviate the cell membrane leakage.

NMJs in mice and humans have different anatomical structures: the clefts of the NMJ
are deeper in humans compared to mice suggesting a need for amplifying the signal in
humans that is greater than in mice. Considering the difference in synaptic transmission,
preservation of NMJ integrity could even be more crucial in human. Presumably, rhMG53
can have therapeutic benefits to preserve NMJ integrity in ALS patients.

Our studies in mice with a pathogenic SOD1 mutation and human autopsy muscle
samples from decedents who harbored C9orf72 mutations, and “sporadic” ALS (with no
known pathogenic mutation)—all showed the same abnormal MG53 aggregation, which
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was not seen in control mouse or human muscles. This suggests that abnormalities of MG53
function may be seen across different ALS subtypes, and thus treating with exogenous
recombinant MG53 could have broad therapeutic applicability to ALS patients. Due to the
heterogeneity in etiology, clinical and pathology, the treatment of ALS patients may be best
achieved by a multidisciplinary approach with targeting different potential pathological
mechanisms. Intriguingly, combining rhMG53 treatment with exercise and/or diaphragm
pacing may protect from the worsening of disease seen in prior exercise/pacing trials, while
still allowing for the beneficial effects that exercise normally has on muscle physiology and
strengthening.

MG53 is present at low levels in blood circulation under normal physiologic con-
ditions in both rodents and humans [104–107]. Higher circulating levels of MG53 were
observed in the G93A mice compared to WT littermates, and correlated with serum CK
measurements [78]. If similar elevations of circulating endogenous MG53 are seen in
ALS patients, it could be useful as a “prognostic biomarker” to quantify the degree of
myofiber degeneration at early disease stages. Furthermore, muscle biopsy is a standard-
ized diagnostic clinical procedure performed at clinical and academic centers around
the world. While not generally part of the clinical workup for ALS, biopsies have been
used in several ALS clinical trials to look for differences pre- and post-treatment, [https:
//www.clinicaltrials.gov/ct2/show/NCT04632225 (accessed on 6 September 2022)]. Serum
levels of endogenous MG53 and/or muscle biopsy pathology could similarly be promis-
ing pharmacodynamic measures to demonstrate therapeutic efficacy for ALS intended to
preserve myofiber integrity.

Although MG53 was the first molecules investigated in ALS for its role in sarcolemma
repair, there are other membrane repair proteins [29] with undetermined roles in skeletal
muscle degeneration in ALS. Future studies should be encouraged to further investigate
whether and how those membrane repair proteins are involved in skeletal muscle wasting
in ALS. This type of study should provide additional potential therapeutic targets for ALS.
We wish this review article could attract more attention of the ALS community and promote
research efforts to further explore the possibility of considering preservation of skeletal
muscle membrane integrity as a potential therapy for ALS.
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