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Identification of candidate cancer 
drivers by integrative Epi-DNA 
and Gene Expression (iEDGE) data 
analysis
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The emergence of large-scale multi-omics data warrants method development for data integration. 
Genomic studies from cancer patients have identified epigenetic and genetic regulators – such as 
methylation marks, somatic mutations, and somatic copy number alterations (SCNAs), among others 
– as predictive features of cancer outcome. However, identification of “driver genes” associated with a 
given alteration remains a challenge. To this end, we developed a computational tool, iEDGE, to model 
cis and trans effects of (epi-)DNA alterations and identify potential cis driver genes, where cis and trans 
genes denote those genes falling within and outside the genomic boundaries of a given (epi-)genetic 
alteration, respectively. iEDGE first identifies the cis and trans gene expression signatures associated 
with the presence/absence of a particular epi-DNA alteration across samples. It then applies tests of 
statistical mediation to determine the cis genes predictive of the trans gene expression. Finally, cis 
and trans effects are annotated by pathway enrichment analysis to gain insights into the underlying 
regulatory networks. We used iEDGE to perform integrative analysis of SCNAs and gene expression 
data from breast cancer and 18 additional cancer types included in The Cancer Genome Atlas (TCGA). 
Notably, cis gene drivers identified by iEDGE were found to be significantly enriched for known driver 
genes from multiple compendia of validated oncogenes and tumor suppressors, suggesting that the 
remainder are of equal importance. Furthermore, predicted drivers were enriched for functionally 
relevant cancer genes with amplification-driven dependencies, which are of potential prognostic and 
therapeutic value. All the analyses results are accessible at https://montilab.bu.edu/iEDGE. In summary, 
integrative analysis of SCNAs and gene expression using iEDGE successfully identified known cancer 
driver genes and putative cancer therapeutic targets across 19 cancer types in the TCGA. The proposed 
method can easily be applied to the integration of gene expression profiles with other epi-DNA assays 
in a variety of disease contexts.

A central goal of cancer genomics is to identify key genetic and epigenetic alterations that promote initiation and/
or progression of cancer. These alterations can manifest themselves across multiple biological levels – DNA, RNA, 
protein – and can be correspondingly quantified by multiple high-throughput profiling technologies.

Large-scale cancer genomics data compendia such as The Cancer Genome Atlas (TCGA) have generated 
comprehensive multi-omics datasets for tens of thousands of patients across ~30 types of cancer1. The availability 
of such large-scale datasets provides an opportunity to develop methods that integrate data from multiple types 
of profiling platforms, supporting the discovery of novel candidate driver genes and eventually diagnostic and 
prognostic biomarkers and therapeutic targets.

Past research using integrative approaches have shown success in discovering novel cancer drivers2,3. However, 
many existing methods often rely on ad-hoc, albeit sophisticated, analysis methods and scripts not accessible to 
analysts other than those responsible for their development. Furthermore, the generated analysis results are often 
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static, and not accessible in an interactive fashion. The approach presented here aims to address both of these 
shortcomings.

The central hypothesis behind integrative approaches is that the integration of multi-level genomics data 
allows for prioritization of putative cancer “drivers” that are potential biomarkers or therapeutic targets. An 
important genetic alteration type in cancer is somatic copy-number alterations (SCNAs). SCNAs harbor many 
known cancer drivers (oncogenes or tumor suppressors) and play an important role in cancer initiation and/or 
progression through activation of oncogenes and inactivation of tumor suppressors4,5. Identification of unknown 
SCNA-associated cancer drivers is complicated by the fact that each SCNA contains many genes, often even a 
complete chromosome arm, the majority of which is likely not to confer any selective advantage (i.e., passen-
gers). One approach to address this problem is to prune the set of candidate drivers based on their association 
with paired omics data, such as gene expression profiles. For example, one can prioritize genes found in frequent 
SCNA peaks whose gene expression changes are associated with corresponding copy number changes6,7. Even 
after this pruning step, the set of remaining candidate drivers might still yield too many testable hypotheses for 
use in functional validation studies. More importantly, association between SCNA and gene expression alone may 
not be the best metric for ranking potential cancer drivers.

To address this problem, we developed a methodology that identifies SCNA- (or other alteration-) associ-
ated genes and performs prediction of cis gene drivers prioritized by their capability of transactivating down-
stream gene expression (trans effects), by leveraging the trans-gene signature (gene sets outside the SCNA of 
interest) whose expression is also associated with a given SCNA event of interest. The approach is predicated on 
the hypothesis that SCNA-related drivers of tumorigenesis will mediate a larger proportion of the downstream 
effect observable by trans gene expression than non-drivers. Using this heuristic, and based on the Sobel test of 
mediation8, we identify putative SCNA-associated cancer drivers as the cis gene mediating the most trans gene 
expression, although the method allows users to customize the set of trans genes considered for the ranking of 
putative cis gene drivers.

We developed a corresponding software tool, integration of Epi-DNA and Gene Expression (iEDGE), avail-
able at https://github.com/montilab/iEDGE 9 for the prediction of (epi-)DNA-associated cancer drivers. Some 
of iEDGE’s methodological components were previously applied to the cis/trans analysis of diffuse large B cell 
lymphoma multi-omics datasets, and have shown success in uncovering SCNA-associated cis driver genes6,10. 
Here, we present an expanded and optimized method crucially incorporating the mediation step, and we present 
the results of its application to the prediction of SCNA-associated cancer drivers across 19 cancer types using data 
from TCGA, with a particular focus on analysis of TCGA breast cancer. An interactive web portal of pan-cancer 
TCGA analysis is available at https://montilab.bu.edu/iEDGE11. Our list of candidate drivers is highly enriched 
for known oncogenes and tumor suppressors and additionally implicates many suspected drivers as well as novel 
candidate genes with potential prognostic or therapeutic importance in cancer.

Methods
iEDGE overview.  An overview of the iEDGE approach is summarized in Fig. 1. Briefly, iEDGE integrates 
samples quantified from a gene expression profiling assay paired with one or more genomic or epi-genomic assays 
capturing information upstream of gene expression, such as SCNAs, DNA methylation, or microRNA expression. 
First, we identify the list of genes associated in “cis” with the upstream epi-DNA alteration. In the case of SCNAs, 
cis genes of each SCNA in this list are defined as genes within the focal peaks of the SCNA, and trans genes are 
defined as genes outside of the focal peaks. Then, iEDGE performs differential expression analysis to identify cis 
and trans genes significantly associated with each SCNA and, optionally, pathway enrichment analysis of each sig-
nificant cis and trans gene sets (Fig. 1A). Next, iEDGE predicts cis driver genes using mediation analysis, wherein 
each differentially expressed cis gene is ranked by the number of differentially expressed trans genes it mediates 
as determined using the Sobel test of mediation (Fig. 1B).

Copy number and gene expression pre-processing.  We utilized the dataset of somatic copy number 
alterations and RNA-seq from the TCGA breast cancer cohort, which was preprocessed using Firehose v0.4.13 
and downloaded from the Broad Institute TCGA GDAC repository (http://gdac.broadinstitute.org/runs/)12.

The SCNA dataset was preprocessed using GISTIC2.013 under the Firehose run release analyses__2015_08_21, 
which identified 29 significant focal amplifications and 40 significant focal deletions to be considered for inte-
grative analysis14. SCNA status by sample was binarized using the amplitude threshold of 0.1, that is, SCNA 
status = 1: t > 0.1 or 0: t ≤ =0.1 for amplifications, and 1: t < −0.1 or 0: t ≥  = −0.1 for deletions. Cis genes were 
identified by GISTIC2.0 as genes in the wide peak of each significant SCNA with boundaries selected at the con-
fidence level of 0.99. Trans genes were identified as genes outside the wide peak of each SCNA.

The gene expression data is a RSEM processed gene expression matrix (stddata__2015_06_01)15. Expression 
values were log2-transformed prior to integrative analysis. The samples were categorized into breast cancer sub-
types using a combination of the pam50 classifier16 and the HER2 status. HER2 status was determined using 
HER2 receptor activity, labeled positive if tested positive by either FISH or IHC method. In HER2 negative sam-
ples, the pam50 classification was used. Samples with gene expression-based membership in one of four major 
breast cancer subtypes (Luminal A, Luminal B, Her2, Basal) were retained for integrative analysis. Tumors clas-
sified as “Normal-like” by pam50 were removed from further analysis. A total of 1050 samples (primary solid 
tumors only) were found with paired gene expression and SCNA data by matching the sample barcode identifier 
(combination of patient id and sample type).

Determining significantly expressed SCNA-associated cis and trans genes.  We performed differ-
ential expression of cis and trans genes with respect to each GISTIC2.0 defined significant focal SCNA peak. The 
significance of differential expression was estimated using limma (Ritchie et al. 2015) for each SCNA with samples 
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split into two groups (amplified vs. normal for amplification peaks, and deleted vs. normal for deletion peaks) 
using FDR < 0.25 and fold change > 1.2 for cis genes, and FDR < 0.01 and fold change > 1.5 for trans genes. 
One-sided significant levels were reported for cis genes with the rationale that a focal amplification is commonly 
associated with an increase in gene expression and a deletion is associated with a decrease in gene expression. 
Two-sided significant levels were reported for trans genes, as indirect downstream effects can occur through 
either transcriptional repression or activation.

Pathway enrichment analysis of significant cis and trans gene sets.  Significantly differentially 
expressed cis and trans gene sets were tested for pathway enrichment using the MSigDB gene set compendia 
hallmark (hallmark gene sets), c2.cp (curated gene sets from online pathway databases), and c3 (motif gene sets), 
version 5.017. The significance of pathway enrichment was determined using a hypergeometric distribution-based 
test and corrected for multiple hypothesis testing using the False Discovery Rate (FDR) method18.

For breast cancer-specific pathway enrichment results, pathways with significant enrichment (FDR < 0.25) in 
any SCNA were reported. In addition, each SCNA was labeled according to its over-representation in a particular 
breast cancer subtype using a one-sided Fisher exact test comparing counts of SCNA occurrence within vs. out-
side each breast cancer subtype (FDR < 0.05). Subtype-specific SCNAs were subsequently used in conjunction 
with pathway enrichment results to determine subtype-specific pathway enrichments using a one-sided Fisher 
exact test (FDR < 0.05).

Mediation testing and prediction of cis drivers.  To elucidate which cis genes are likely to mediate the 
association between copy number alteration and trans gene expression, we used the Sobel test to estimate the 
mediation effect of each cis gene and its significance8. Briefly, we model the association for each triplet of SCNA, 
cis gene, and trans gene using the linear regression models specified in Fig. 1B. The mediation effect of the cis 
gene: Δτ = τ − τ‘, represents the change in the magnitude of the effect of the SCNA status on the trans gene 
expression after controlling for the cis gene expression. The significance of the mediation effect is calculated from 
the t statistic: t = Δτ/SE, where SE is the pooled standard error term, and is compared to the normal distribution 
to determine the p-value and FDR18.

An important simplifying model assumption is that the association between each SCNA and trans gene is 
mediated by at most one cis gene, therefore the cis gene mediator for each SCNA-trans gene pair is chosen based 
on the most significant mediation effect (ranked by the FDR values of the mediation test).

Figure 1.  Overview of iEDGE workflow. (A) iEDGE identifies the cis and trans gene expression signatures of 
epi-DNA alterations, e.g., Somatic Copy Number Alterations (SCNAs), through differential expression analysis. 
It then performs pathway enrichment analysis to identify pathways or genesets associated with each SCNA. (B) 
Secondly, it performs cis-to-trans gene mediation analysis to identify putative driver cis genes of each epi-DNA 
alteration, defined as the cis genes that mediate the most trans gene expression.
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Once the cis genes mediator is determined for each unique trans gene, the mediation effect of cis gene i on 
trans gene j can be expressed as either binary (0 or 1), based on the significance of the mediation, or as the weight 
wij sign( )
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ij ij
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mediation effect of cis gene i across m significantly expressed trans genes, also referred to as the Weighted Fraction 
of Trans Mediation (WFTM), is expressed as WFTMi
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m

m
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∑ × , where Iij denotes the indicator variable taking 
the value 1 if cis gene i is has the most significant mediation effect on trans gene j among all cis genes, 0 
otherwise.

Next, for each SCNA, we rank each cis gene based on its total mediation effect Mi. The cis gene with the high-
est value of Mi is denoted as the “Rank-1 cis gene” for the given SCNA, the candidate driver gene of the alteration.

Assessing enrichment of predicted cis drivers in databases of known cancer drivers.  To inves-
tigate the functional impact of putative drivers identified by iEDGE, we tested for the enrichment of iEDGE 
predicted driver genes in several cancer driver databases. Reference cancer driver genes, denoted as either “onco-
genes” or “tumor suppressors” in the original sources, were compiled using data from Tuson Explorer (Davoli 
et al. 2013)19, Online Mendelian Inheritance in Man (OMIM)20, Cancer Gene Census (CGC) from Catalogue 
of Somatic Mutations In Cancer (COSMIC)21,22, and Uniprot23. We tested for the overrepresentation among 
Rank-1 cis genes, compared to non-Rank-1 cis genes, of known drivers from the reference databases (Table S7). 
Enrichment tests were conducted separately for each reference database and driver type, i.e., oncogene (“_OG”), 
tumor suppressor (“_TN”), or both (“_COMBINED”), as well as using the union of the driver genes across data-
bases (column “ANY” indicates union of drivers across knowledge bases). Enrichment significance was calculated 
using a one-sided Fisher exact test assessing the overrepresentation of Rank-1 vs. non-Rank-1 cis genes with 
respect to their membership in the reference driver list, conditional on the direction of change, e.g. amplified 
cis genes among oncogenes, deleted cis genes among tumor suppressors, or direction insensitive. P-values are 
adjusted with the FDR procedure to correct for multiple hypothesis testing across 19 tumor types.

Copy number-associated gene dependencies.  SCNAs often lead to overexpression of driver oncogenes 
and confer a tumor-promoting environment. In other words, driver oncogenes are more likely to act as essential 
genes (increased gene dependency) in an amplified state. To identity such genes, we looked for copy number asso-
ciated gene dependencies using data available from DepMap, specifically, gene dependency data24 and cancer cell 
line genomics data from the Cancer Cell Line Encyclopedia (CCLE)25,26. In particular, we mined for genes with 
associations between gene dependency (Combined RNAi screens from Broad, Novartis, Marcotte) and somatic 
copy number status across cell lines (CCLE). To do this, we used a linear regression model Y = α X + β where 
Y is the Gene Dependency Score and X is the copy number level (log2 relative to ploidy) across cell lines. Gene 
dependency scores were calculated using DEMETER224. A negative gene dependency score corresponds to high 
gene dependency, e.g., an increased gene essentiality. In contrast, a high gene dependency score corresponds to 
non-essential genes. We looked for genes with significantly negative association between copy number and Gene 
Dependency Score, that is, genes in which higher copy number is associated with higher gene essentiality, using a 
one-sided t-test on the coefficient α (alternative hypothesis α < 0). Additionally, FDR correction was performed 
across p-values for all genes. Since gene dependency scores are calculated from only gene knockdowns, we were 
only able to test amplification-driven gene dependencies, whereas overexpression assays would be needed for 
detection of deletion-driven gene dependencies.

Finally, to determine if iEDGE was able to uncover an enrichment of amplification-driven gene dependen-
cies, we tested for enrichment of genes with amplification-driven gene dependencies among iEDGE-predicted 
Rank-1 cis genes using a one-sided Fisher test on the contingency table of counts (rows: membership in Rank-1 
vs. non-Rank-1, columns: presence vs. absence of amplification driven gene dependencies).

Pan-cancer analysis.  TCGA gene expression and copy number (GISTIC2.0) data were retrieved using 
Firehose v0.4.13 for 19 cancer types as summarized in Table S6. Gene expression data (RNASeq) correspond 
to the latest release at the time of retrieval (stddata__2015_02_04 for cancer types ACC, KIRP, THCA and std-
data__2016_07_15 for all other cancer types). SCNA copy number data uses the GISTIC2.0 run corresponding to 
Firehose run release analyses__2016_01_28. Gene expression processing and copy number processing steps for 
the pan-cancer analysis are consistent with methods used for the BRCA-only analysis. Of note, the BRCA dataset 
in the pan-cancer analysis includes all TCGA BRCA samples with paired copy number and gene expression data 
to be consistent with processing of other TCGA cancer types, contrary to the removal of samples without an 
assigned molecular subtype in the BRCA-only analysis.

We tested for enrichment of known cancer driver genes among Rank-1 cis genes in each of the 19 TCGA 
cancer types using a one-sided Fisher test (Supplemental Table S8), consistent with the BRCA-only analysis. FDR 
correction was performed on the nominal p-values across all 19 cancer types for each test (unique combination 
of database origin and alteration direction, gain or loss). Enrichment tests are direction sensitive (“OG” tests for 
enrichment of oncogenes in Rank-1 cis genes in amplifications, “TN” tests for enrichment of tumor suppressors 
in Rank-1 cis genes in deletions, “COMBINED” tests for the union of the two sets). To determine the significance 
of the number of expected subtypes with increased sensitivity of driver predictions compared to random, we con-
ducted a Kolmogorov-Smirnov test using the p-values of test of enrichments across subtypes against the uniform 
distribution in the range of [0,1].

We also tested for enrichment of amplification-driven gene dependencies in Rank-1 cis genes across the 
19 cancer types (see Methods: Copy number-associated gene dependencies). Multiple hypothesis correction 
using the FDR procedure18 was used to adjust the significance values across multiple cancer types. Similarly, the 
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significance of number of expected subtypes with increased sensitivity of amplification-driven gene dependencies 
is determined using a Kolmogorov-Smirnov test.

Evaluation of the reproducibility of cis driver gene predictions in BRCA.  To evaluate the consist-
ency of Rank-1 driver gene predictions, we generated 100 bootstrapped resamples of the original TCGA breast 
cancer dataset using sampling with replacement with the number of samples equal to the size of the original 
dataset, derived the predicted Rank-1 cis genes across the 100 bootstrapped datasets, and compared these pre-
dictions against the original list of predicted Rank-1 cis genes from the full dataset. A reproducibility score was 
calculated for each of the original predicted Rank-1 cis gene as the percent of inclusion of the particular gene as a 
Rank-1 cis gene among the bootstrapped results. To explain the variation on reproducibility scores across genes, 
we modeled these scores using linear regression models with the dependent variable being either the Weighted 
Fraction of Trans Mediated (WFTM) or the Entropy of WTFM for the alteration of interest, calculated as the 
Shannon Entropy of WTFM of all differentially expressed cis genes within the alteration harboring the Rank-1 cis 
gene of interest. A two-sided t-test on the slope, β1, of the linear regression, with Ha: β1 ≠ 0, was used to estimate 
significance, defined as p-value <0.05.

Evaluation of mediation testing from simulated data.  The Sobel test of mediation identifies cis genes 
that mediates SCNA and trans gene expression. To determine the conditions in which mediation is correctly 
identified, we used a forward simulation approach to generate labeled data of true positives and true negative, and 
then applied the mediation test to estimate its sensitivity and specificity. Of note, for simplicity, these simulated 
instances represent total, not partial, mediation.

True positive instances of mediation were generated using the following linear regression models:

Y X N(0, )a a1 1 1
2α β σ= + +

Z Y N(0, )a a2 2 2
2α β σ= + +

Here, Xa denotes the independent variable (SCNA status), Za is a dependent variable (trans gene expression) 
and Ya is a true mediator of Xa and Za (cis gene expression).

True negative instances, representing the lack of a mediation effect, were generated using the following 
models:

Y X N(0, )b b1 1 1
2α β σ= + +

α β σ= + +Z X N(0, )b b2 2 2
2

Here, Xb is the independent variable (SCNA status) and Yb and Zb are both dependent variables generated 
based on separate regression models from Xb.

Variables X, Y, Z are vectors of length n, representing the sample size of the data. X is a binary vector (0 s and 
1 s) corresponding to the binarized SCNA copy number status. σ is the standard deviation of the Gaussian noise 
term. We fixed β1 and β2 at 0.7 based on estimation from real data (TCGA breast cancer). The mediation test was 
performed on 1000 simulated true positives and 1000 simulated true negatives, and performance was measured 
in terms of AUC, sensitivity and specificity. For sensitivity and specificity, mediation calls were made based on the 
Sobel test p-value of 0.05. Test performance was recorded for simulated datasets based on a range of values of n 
(sample size) and σ (standard deviation of the Gaussian noise in the regression models). The standard deviation σ 
is a proxy for the correlation strength between dependent and independent variables, as higher noise corresponds 
to weaker correlation. For interpretability purposes, values for the parameter σ are converted to the correspond-
ing Pearson correlation estimates using a Loess model (Local Regression).

Results
Sensitivity and specificity of mediation testing.  In order to evaluate the sensitivity and specificity of 
the mediation analysis that is part of our approach, as well as to assess the relationship of those metrics to sample 
size, we performed an extensive evaluation based on simulated data.

In particular, evaluation of the Sobel test of mediation was carried out using simulated data of true positives 
and true negative examples of mediation. Test performance, as measured using AUC, sensitivity and specificity, 
was recorded for varying combinations of correlation between the independent variable and mediator (“corre-
lationXY”) and sample size (“N”) (Fig. 2). High specificity (true negative rate) was consistently achieved for all 
input parameter ranges. Sensitivity (true positive rate) drops under conditions of low correlation and low sample 
size. Nevertheless, the conditions for lower sensitivity is not characteristic of real datasets that were used to test 
and validate iEDGE. Specifically, high correlation between SCNA and cis genes and between SCNA and trans 
genes is expected given that only cis and trans genes that were significantly expressed with respect to the SCNA 
were considered prior to mediation testing. Additionally, sufficient sample size is achieved in most of TCGA data-
sets tested (Supplemental Table S7), with the only exception being the TCGA Adrenocortical carcinoma dataset 
(n = 77) in which mediation results should be interpreted with caution.

iEDGE identifies SCNA-associated cis and trans genes and pathway signatures in TCGA breast 
cancer.  The first step of the iEDGE-based analysis consists of the identification of cis and trans signatures, 
which are the needed input to the mediation analysis for the prioritization of putative cancer drivers.

https://doi.org/10.1038/s41598-019-52886-z
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To identify cis and trans gene signatures of SCNAs in breast cancer, we performed integrative analysis 
on paired copy number and gene expression data from TCGA breast cancer primary tumors from four gene 
expression-based molecular subtypes (Luminal A, Luminal B, Her2 and Basal) using the workflow summarized 
in Fig. 1.

Focal SCNAs were identified using GISTIC2.013, including 29 amplifications and 40 deletions. Next, we identi-
fied sets of cis and trans genes with significant differential expression with respect to each SCNA, and performed, 
pathway enrichments of cis and trans gene sets (Fig. 1A).

A list of cis genes whose expression is significantly associated with each SCNA is summarized in Supplemental 
Table S1 (Fold change >1.2, one-directional FDR <0.25). This list comprises an average of 20 genes (and a median 
of 8 genes) per SCNA, with 1330 genes in total (269 in amplifications, 1061 in deletions) out of the original 2003 
genes across all SCNAs identified using GISTIC2.0, a number clearly still too large for meaningful consideration 
for functional validation.

Similarly, a list of significantly differentially expressed trans genes is summarized in Supplemental Table S2 
(Fold change > 1.5, bi-directional FDR < 0.1). This list contains an average of 865 (a median of 598) significant 
trans genes per SCNA. Given the large number of genes included in the trans signatures, their in-silico annotation 
by enrichment approaches is best suited for a summarization of their composition.

Pathway enrichment analyses of the union of cis and trans genesets yielded interesting and potentially biolog-
ical meaningful patterns (Fig. 3). In particular, several pathways were enriched across most SCNAs. For instance, 
gene sets HALLMARK_ESTROGEN_RESPONSE_LATE, HALLMARK_ESTROGEN_RESPONSE_EARLY, 
HALLMARK_G2M_CHECKPOINT were significant hits in more than 75% of SCNAs. These gene sets indicate 
global patterns of downstream effects related to genomic instability induced by co-occurring SCNAs across tumor 
samples (Fig. S1), since co-occurring SCNAs will tend to have overlapping trans signatures, hence common path-
way enrichments. To elucidate breast cancer subtype specific pathway enrichments, we categorized each SCNA 
by their enrichment in each of four major breast cancer types: Luminal A, Luminal B, Her2, Basal. In addition, for 
each pathway, we tested if the enrichment across SCNAs tended to occur in subtype-specific SCNAs compared to 
non-subtype-specific SCNAs (Fig. 3). Several significant pathways were found to be occurring more frequently in 
Basal-specific SCNAs, including HALLMARK_SPERMATOGENESIS, HALLMARK_KRAS_SIGNALING_UP, 
HALLMARK_E2F_TARGETS, HALLMARK_BILE_ACID_METABOLISM, HALLMARK_FATTY_ACID_
METABOLISM, HALLMARK_UV_RESPONSE_UP, HALLMARK_MYOGENESIS (FDR < 0.05). The enrich-
ment of KRAS signaling can be explained by published evidence supporting KRAS activation in basal-type breast 
cancer cells compared to luminal cells27.

An important outcome of the cis/trans analysis is the observation that the number of genes identified as asso-
ciated to (hence potentially driven by) genetic alterations is still prohibitively large to be realistically considered 
for functional validation. The mediation step we describe next is aimed at providing a further prioritization crite-
rion for the identification of putative cancer drivers.

iEDGE identifies known cancer drivers in TCGA breast cancer.  After the identification of the cis and 
trans gene signatures of SCNAs, iEDGE can be used to predict cis gene drivers of each SCNA (Fig. 1B). For each 
SCNA in the TCGA breast cancer dataset, we ranked the significant cis genes using the Sobel test of mediation 
(Sobel 1982) to predict the driver gene of the alteration. Cis genes were ranked by the weighted fraction of signifi-
cant trans genes they mediate (see Methods, and Supplemental Table S3). Rank-1 cis genes – the genes mediating 
the largest proportion of trans genes within each alteration, hence hypothesized to be driver genes for each SCNA 
– are summarized in Supplemental Table S4.

To verify the functional relevance of Rank-1 driver gene predictions, we tested the list of Rank-1 cis genes for 
enrichment in cancer driver databases compared to non-Rank-1 cis genes (Supplemental Table S5). Significance 

Figure 2.  Mediation test performance on simulated data. AUC (Area Under the ROC Curve), sensitivity (true 
positive rate), specificity (true negative rate) for various values of correlationXY (correlation between SCNA and 
mediator, X-axis) and N (sample size, Y-axis).
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of enrichment was determined using a one-sided Fisher exact test on the contingency table of counts of Rank-1 
vs. non-Rank-1 cis genes against the list of known cancer drivers vs. unknown genes. Predicted Rank-1 driver 
genes in amplifications were significantly enriched for known oncogenes in UNIPROT (P-value = 0.0016), 
COSMIC (P-value = 0.0012) and the combined test (union of driver databases) (P-value = 0.0041), and predicted 
Rank-1 driver genes in deletions were significantly enriched for tumor suppressors in TUSON (P-value = 0.0045), 
UNIPROT (P-value = 0.016), COSMIC (P-value = 0.002), and the combined test (P-value = 0.013). Among the 
65 Rank-1 cis genes (Supplemental Table S4), known cancer drivers included MCL1, ACTL6A, MYC, CCND1, 
FOXA1, ERBB2, CCNE1 (oncogenes in amplifications) and RPL5, ZMYND10, KMT2C, CSMD1, CDKN2B, 
PTEN, CREBL2, FANCA and ARHGAP35 (tumor suppressors in deletions) (Supplemental Table S5).

Additionally, iEDGE-predicted Rank-1 mediating genes in breast cancer includes putative novel breast cancer 
gene drivers and therapeutic targets. Novel genes include RBM17, a splicing factor with enriched amplification 
in Triple-Negative Breast Cancer, a subtype shown to be selectively addicted to alternative splicing28, and SIRT3, 
a regulator of mitochondrial adaptive response to stress mechanisms that exhibits tumor suppressive functions 
in cancer29 and a promising therapeutic target as experimental findings show that the knockdown of SIRT3 
enhanced migration and metastasis in ovarian cancer cells30.

iEDGE identifies amplification-driven gene dependencies in TCGA breast cancer.  In addition 
to the prediction of known cancer drivers, we assessed whether iEDGE was capable of identifying genes with 
copy-number driven cancer dependencies, specifically, amplification-driven gene dependencies (see Methods). 
To this end, we identified genes with increased essentiality in an amplified state using DepMap data of genetic 
screens (RNAi screens) paired with copy number data (CCLE) (Supplemental Table S6), and tested for their 
enrichment among iEDGE Rank-1 cis genes. In the TCGA breast cancer dataset, we found a highly significant 
enrichment of Rank-1 cis genes among genes with amplification-driven gene dependencies (Fisher test one-sided 
P-value = 3.53e-5). These were ERBB2, CCNE1, CCND1, FOXA1, ANKRD17, MCL1. All of these genes are linked 
to breast cancer development in the overexpressed state. ERBB2, CCND1, CCNE1 are well-characterized onco-
genes present among our curated set of cancer driver databases (see Methods). FOXA1 has been shown to play 
an important role in promoting ER + breast cancer31. ANKRD17 is a cyclin E/Cdk2 substrate which positively 
regulates cell cycle progression by promoting G1/S transition32. MCL1 high expression is linked to poor prognosis 
in triple-negative breast cancer and targeting of MCL1 restricts the growth of triple negative breast cancer xeno-
grafts, suggesting its potential therapeutic value33.

In summary, using the cis gene mediation step, we identified known SCNA-associated breast cancer gene driv-
ers and novel genes with amplification-driven gene dependency that are of potential prognostic or therapeutic 
value.

TCGA pan-cancer analysis.  Next, the driver prediction procedure was carried out across 19 cancer types 
from TCGA (Supplemental Table S7). We tested for the enrichment of Rank-1 cis genes with known cancer 

Figure 3.  Pathway enrichments of cis and trans genes of TCGA breast cancer somatic copy number alterations. 
Heatmap representing the enrichment of each SCNA-associated cis/trans union signatures (columns) with 
respect to the genesets (rows) in the MSigDB “Hallmark” compendium for the TCGA breast cancer dataset. 
Color-coded bars (pink/purple) on top of the heatmap indicate the enrichment of each SCNA in a particular 
breast cancer subtype as determined by Fisher exact test of the within- vs. outside-subtype counts of SCNA 
occurrences. The directionality of each SCNA is also represented as amplification (red) or deletion (blue).
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drivers across the 19 cancer types and found significant enrichment (FDR < 0.05) in 15 out of 19 cancer types 
(Kolmogorov-Smirnov test of p-values against uniform [0,1]: p-value = 2.5e-13) (Supplemental Table S8).

Additionally, we tested for the enrichment of Rank-1 cis genes with genes manifesting amplification-driven 
dependencies and found significant enrichment (FDR < 0.05) in 8 out of the 19 cancer types analyzed, including 
BLCA, BRCA, CESC, ESCA, HNSC, LUAD, OV, UCEC (Kolmogorov-Smirnov test of p-values against uniform 
[0,1]: p-value = 0.00287) (Supplemental Table S9).

To assess the importance of the cis mediating step for the identification of known cancer drivers, we ordered 
Rank-1 cis genes (Supplemental Table S10) by the number of cancer types they occur in, and tracked which 
of these genes were validated cancer drivers. The derived ordered Rank-1 gene list was then compared with 
the ordered list of recurrent top differentially expressed (D.E.) cis genes in each SCNA, irrespective of their 
cis-mediating rank (Supplemental Table S11), as well as with the ordered list of all recurrent differentially 
expressed cis genes in each SCNA (Supplemental Table S12). These comparisons confirmed that the recurrent 
Rank-1 cis genes were more likely to capture known drivers than both the recurrent top D.E. cis genes and all cis 
genes (Fig. 4A). Remarkably, among the top 15 Rank-1 cis genes, 14 genes were known cancer drivers (PTEN, 
WWOX, CCNE1, CDKN2A, MAP2K4, EGFR, KAT6A, MYC, KRAS, ERBB2, WHSC1L1, PARK2, CREBBP, 
RB1) and only 1 was unverified (ATP9B) (Fig. 4B, left) (Fisher’s exact test P-value = 7.76e-08). In contrast, in 
the absence of the mediation step, among the top 15 top D.E. genes in SCNAs, 9 were confirmed drivers (Fig. 4B, 
middle) (Fisher’s exact test P-value = 0.0047), and among the top 15 cis genes in SCNAs, only 4 were confirmed 
drivers (Fig. 4B, right) (Fisher’s exact test P-value = 0.21). These results demonstrate the usefulness of the medi-
ation test in further restricting the list of SCNA-associated cis genes to those of functional relevance across mul-
tiple cancer types. The mediation test provides a substantial improvement over ranking solely based on the cis 
gene differential expression and demonstrates the added value of performing integrative analysis that models 
downstream biological effects as captured by trans gene expression.

In addition to enrichment for known cancer drivers, Rank-1 cis genes that frequently occur across cancer 
types (Supplemental Table S10) include putative or novel genes implicated in cancer initiation or progression. 
These include: TRIP13, a mitosis regulator that was shown to promote tumor growth in colorectal cancer34 and 
is a predictor of poor prognosis in prostate cancer35; ORAOV1, a gene overexpressed in many solid tumors that is 

Figure 4.  Sensitivity of cancer driver predictions across multiple cancer types. (A) Sensitivity of Driver 
Predictions (expressed as the fraction of known drivers in the ranked list of genes) vs. Occurrence of Genes in 
Number of Cancer Types. (B) Barplots of top 15 genes ranked by occurrence in number of cancer types. Left: 
Rank-1 mediating cis genes; middle: top differentially expressed (D.E.) cis genes, right: all cis genes differentially 
expressed in alteration. Known cancer drivers are in bold and marked with (*).
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linked to generation of reactive oxygen species36; TPX2, an interactor and substrate of Aurora-A that is a potent 
oncogene amplified in many cancers and a promising therapeutic target37,38; and DUSP22, which has been shown 
to behave as a tumor suppressor gene in peripheral T-cell lymphomas39 and regulates ERα dependent transcrip-
tion in breast cancer cells40.

Evaluation of reproducibility of Rank-1 cis genes.  To evaluate the reproducibility of cis gene ranking 
based on mediation testing, we quantified the consistency of Rank-1 cis gene predictions across bootstrapped 
resamples of the original TCGA breast cancer dataset (Fig. 5). The majority of Rank-1 cis genes (69.2%) was 
consistently found as Rank-1 cis genes in bootstrapped datasets with greater than 0.75 fraction of inclusion, 
i.e., found as Rank-1 cis genes in 75% of the resampled datasets, and the fraction of inclusion is not biased by 
SCNA type (amplification or deletion) (Fig. 5A). We further observed that the fraction of inclusion is positively 
associated with the Weighted Fraction of Trans Mediation (WFTM), the score used to rank cis genes within 
each SCNA based on the extent of trans genes mediation (see Methods: Mediation testing and prediction of cis 
drivers for calculation of WFTM) (Fig. 5B). In particular, while Rank-1 cis genes with lower fraction of inclusion 
across bootstrapped resamples tend to have lower WFTM, Rank-1 cis genes with higher fractions of inclusion 
show more variability in WFTM but generally tend to have higher WFTM. The fraction of inclusion is negatively 
associated with the entropy of WFTM of cis genes in SCNAs of interest (Fig. 5C). This is an indication that SCNAs 
with a single dominant cis gene mediating the majority of trans genes (lower entropy) tend to yield more repro-
ducible Rank-1 cis genes across bootstrapped resamples than SCNAs with multiple cis genes with similar trans 
mediation (higher entropy).

Graphical portal of iEDGE results enable targeted queries.  In order to enable fast interactive brows-
ing of iEDGE precomputed runs on massive datasets such as the TCGA pan-cancer set, we developed a web 
portal (https://montilab.bu.edu/iEDGE) to allow users to query iEDGE results selectively by cancer types, genes, 
and SCNAs11. This portal displays graphical and tabular results for each step of the iEDGE pipeline, including 
differential expression of cis and trans genes, mediation analysis for driver prediction, and pathway enrichment 
analysis.

An overview of an example walkthrough of a targeted query is illustrated in Fig. S2. Here, the TCGA breast 
cancer (BRCA) report is selected and the gene query is ERBB2 (HER2). The table of differential expression results 
is available for the cytoband 17q12 in which ERBB2 resides in. Additionally, results of the mediation testing and 

Figure 5.  Reproducibility of Rank-1 cis genes across bootstrapped resamples. (A) Fraction (i.e., frequency) 
of inclusion of Rank-1 cis genes in bootstrapped resamples. (B) Fraction of inclusion vs. Weighted Fraction of 
Trans Mediation (WFTM). (C) Fraction of inclusion vs. entropy of WFTM of cis genes in the SCNA.
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driver gene prediction is available in a bipartite graph format. In this case, the graph indicates that ERBB2 is the 
top mediating cis gene and the predicted driver of the SCNA.

Discussion
Methods developed for the integrative analysis of (epi-)DNA regulators and gene expression data often focus only 
on the genes harbored by the alteration regions, while not considering the downstream (trans-)effects, which may 
limit a method’s ability to detect cancer driver genes. We present a computational framework for the integrative 
analysis of (epi-)DNA and gene expression data for large-scale datasets, iEDGE, that is able to thoroughly cata-
logue the cis and trans effects of epi-(DNA) alterations, and to predict the most likely cis-driver genes based on 
the extent of their mediation of downstream trans-genes.

The first step of the iEDGE pipeline uses differential expression analysis to determine the cis and trans genes 
that are associated with the presence/absence of a particular epi-DNA alteration across samples. By measuring 
the alterations’ association with trans genes we capture meaningful biological mechanisms representing down-
stream effects that are generally missed by tools that only consider genes within the alterations (e.g., GISTIC2.0). 
Trans genes are of potential high relevance considering that (epi-)DNA regulators such as SCNAs harbor many 
upstream genes in signaling pathways, e.g., transcription factors, wherein the set of target genes effected can shed 
light on processes or pathways associated with disease progression.

The second step of the pipeline, the mediation analysis, ranks the set of cis genes by the extent of their medi-
ation of trans genes. We showed that mediation analysis captures important cancer driver genes in our study of 
the TCGA breast cancer dataset. We then expanded these results by performing a pan-cancer analysis across 19 
cancer types in the TCGA, further highlighting our tool’s ability to identify known, as well as potentially novel 
drivers.

We conducted extensive in silico validation of predicted cis driver genes, by first testing for their enrich-
ment with known drivers from multiple cancer driver databases. We then characterized predicted drivers by 
testing for their “essentiality” against genetic screens and cellular model data included in the DepMap, to explore 
SCNA-associated gene dependencies. Both analyses showed that our list of predicted genes is significantly 
enriched for cancer genes of functional relevance, either as cancer drivers, potential cancer therapeutic targets, or 
markers of disease progression. Further experimental studies are needed to validate and characterize predicted 
drivers. Furthermore, simulations were performed to validate the performance of the Sobel test of mediation. 
Under assumptions of adequate sample size and strong correlation effects between SCNA and cis acting genes, 
conditions which were met in most of the TCGA datasets used in this study, the Sobel test of mediation achieved 
high AUC for uncovering true mediation effects.

Similar approaches have recognized the importance of integrating gene expression and the coordinated 
expression of affected gene modules for identifying drivers. One notable example is CONEXIC2, which identified 
functional gene modules for each candidate regulator in the form of copy number alteration (CNA), although a 
side-by-side comparison of the two methods was not possible because the software is not available. The concep-
tual steps of iEDGE are similar to the “Single Modulator Step” outlined in Akavia et al., in which, first, cis genes 
are defined in their “candidate driver gene” selection process, and trans genes are defined in their “target gene 
modules” selection step, and second, a scoring function is used to find the single candidate driver gene that best 
associates with the target gene expression module. The implementation details of the second step for the scoring 
of driver genes is different compared to iEDGE. iEDGE considers each 3-layer relationship between SCNA status, 
cis, and trans gene expression to calculate a mediation effect and to rank cis genes, whereas the “Single Modulator 
Step” of CONEXIC computes the best candidate driver using a Normal Gamma scoring function to measure 
each target gene’s fit with each candidate driver’s gene expression. Furthermore, while CONEXIC is not avail-
able for public use, iEDGE is available as an open-source R package (https://github.com/montilab/iEDGE)9 to 
enable analysis of custom datasets, and it supports the automatic generation of multi-level html reports in easily 
interpretable graphical formats as shown for each of the TCGA cancer types in the iEDGE web portal (montilab.
bu.edu/iEDGE)11.

Other model-based methods incorporate models of causal relationships between multiple levels of genomic 
data through the scores of conditional dependencies, measured using partial correlation coefficients for normal 
continuous features41, or conditional mutual inclusive information for binary or mixed binary and continuous 
features42,43. These approaches are similar to the mediation testing step of iEDGE, but they are more conservative 
models that detect full mediation, e.g., significant hits are instances in which the conditional independence given 
the mediator is zero, a condition that is rarely satisfied by genomic data, whereas mediation tests are also able to 
capture partial mediation in which the association between the independent and response variable is significantly 
reduced in size when the mediator is introduced but may still be different from zero.

One assumption used in the iEDGE analysis presented in this study is that the number of trans genes that a 
cis gene mediates is a proxy measure of a gene’s importance (i.e., of its likelihood of being a cancer driver). This is 
a simple and intuitive heuristic to estimate the extent of transcriptional impact from each (epi-)DNA regulator, 
albeit it may not be an appropriate assumption for specific use cases. For more targeted analysis, one may be only 
interested in predicting the cis gene that mediates gene targets in a particular pathway. Our tool is customizable in 
that the user can specify the set of trans genes to consider for mediation based on their membership in a pathway 
of interest or an experimentally derived gene signature.

We use SCNA as an example of epi-DNA events to demonstrate a convenient use case for this tool as SCNAs 
can be used to easily define genomic boundaries for distinguishing cis and trans acting genes. However, this tool 
can also be applicable to the integrative analysis of other genomic/epi-genomic data types such as DNA methyla-
tion, DNA mutations, and microRNA regulatory networks. Similarly, gene expression dataset can use a variety of 
quantitative gene-centric measures such as RNA-seq, microarray, or proteomic assays.
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Conclusion
We presented a computational toolbox for the integration of epi-DNA regulators and gene expression profiles. 
This approach demonstrated success in unbiased systemic discovery of cancer driver genes and genes with 
context-specific (amplification-driven) gene dependencies (potential therapeutic agents) across multiple cancer 
types in the TCGA. iEDGE is a flexible framework that may also be applied towards other disease contexts and 
data platforms including DNA methylation, DNA mutation, microRNA networks integrated with transcriptomic 
or proteomic datasets.

Data availability
The datasets analyzed in study are available from the Broad Institute TCGA GDAC (http://gdac.broadinstitute.
org/runs/)12 as described in Methods. iEDGE reports on these datasets are available in an interactive web portal 
(https://montilab.bu.edu/iEDGE) to allow for exploration and mining of results in user-friendly tabular and 
graphical formats11. iEDGE is available as an R package for download at https://github.com/montilab/iEDGE  9, 
and vignettes illustrating applications of the tool to simulated and real data can be accessed at https://montilab.
github.io/iEDGE.
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